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Abstract. We define a compositional program logic in the style of Floyd and
Hoare for a simple, typed, stack-based abstract machine with unstructured control
flow, global variables and mutually recursive procedure calls. Notable features of
the logic include a careful treatment of auxiliary variables and quantification and
the use of substructural typing to permit local, modular reasoning about program
fragments. Semantic soundness is established using an interpretation of types and
assertions defined by orthogonality with respect to sets of contexts.

1 Introduction

Recent research on language-based techniques in security and certification has led to
renewed interest in Floyd-Hoare and VDM-style programming logics, and to much
work on type systems and logics for low-level code. Two industrially significant typed
intermediate languges have received a great deal of attention: the bytecode of the JVM,
used as a target for Java, and the Common Intermediate Language of the CLR, used
as a target for languages including C] and Visual Basic. Both of these intermediate
languages are stack-based with control flow expressed using labelled jumps and method
calls.

Most research on formalizing the type systems of these intermediate languages
[33, 12] has treated the reality of stacks and jumps, though some authors have cho-
sen to work with structured imperative control flow [13] or functional-style applicative
expressions [36]. Work on more general specification logics [1, 28, 16] has, however,
mostly been done in the context of high-level languages.

Here we present and prove the correctness of a simple logic for directly proving par-
tial correctness assertions on a minimal stack-based machine with jumps and first-order
procedure calls. This is rather more complex than traditional Hoare logic for while pro-
grams. As well as unstructured control flow, we have to deal with a stack that varies in
size and locations that vary in type, which means some care has to be taken to ensure
assertions are even well-formed. There are also various kinds of error that are, at least
a priori, possible in the dynamic semantics: stack underflow, wild jumps and type er-
rors. We deal with these issues by defining a fairly simple type system that rules out
erroneous behaviour, and defining assertions relative to typed programs.

There are also complexities associated with (possibly mutually-recursive) procedure
calls, which become especially acute if one wishes to be able to reason locally and
modularly, rather than re-analysing bodies at every callsite. We solve these problems
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using three techniques: firstly, we are very explicit about types, contexts and quantifiers
(in particular, we have universally quantified assertions on labels in the context, in the
style of Reynolds’s specification logic [31]); secondly, we adopt a ‘tight’ interpretation
of store typings, which allows us to use substructural reasoning to adapt assumptions on
procedures to their calling context; thirdly, we use a rather general rely/guarantee-style
rule for linking arbitrary program fragments.

The other novelty is the semantics with respect to which we prove soundness. As-
sertions on a program p are interpreted extensionally, using a form of orthogonality
(perping) with respect to contexts extending p. A further twist in the proofs is the use
of step-indexed approximations to the semantics of assertions and their orthogonals.
Fuller details, including proofs, may be found in the companion technical report [8].

2 The Machine

The metavariables n and b range over the integers, Z, and booleans, B, respectively.
We assume a set V of names for global variables, ranged over by x. The metavariables
bop and uop range over typed (binary and unary, respectively) arithmetic and logical
operations such as addition and conjunction. Programs, p, are finite partial functions
from labels, l ∈ N, to instructions I:

I := pushc v | pushv x | pop x | dup | binopbop |
unopuop | brtrue l | call l | ret | halt

Programs 3 p := [l1 : I1, . . . , ln : In]

Stores are finite functions from V to values (i.e. to B ∪ Z). Our machine has two
stacks: the evaluation stack, σ, used for intermediate values, passing arguments and
returning results, is a finite sequence of values, whilst the control stack, C, is a finite
sequence of labels (return addresses):

Stores 3 G := x1 = v1, . . . , xn = vn

Stacks 3 σ := v1, . . . , vn

Callstacks 3 C := l1, . . . , ln

We use a comma ‘,’ for both the noncommutative, total concatenation of sequences and
for the commutative, partial union of finite maps with disjoint domains. We write a dash
‘−’ for both the empty sequence and the empty finite map, and use | · | for the length
operation on finite sequences. A configuration is quintuple of a program, a callstack, a
global store, an evaluation stack and a label (the program counter):

Configs = Programs × Callstacks × Stores × Stacks × N

The operational semantics is defined by the small-step transition relation → on con-
figurations shown in Figure 1. The pushc v instruction pushes a constant boolean or
integer value v onto the evaluation stack. The pushv x instruction pushes the value of
the variable x onto the stack. The pop x instruction pops the top element off the stack
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〈p, l : pushc v|C|G|σ|l〉 → 〈p, l : pushc v|C|G|σ, v|l + 1〉
〈p, l : pushv x|C|G, x = v|σ|l〉 → 〈p, l : pushv x|C|G, x = v|σ, v|l + 1〉

〈p, l : dup|C|G|σ, v|l〉 → 〈p, l : dup|C|G|σ, v, v|l + 1〉
〈p, l : pop x|C|G, x = v′|σ, v|l〉 → 〈p, l : pop x|C|G, x = v|σ|l + 1〉
〈p, l : binopbop|C|G|σ, v1, v2|l〉 → 〈p, l : binopbop|C|G|σ, v3|l + 1〉

if v3 = (v1 bop v2).
〈p, l : unopuop|C|G|σ, v|l〉 → 〈p, l : unopuop|C|G|σ, v′|l + 1〉

if v′ = uop v.
〈p, l : brtrue l′|C|G|σ, true|l〉 → 〈p, l : brtrue l′|C|G|σ|l′〉
〈p, l : brtrue l′|C|G|σ, false|l〉 → 〈p, l : brtrue l′|C|G|σ|l + 1〉

〈p, l : call l′|C|G|σ|l〉 → 〈p, l : call l′|C, l + 1|G|σ|l′〉
〈p, l : ret|C, l′|G|σ|l〉 → 〈p, l : ret|C|G|σ|l′〉

Fig. 1. Operational Semantics of the Abstract Machine

and stores it in the variable x. The binopop instruction pops the top two elements off
the stack and pushes the result of applying the binary operator op to them, provided
their sorts match the signature of the operation. The brtrue l instruction pops the top
element of the stack and transfers control either to label l if the value was true, or to the
next instruction if it was false. The halt instruction halts the execution. The call l
instruction pushes a return address onto the call stack before transferring control to la-
bel l. The ret instruction transfers control to a return address popped from the control
stack.

For k ∈ N, we define the k-step transition relation →k and the infinite transition
predicate →ω in the usual way. We say a configuration is ‘safe for k steps’ if it either
halts within k steps or takes k transitions without error. Formally:

Safe0〈p|C|G|σ|l〉 Safek〈p, l : halt|C|G|σ|l〉

〈p|C|G|σ|l〉 → 〈p|C ′|G′|σ′|l′〉 Safek〈p|C ′|G′|σ′|l′〉

Safek+1〈p|C|G|σ|l〉

and we write Safeω〈p|C|G|σ|l〉 to mean ∀k ∈ N.Safek〈p|C|G|σ|l〉.
Although this semantics is fairly standard, the choice to work with partial stores is

significant: execution can get stuck accessing an undefined variable, so, for example,
there are contexts which distinguish the sequence pushv x;pop x from a no-op.

3 Types and Assertions

As well as divergence and normal termination, programs can get stuck as a result of type
errors applying basic operations, accessing undefined variables, underflowing either of
the stacks, or jumping or calling outside the program. We rule out such behaviour using
a type system, and define assertions relative to those types. This seems natural, but it
is not the only reasonable way to proceed – although both the JVM and CLR have
type-checkers (‘verifiers’), the CLR does give a semantics to unverifiable code, which
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Θ; ∆; Σ ` n : int Θ; ∆; Σ ` b : bool

Θ; ∆, x : τ ; Σ ` x : τ Θ, a : τ ; ∆; Σ ` a : τ

Θ; ∆; Σ, τ ` s(0) : τ
Θ; ∆; Σ ` s(i) : τ

Θ; ∆; Σ, τ ′ ` s(i + 1) : τ

Θ, a : τ ; ∆; Σ ` E : bool

Θ; ∆; Σ ` ∀a ∈ τ.E : bool

Θ; ∆; Σ ` E : τ1 uop : τ1 → τ2

Θ; ∆; Σ ` uop E : τ2

Θ; ∆; Σ ` E1 : τ1 Θ; ∆; Σ ` E2 : τ2 bop : τ1 × τ2 → τ3

Θ; ∆; Σ ` E1 bop E2 : τ3

Fig. 2. Expression Typing

can be executed if it has been granted sufficient permissions. Our type-based approach
prevents one from proving any properties at all of unverifiable code.

3.1 Basic Types and Expressions

A base type, τ , is either int or bool. A stack type, Σ, is a finite sequence τ1, . . . , τn of
base types. A store type, ∆, is a finite map x1 : τ1, . . . , xn : τn from program variables
to base types. We assume a set of auxiliary variables, ranged over by a. An auxiliary
variable context, Θ, is a finite map from auxiliary variables to base types. A valuation,
ρ is a function from auxiliary variables to values. We write ρ : a1 : τ1, . . . , an : τn for
∀1 ≤ i ≤ n. ρ(ai) : τi.

Our low-level machine does not deal directly with complex expressions, but we will
use them in forming assertions. Their grammar is as follows:

E := n | b | x | a | s(i) | E bop E | uop E | ∀a ∈ τ.E

The expression form s(i), for i a natural number, represents the ith element down the
stack. Note that universal quantification over integers and booleans is an expression
form. We assume that at least equality and a classical basis set of propositional con-
nectives (e.g. negation and conjunction) are already operators in the language; other-
wise we would simply add them to expressions. In any case, we will feel free to use
fairly arbitrary first-order arithmetic formulae (including existential quantification and
inductively defined predicates) in assertions, regarding them as syntactic sugar for, or
standard extensions of, the above grammar.

Expressions are assigned base types in the context of a given stack typing, store
typing and auxiliary variable context by the rules shown in Figure 2. Expression typ-
ing satisfies the usual weakening properties, and the definitions of, and typing lemmas
concerning, substitutions E[E′/x], E[E′/a] and E[E′/s(i)] are as one would expect.
If Θ;∆;Σ ` E : τ , ρ : Θ, G : ∆ and σ : Σ then we define [[E]] ρ G σ ∈ [[τ ]] as in
Figure 3. The semantics is well defined and commutes with each of our three forms of
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[[v]] ρ G σ = v [[a]]ρ G σ = ρ(a) [[x]] ρ G σ = G(x)
[[s(0)]] ρ G (σ, v) = v [[s(i + 1)]] ρ G (σ, v) = [[s(i)]] ρ G σ

[[uop E]] ρ G σ = uop ([[E]] ρ G σ)

[[E1 bop E2]] ρ G σ = ([[E1]] ρ G σ) bop ([[E2]] ρ G σ)

[[∀a ∈ τ.E]] ρ G σ =
V

v∈[[τ ]][[E]] ρ[a 7→ v] G σ

Fig. 3. Expression Semantics

substitution. If Θ;∆;Σ ` Ei : bool for i ∈ {1, 2}, we write Θ;Σ;∆ |= E1 =⇒ E2

to mean
∀ρ : Θ.∀G : ∆.∀σ : Σ. [[E1]] ρ G σ =⇒ [[E2]] ρ G σ.

where =⇒ is classical first-order implication. We define syntactic operations shift(E)
and E \\E′ for reindexing expressions when the stack is pushed or popped by

E shift(E) E \\E′

s(0) s(1) E′

s(i + 1) s(i + 2) s(i)
E1 bop E2 shift(E1) bop shift(E2) (E1 \\E′) bop (E2 \\E′)
uop E1 uop (shift(E1)) uop (E1 \\E′)
∀a ∈ τ.E1 ∀a ∈ τ.shift(E1) ∀a ∈ τ.(E1 \\E′) capture-avoiding
otherwise E E

where the E\\E′ operation, combining substitution for s(0) with ‘unshifting’, is defined
when Θ;∆;Σ, τ ′ ` E : τ and Θ;∆;Σ ` E′ : τ ′.

3.2 Types and Assertions for Programs

One could first present a type system and then a second inference system for assertion
checking. Since the structure of the two inference systems would be similar, and we
need types in defining assertions, we instead combine both into one system. The type
part used here is monomorphic and somewhat restrictive, rather like that of the JVM.
Over this we layer a richer assertion language, including explicit universal quantifica-
tion. We define the structure of, and axiomatise entailment on, this assertion language
explicitly (rather than delegating both to some ambient higher-order logic).

An extended label type, χ, is a universally-quantified pair of a precondition and a
postcondition, where the pre- and postconditions each comprise a store type, a stack
type and a boolean-valued expression:

χ := ∆;Σ;E → ∆′;Σ′;E′ | ∀a : τ.χ

A label environment is a finite mapping from labels to extended label types

Γ := l1 : χ1, . . . , ln : χn
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Order:

Θ ` χ ok Θ ` Ê : bool
refl

Θ; Ê ` χ ≤ χ

Θ; Ê ` χ ≤ χ′ Θ; Ê ` χ′ ≤ χ′′

trans
Θ; Ê ` χ ≤ χ′′

Quantifier:
Θ ` ∀a : τ.χ ok Θ ` E : τ Θ ` Ê : bool

∀-subs
Θ; Ê ` ∀a : τ.χ ≤ χ[E/a]

Θ ` χ′ ok Θ ` Ê : bool Θ, a : τ ; Ê ` χ′ ≤ χ
∀-glb

Θ; Ê ` χ′ ≤ ∀a : τ.χ

Arrow:

Θ; ∆; Σ ` F ∧ Ê =⇒ E Θ; ∆′; Σ′ ` E′ ∧ Ê =⇒ F ′

→
Θ; Ê ` (∆; Σ; E → ∆′; Σ′; E′) ≤ (∆; Σ; F → ∆′; Σ′; F ′)

Θ ` Ê : bool Θ, a : τ ; ∆; Σ ` E : bool Θ; ∆′; Σ′ ` E′ : bool
∀∃ →

Θ; Ê ` ∀a : τ.(∆; Σ; E → ∆′; Σ′, E′) ≤ (∆; Σ;∃a ∈ τ.E → ∆′; Σ′; E′)

Frame:

Θ ` Ê : bool Θ; ∆; Σ ` I : bool Θ ` ∆; Σ; E → ∆′; Σ′; E′ ok

Θ; Ê ` (∆; Σ; E → ∆′; Σ′; E′)

≤ (∆, ∆; Σ, Σ; shift |Σ|(I) ∧ E → ∆, ∆′; Σ, Σ′; shift |Σ
′|(I) ∧ E′)

Fig. 4. Subtyping/Entailment for Extended Label Types

These are subject to the following well-formedness conditions:

Θ ` χ1 ok · · · Θ ` χn ok

Θ ` l1 : χ1, . . . , ln : χn ok

Θ, a : τ ` χ ok

Θ ` ∀a : τ.χ ok

Θ;∆;Σ ` E : bool Θ;∆′;Σ′ ` E′ : bool

Θ ` ∆;Σ;E → ∆′;Σ′;E′ ok

The intuitive meaning of l : ∆;Σ;E → ∆′;Σ′;E′ is that if one jumps to l with a store
of type ∆ and a stack of type Σ, such that E is true, then the program will, without
getting stuck, either diverge, halt, or reach a ret with the callstack unchanged and a
store of type ∆′ and a stack of type Σ′ such that E′ is true. We will formalise (a more
extensional version of) this intuition in Section 4.

We define χ[E/a] in the obvious capture-avoiding way and axiomatise entailment
on well-formed extended label types as shown in Figure 4. The basic entailment judge-
ment has the form Θ; Ê ` χ ≤ χ′ where Θ ` Ê : bool (we elide store and stack
types here), Θ ` χ ok and Θ ` χ′ ok. The purpose of Ê, which will also show up in
the rules of the program logic proper, is to constrain the values taken by the variables in
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Θ. Including Ê in judgements does not seem necessary for proving properties of closed
programs, but we shall see later how it helps us to reason in a modular fashion about
program fragments.

The [→] rule is basically the usual one for subtyping function types, here playing the
role of Hoare logic’s rule of consequence. The [∀∃ →] rule is a kind of internalization
of the usual left rule for existential quantification. Note how in these two rules, classical
first-order logic, which we do not analyse further, interacts with our more explicit, and
inherently intuitionisitic, program logic.

The most complex and interesting case is the frame rule, which is closely related
to the rule of the same name in separation logic [25].1 This allows an invariant I to be
added to the pre and postconditions of an extended label type χ, provided that invariant
depends only on store and stack locations that are guaranteed to be disjoint from the
footprint of the program up to a return to the current top of the callstack. Note how ref-
erences to stack locations in the invariant are adapted by shifting. The frame rule allows
assumptions about procedures to be locally adapted to each call site, which is necessary
for modular reasoning. Rather than a single separating conjunction ∗ on assertions, we
use our ‘tight’ (multiplicative) interpretation of state types to ensure separation and use
ordinary (additive) conjunction on the assertions themselves.

In use, of course, one needs to adapt extended types to contexts in which there is
some relationship between the variables and stack locations mentioned in ∆ and Σ and
those added in ∆ and Σ. This is achieved by using (possibly new) auxiliary variables to
split the state dependency before applying the frame rule: see Example 4 in Section 5
for a simple example.

3.3 Assigning Extended Types to Programs

Our basic judgement form is Θ; Ê;Γ ` p � Γ ′ where Γ and Γ ′ are label environments
with disjoint domains, Ê is a boolean-valued expression and p is a program fragment.

The context Γ expresses assumptions about imported code that will be subsequently
linked with p, whilst Γ ′ says what p will guarantee about exported labels, given those
assumptions. Thus none of the labels in Γ , and all of the labels in Γ ′, will be in the
domain of p. The rules for assigning extended types to programs are shown (eliding
some obvious well-formedness conditions in a vain attempt to improve readibility) in
Figures 5 and 6.

The key structural rule is [link], which allows proved program fragments to be con-
catenated. The rule has a suspiciously circular nature: if p1 guarantees Γ1 under assump-
tions Γ2, and p2 guarantees Γ2 under assumptions Γ1, then p1 linked with p2 guarantees
both Γ1 and Γ2 unconditionally. The rule is, however, sound for our partial correctness
(safety) interpretation, as we prove later.

The [∀-r] rule is a mild variant of the usual introduction/right rule for universal
quantification. The auxiliary variable a does not appear free in Γ , so we may univer-
sally quantify it in each (hence the vector notation) of the implictly conjoined conclu-

1 Since our rule concerns both ‘frame properties’ and ‘frames’ in the sense of activation records,
it arguably has even more claim on the name :-)
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Θ; Ê; Γ ` p � Γ ′, l : χ
widthr

Θ; Ê; Γ ` p � Γ ′

Θ; Ê; Γ ` p � Γ ′ Θ ` χ ok l 6∈ dom(p)
widthl

Θ; Ê; Γ, l : χ ` p � Γ ′

Θ; Ê; Γ ` p � Γ ′, l : χ Θ; Ê ` χ ≤ χ′

subr
Θ; Ê; Γ ` p � Γ ′, l : χ′

Θ; Ê; Γ, l : χ ` p � Γ ′ Θ; Ê ` χ′ ≤ χ
subl

Θ; Ê; Γ, l : χ′ ` p � Γ ′

Θ; Ê; Γ ` p � Γ ′ Θ, Θ′ ` Ê′ =⇒ Ê
ctxl

Θ, Θ′; Ê′; Γ ` p � Γ ′

Θ; Ê; Γ ` p � li : ∆i; Σi; Ei → ∆′
i; Σ

′
i; E

′
i

ctxr
Θ; true; Γ ` p � li : ∆i; Σi; Ê ∧Ei → ∆′

i; Σ
′
i; E

′
i

Θ ` Γ ok Θ ` Ê : bool Θ, a : τ ; Ê; Γ ` p � li : χi

∀-r
Θ; Ê; Γ ` p � li : ∀a : τ.χi

Θ; Ê; Γ, Γ2 ` p1 � Γ1 Θ; Ê; Γ, Γ1 ` p2 � Γ2

link
Θ; Ê; Γ ` p1, p2 � Γ1, Γ2

Fig. 5. Program Logic: Structural and Logical Rules

sions. The vector notation also appears in the [ctxr] rule, allowing global conditions on
auxiliary variables to be transferred to the preconditions of each of the conclusions. 2

The reader will notice that the axioms fail to cope with branch or call instructions
whose target is the instruction itself, as we have said that judgements in which the same
label appears on the left and right are ill-formed. This is easily rectified either by adding
special case rules, or3 by a more general relaxation of our requirement for imports Γ
and exports Γ ′ to be disjoint, but we omit the (uncomplicated) details here. We also
remark that if we are willing to make aggressive use of the frame rule, subtyping and
auxiliary variable manipulations, the axioms can be presented in a more stripped-down
form. For example, the rule for ret can be presented as just

−; true;− ` [l : ret] � l : −;−; true → −;−; true

2 Equivalently, one could state these two rules with a single conclusion and add a right rule for
conjunction. Our presentation threads the subject program p linearly through the derivation,
making it clear that we only analyse its internal structure once.

3 Thanks to one of the referees for this observation.
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Θ; Ê; Γ ` [l : halt] � l : χ

Θ; Ê; Γ, l + 1 : ∆; Σ, τ ; E → ∆′; Σ′; E′

` [l : pushc v] � l : ∆; Σ; E \\v → ∆′; Σ′; E′ (where v : τ )

Θ; Ê; Γ, l + 1 : ∆, x : τ ; Σ, τ ; E → ∆′; Σ′; E′

` [l : pushv x] � l : ∆, x : τ ; Σ; E \\x → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆, x : τ ; Σ; E → ∆′; Σ′; E′

` [l : pop x] � l : ∆, x : τ ′; Σ, τ ; shift(E)[s(0)/x] → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆; Σ, τ, τ ; E → ∆′; Σ′; E′ ` [l : dup] � l : ∆; Σ, τ ; E \\s(0) → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆; Σ, τ3; E → ∆′; Σ′; E′

` [l : binopbop] � l : ∆; Σ, τ1, τ2; shift(E)[(s(1) bop s(0))/s(1)] → ∆′; Σ′; E′

(where bop : τ1 × τ2 → τ3)

Θ; Ê; Γ, l + 1 : ∆; Σ, τ2; E → ∆′; Σ′; E′

` [l : unopuop] � l : ∆; Σ, τ1; E[(uop s(0))/s(0)] → ∆′; Σ′; E′ (uop : τ1 → τ2)

Θ; Ê; Γ, l + 1 : ∆; Σ; E \\false → ∆′; Σ′; E′ , l′ : ∆; Σ; E \\true → ∆′; Σ′; E′

` [l : brtrue l′] � l : ∆; Σ,bool; E → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆′′; Σ′′; E′′ → ∆′; Σ′; E′ , l′ : ∆; Σ; E → ∆′′; Σ′′; E′′

` [l : call l′] � l : ∆; Σ; E → ∆′; Σ′; E′

Θ; Ê; Γ ` [l : ret] � l : ∆; Σ; E → ∆; Σ; E

Fig. 6. Program Logic: Instruction-Specific Axioms

4 Semantics of Types and Assertions

One could certainly formulate and prove a correctness theorem for this logic syntacti-
cally, using a ‘preservation and progress’ argument. Technically, the syntactic approach
is probably the simplest way of proving soundness, though it has the mild disadvan-
tage of requiring a somewhat artifical extension of the typing and logical rules to whole
configurations, rather than just the programs with which one starts. More fundamen-
tally, the syntactic approach fails to capture the meaning of types and assertions, which,
although this is partly a question of taste, I believe to be more than a philosophical
objection.

In practice, we would like to be able safely to link low-level components that have
been verified using different proof systems and would arguably also like to have a for-
mal statement of the invariants that should be satisfied by trusted-but-unverified com-
ponents. These goals require a notion of semantics for types and assertions that is for-
mulated in terms of the observable behaviour of programs, independent of a particular
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syntactic inference system. A syntactic approach to the semantics of program logics can
also be excessively intensional, distinguishing observationally equivalent programs in a
way that may weaken the logic for applications such as program transformation. Since
we are making no claims here about completeness of our logic, we refrain from pushing
this argument more strongly, however.

The way in which we choose to formulate an extensional semantics for types and
assertions is via the notion of orthogonality with respect to contexts (‘perping’). This is
a general pattern, related to continuation-passing and linear negation, that has been ap-
plied in a number of different operational settings in recent years, including structuring
semantics, defining operational versions of admissible predicates, logical relations [27]
and ideal models for types [35], and proving strong normalization [19].

To establish the soundness of our link rule we also find it convenient to index our
semantic definitions by step-counts, a technique that Appel and his collaborators have
used extensively in defining semantic interpretations of types over low-level languages
[3, 4, 2]. By contrast with our use of orthogonality, which is a deliberate choice of what
we regard as the ‘right’ semantics, the use of indexing is essentially a technical device
to make the operational proofs go through.

Assume Θ;∆;Σ ` E : bool and ρ : Θ. We define

Eρ(∆;Σ;E) ⊆ Stores×Stacks
def
= {(G, σ) | G : ∆ ∧ σ : Σ ∧ [[E]] ρ G σ = true}

If S ⊆ Stores × Stacks and k ∈ N, we define

S>k ⊆ Configs = {〈p|C|G′|σ′|l〉 | ∀(G, σ) ∈ S.Safek〈p|C|G′, G|σ′, σ|l〉}

So S>k is the set of configurations that, when extended with any state in S, are safe for
k steps: think of these as (k-approximate) ‘test contexts’ for membership of S.

Now for Θ ` Γ ok, ρ : Θ and k ∈ N, define |=k
ρ p � Γ inductively as follows:

|=k
ρ p � l1 : χ1, ..., ln : χn ⇐⇒

∧n
i=1 . |=k

ρ p � li : χi

|=k
ρ p � l : ∀a ∈ τ.χ ⇐⇒ ∀x ∈ [[τ ]]. |=k

ρ[a7→x] p � l : χ

|=k
ρ p � l : ∆;Σ;E → ∆′;Σ′;E′ ⇐⇒ ∀(G, σ) ∈ Eρ(∆;Σ;E).
∀〈p, p′|C|G′|σ′|l′〉 ∈ Eρ(∆′;Σ′;E′)>k . Safek〈p, p′|C, l′|G′, G|σ′, σ|l〉

The important case is the last one: a program p satisfies l : ∆;Σ;E → ∆′;Σ′;E′

to a k-th approximation if for any k-test context for E′ that extends p and has entry
point l′, if one pushes l′ onto the call stack, extends the state with one satisfying E, and
commences execution at l, then the overall result is safe for k steps.4

We then define the semantics of contextual judgements by

Θ; Ê;Γ |= p � Γ ′

⇐⇒ ∀ρ : Θ.∀k ∈ N.∀p′. [[Ê]]ρ = true ∧ |=k
ρ p′, p � Γ =⇒ |=k+1

ρ p′, p � Γ ′

4 It would actually suffice only to ask the context to be safe for k − 1 steps, rather than k.
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So p satisfies Γ ′ under assumptions Γ if, for all k, any extension of p that satisfies Γ
for k steps satisfies Γ ′ for k +1 steps. The following theorem establishes the semantic
soundness of the entailment relation on extended label types, and is proved by induction
on the rules in Figure 4:

Theorem 1. If Θ; Ê ` χ ≤ χ′ then for all p, l, ρ : Θ, k ∈ N

[[Ê]]ρ = true∧ |=k
ρ p � l : χ =⇒ |=k

ρ p � l : χ′.

We then use Theorem 1 and a further induction on the rules in Figures 5 and 6 to
establish the semantic soundness of the program logic:

Theorem 2. If Θ; Ê;Γ ` p � Γ ′ then Θ; Ê;Γ |= p � Γ ′.

5 Examples

Our logic is very fine-grained (and the judgement forms fussily baroque), so proofs of
any non-trivial example programs are lengthy and extremely tedious to construct by
hand. In this section we just present a few micro-examples, demonstrating particular
features of the logic. We hope these convince the reader that, given sufficient patience,
one can indeed prove all the program properties one might expect (subject to the lim-
itations of the simple type system, of course), and do so in a fairly arbitrarily modular
fashion. The technical report contains more details of these examples, as well a simple
example of mutual recursion.

Example 1. It takes around twelve detailed steps to derive

−; true;− ` [0 : pushc 1, 1 : binop+, 2 : ret] � 0 : χ0 (1)

where
χ0 = ∀a : int.(−;int; s(0) = a → −;int; s(0) = a + 1)

which establishes that for any integer a, if we call label 0 with a on the top of the stack,
the fragment will either halt, diverge or return with a + 1 on the top of the stack.

Example 2. Now consider the following simple fragment:

[10 : call 0, 11 : br 0]

which one may think of as a tail-call optimized client of the code in the first example.
Write χ′0 for

∀c : int.(−;int; (s(0) = c) ∧ ((c = b) ∨ (c = b + 1)) → −;int; s(0) = c + 1)

which is well-formed in the context b : int. It takes seven steps to show

b : int; true; 0 : χ′0 `
[10 : call 0, 11 : br 0] � 10 : −;int; s(0) = b → −;int; s(0) = b + 2 (2)
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which establishes (roughly) that for any b, if the code at label 0 can be relied upon
to compute the successors of b and of b + 1, then the code at label 10 guarantees to
compute b + 2. We now consider linking in the code from the first example. Another
eight or so steps of reasoning with entailment and structural rules allows us to combine
judgements (1) and (2) to obtain

−; true;− ` [0 : pushc 1, 1 : binop+, 2 : ret, 10 : call 0, 11 : br 0]�
0 : χ0, 10 : ∀b : int.(−;int; s(0) = b → −;int; s(0) = b + 2)

establishing that for any integer b, calling the code at label 10 with b returns with b + 2.
The point about this example is to demonstrate a certain style of modular reasoning: the
proof about the code at 10 and 11 was carried out under a rather weak assumption about
the code at 0. After linking the two fragments together, we were able to generalize and
conclude a stronger result about the code at 10 in the composed program without re-
analysing either code fragment. To re-emphasize this point, we now consider replacing
the code at 0 with something weaker.

Example 3. Given the source program

p = [0 : dup, 1 : pushc 7, 2 : binop<, 3 : brtrue 5, 4 : ret,
5 : pushc 1, 6 : binop+, 7 : ret]

we can prove, using the rule for conditional branches, that

−; true;− ` p � 0 : ∀a : int.(−;int; a < 7 ∧ s(0) = a → −;int; s(0) = a + 1)
(3)

showing that the code at label 0 computes the successor of all integers smaller than 7.
We now consider [link]ing the judgement (3) with that we derived for the client

program (2). With a few purely logical manipulations (using Ê = b < 6) we can derive

−; true;− ` p, [10 : call 0, 11 : br 0]
�10 : ∀b : int.(−;int; b < 6 ∧ s(0) = b → −;int; s(0) = b + 2)

showing that calling 10 now computes b + 2 for all b less than 6. Again, we did not
reanalyse the client code, but were able to propogate the information about the range
over which our ‘partial successor’ code at 0 works through the combined program after
linking. The inclusion of Ê, or something equivalent, seems necessary for this kind of
reasoning: we need to add constraints on auxiliary variables throughout a judgement,
as well as to assumptions or conclusions about individual labels.

Example 4. As a simple example of how our entailment relation allows extended types
for labels to be adapted for particular calling contexts, consider the assertion χ0 we had
in our first example. Eight small steps of reasoning with the entailment rules allow one
to deduce

−; true ` χ0 ≤ (−;int,int; (s(1) < s(0) → −;int,int; s(1) < s(0))

So, although χ0 only mentions a one-element stack, when one calls a label assumed to
satisfy χ0 one can locally adapt that assumption to the situation where are two things
on the stack and a non-trivial relationship between them. This is a common pattern:
we use the frame rule and new auxiliary variables to add a separated invariant and then
existentially quantify the new variables away.
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Example 5. Consider the source procedure

void f() {
x := 0;
while(x<5) {
x := x+1;

}
}

A typical Java or C] compiler will compile the loop with the test and conditional back-
wards branch at the end, preceded by a header which branches unconditionally into the
loop to execute the test the first time. This yields code p something like

[1 : pushc 0, 2 : pop x, 3 : pushc true, 4 : brtrue 9, 5 : pushv x,
6 : pushc 1, 7 : binop+, 8 : pop x, 9 : pushv x, 10 : pushc 5, 11 : binop<,
12 : brtrue 5, 13 : ret]

Such unstructured control-flow makes no difference to reasoning in our low-level logic:
as one would hope, we can easily derive

−; true;− ` p � 0 : x : int;−; true → x : int;−;x = 5.

Example 6. Although our machine has call and return instructions, it does not specify
any particular calling convention or even delimit entry points of procedures. Both the
machine and the logic can deal with differing calling conventions and multiple entry
points. For example, given

p = [1 : pushv x, 2 : pushc 1, 3 : binop+, 4 : ret]

we can derive

−; true;− ` p �

1 : ∀a : int.(x : int;−;x = a → x : int;int;x = a ∧ s(0) = a + 1),
2 : ∀a : int.(−;int; s(0) = a → −;int; s(0) = a + 1)

so one can either pass a parameter in the variable x, calling address 1, or on the top of
the stack, calling address 2.

6 Discussion

We have presented a typed program logic for a simple stack-based intermediate lan-
guage, bearing roughly the same relationship to Java bytecode or CIL that a language
of while-programs with procedures does to Java or C].

The contributions of this work include the modular treatment of program fragments
and linking (similar to, for example, [11]); the explicit treatment of different kinds of
contexts and quantification; the interplay between the prescriptive, tight interpretation
of types and the descriptive interpretation of expressions, leading to a separation-logic
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style treatment of adaptation; the use of shifting to reindex assertions; dealing with non-
trivially unstructured control flow (including multiple entry points to mutually-recursive
procedures) and an indexed semantic model based on perping.

There is some related work on logics for bytecode programs. Borgström [10] has
approached the problem of proving bytecode programs meet specifications by first de-
compiling them into higher-level structured code and then reasoning in standard Floyd-
Hoare logic. Quigley [29, 30] has formalized rules for Hoare-like reasoning about a
small subset of Java bytecode within Isabelle, but her treatment is based on trying to
rediscover high-level control structures (such as while loops); this leads to rules which
are both complex and rather weak. More recently, Bannwart and Müller [6] have com-
bined the simple logic of an early draft of the present paper [7] with a higher-level, more
traditional Hoare logic for Java to obtain a rather different logic for bytecodes than that
we present here. We should also mention the work of Aspinall et al on a VDM-like
logic for resource verification of a JVM-like language [5].

Even for high-level languages, satisfactory accounts of auxiliary variables and rules
for adaptation in Hoare logics for languages with procedures seem to be surprisingly
recent, see for example the work of Kleymann [18] and von Oheimb & Nipkow [34,
26]. Our fussiness about contexts and quantification, and use of substructural ideas,
differs from most of this other work, leading to a rather elegant account of invariants of
procedures and a complete absence of side-conditions. The use of auxiliary variables
scoped across an entire judgement, and explicit universal quantification (rather than
implicit, closing, quantification on each triple in the context) seems much the best way
to reason compositionally, allowing one to relate assumptions on different labels, but
has previously been shied away from. As von Oheimb [34] says

A real solution would be explicit quantification like ∀Z.{P Z} c {QZ}, but
this changes the structure of Hoare triples and makes them more difficult to
handle. Instead we prefer implicit quantification at the level of triple valid-
ity[. . . ]

The other line of closely related research is on proof-carrying code [24, 23] and typed
assembly languages [22], much of which has a similar ‘logical’ flavour to this, with
substructural ideas having been applied to stacks [17], heaps [20] and aliasing [32]. Our
RISC-like stack-based low-level machine, with no built-in notion of procedure entry
points or calling conventions, is similar to that of STAL [21]. Compared with most of
the cited work, we have a much simpler machine (no pointer manipulation, dynamic
allocation or code pointers), but go beyond simple syntactic type soundness to give
a richer program logic with a semantic interpretation. Especially close is the work of
Appel et al on semantic models of types in foundational proof-carrying code, from
which we borrowed the step-indexed proof technique, and of Shao and Hamid [14] on
interfacing Hoare logic with a syntactic type system for low-level code as a way of
verifying linkage between typed assembly language modules verified using different
systems.

One might (and all the referees did) reasonably ask why we have not followed most
of the recent work in this area by, firstly, formalizing our logic in a theorem prover and,
secondly, avoiding all the explicit treatment of quantification, auxiliary variables etc.
in favour of inheriting them from a shallow embedding of the semantics in an ambient
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higher-order logic. Machine checking is certainly helpful in avoiding unsoundness, is
probably essential for managing all the details of logics for realistic-scale languages or
machines, and is a necessary component in PCC-like deployment scenarios. We cer-
tainly plan to investigate mechanization in the near future, but believe a traditional
pencil-and-paper appraoch is quite reasonable for preliminary investigations with toy
calculi, despite the history of unsound Hoare logic rules in the literature. We certainly
made errors in earlier versions of this paper but, given an independent semantics and
formalization of correctness (rather than trying to work purely axiomatically), see no
reason why a program logic is more likely to be unsound than any interesting type sys-
tem or static analysis in the literature (though opinions differ on just how likely that
is. . . ). As regards the second point, shallow embeddings are very convenient, especially
for mechanization, but they do have the potential to miss the semantic subtleties of
non-trivial languages. Whether or not one recognizes it, the embedding constitutes a
denotational semantics that, if one is not extremely careful and the language is much
more complex than while-programs, will be far from fully-abstract. Delegating the en-
tailment used in the rule of consequence to implication in the metalogic therefore runs
the risk of being incomplete for reasoning about behavioural properties of programs in
the original language. It is unclear (at least to me) what the semantic import of, say,
a relative completeness result factored through such a non-fully-abstract semantics is
supposed to be.

There are many variations and improvements one might make to the logic, such as
adding subtyping and polymorphism at the type level and adding other connectives to
the program logic level. But it must be admitted that this system represents a rather odd
point in the design space, as we have tried to keep the ‘spirit’ of traditional Hoare logic:
pre and post conditions, first-order procedures and the use of classical predicate calculus
to form assertions on a flat state. A generalisation to higher-order, with first-class code
pointers, would bring some complexity, but also seems to offer some simplifications,
such as the fact that one only needs preconditions as everything is in CPS. Another
extension would be to more general dynamic allocation. Both first-class code pointers
and heaps have been the objects of closely related work on semantics and types for both
low-level and high-level languages (e.g. [9] and the references therein); transferring
those ideas to general assertions on low-level code looks eminently doable. We would
also like to generalize predicates to binary relations on states. Our ultimate goal is a
relational logic for a low-level language into which one can translate a variety of high-
level typed languages whilst preserving equational reasoning. We regard this system as
a step towards that goal, rather than an endpoint in its own right.

We have not yet fully explored the ramifications of our semantic interpretation. One
of its effects is to close the interpretation of extended label types with respect to an
observational equivalence, which is a pleasant feature, but our inference system then
seems unlikely to be complete. The links with work of Honda et al. [15] on observa-
tionally complete logics for state and higher-order functions deserve investigation. Note
that the extent to which our extensional semantics entails a more naive intensional one
depends on what test contexts one can write, and that these test contexts are not merely
allowed to be untypable, but interesting ones all are untypeable: they ‘go wrong’ when
a predicate fails to hold. There is an adjoint ‘perping’ operation that maps sets of con-
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figurations to subsets of Stores×Stacks and more inference rules (for example, involv-
ing conjunction) seem to be valid for state assertions that are closed, in the sense that
[[E]] = [[E]]>>. We could impose this closure by definition, or by moving away from
classical logic for defining the basic assertions over states.
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