
Relational Reasoning in a
Nominal Semantics for Storage

Nick Benton1 and Benjamin Leperchey2

1 Microsoft Research, Cambridge
2 PPS, Université Denis Diderot, Paris

Abstract. We give a monadic semantics in the category of FM-cpos to
a higher-order CBV language with recursion and dynamically allocated
mutable references that may store both ground data and the addresses
of other references, but not functions. This model is adequate, though
far from fully abstract. We then develop a relational reasoning principle
over the denotational model, and show how it may be used to establish
various contextual equivalences involving allocation and encapsulation
of store.

1 Introduction

The search for good models and reasoning principles for programming languages
with mutable storage has a long history [21], and we are still some way from
a fully satisfactory account of general dynamically-allocated storage in higher-
order languages. Here we take a small step forward, building on the work of Pitts
and Stark on an operational logical relation for an ML-like language with integer
references [12], that of Reddy and Yang on a parametric model for a divergence-
free, Pascal-like language with heap-allocated references [14] and that of Shinwell
and Pitts on an FM-cpo model of FreshML [17].

Section 2 introduces MILler, a monadic, monomorphic, ML-like language
with references storing integers or the addresses of other references. Section 3
defines a computationally adequate denotational semantics for MILler by using
a continuation monad over FM-cpos (cpos with an action by permutations on
location names). Working with FM-cpos is much like doing ordinary domain
theory; although it is technically equivalent to using pullback preserving functors
from the category of finite sets and injections into Cpo, it is significantly more
concrete and convenient in practice. The basic model in FM-cpo gives us an
elegant interpretation of dynamic allocation, but fails to validate most interesting
equivalences involving the use of encapsulated state.

Section 4 defines a logical relation over our model, parameterized by relations
on stores that specify explicitly both a part of the store accessible to an expres-
sion and a separated (non-interfering) invariant that is preserved by the context.
Section 5 uses the relation to establish a number of equivalences involving the
encapsulation of dynamically allocated references, and shows the incompleteness
of our reasoning principle. A fuller account of this work, including proofs, more
discussion and examples may be found in the companion technical report [2].

(rec)
∆; Γ, x : τ, f : τ → T(τ ′) ` M : T(τ ′)

∆; Γ ` (rec f(x :τ) :τ ′ = M) : τ → T(τ ′)
(loc)

` : σ ∈ ∆

∆; Γ ` ` : σ ref

(app)
∆; Γ ` V1 : τ → Tτ ′ ∆; Γ ` V2 : τ

∆; Γ ` V1 V2 : Tτ ′

(let)
∆; Γ ` M1 : T(τ1) ∆; Γ, x : τ1 ` M2 : T(τ2)

∆; Γ ` let x⇐M1 in M2 : T(τ2)
(val)

∆; Γ ` V : τ

∆; Γ ` val V : T(τ)

(eq)
∆; Γ ` V1 : σ ref ∆; Γ ` V2 : σ ref

∆; Γ ` V1 = V2 : T(unit + unit)
(deref)

∆; Γ ` V : σ ref

∆; Γ ` !V : Tσ

(alloc)
∆; Γ ` V : σ

∆; Γ ` ref V : T(σ ref)
(assign)

∆; Γ ` V1 : σ ref ∆; Γ ` V2 : σ

∆; Γ ` V1 := V2 : T(unit)

Fig. 1. Type Rules for MILler (extract)

2 The Language

MILler (MIL-lite with extended references), is a CBV, monadically-typed λ-
calculus with recursion and dynamically allocated references. It is a close relative
of the MIL-lite fragment [1] of the intermediate language of MLj and SML.NET,
and of ReFS [12]. MILler distinguishes value types, τ , from computation types,
of the form Tτ . The storable types, σ, are a subset of the value types:

τ ::= unit | int | σ ref | τ × τ | τ + τ | τ → Tτ
σ ::= int | σ ref
γ ::= τ | Tτ

Typing contexts, Γ , are finite maps from variable names to value types. We
assume an infinite set of locations L, ranged over by `. Store types ∆ are finite
maps from locations to storable types. Terms, G, are subdivided into values, V ,
and computations, M :

V ::= x | n | ` | () | (V, V ′) | inτ
i V | rec f(x :τ) :τ ′ = M

M ::= V V ′ | let x⇐M in M ′ | val V | πiV | ref V |!V | V := V ′

| case V of in1x ⇒ M ; in2x ⇒ M ′

| V = V ′ | V + V ′ | iszero V

Some of the typing rules for MILler are shown in Figure 1. One can define syn-
tactic sugar for booleans, conditionals, non-recursive λ-abstractions, sequencing
of commands, etc. in the obvious way.

States, Σ, are finite maps from locations to Z + L. We write inZ,inL for the
injections and Σ[` 7→ inZn] (resp.inL) for updating.

Σ, let x⇐val V in val x ↓
Σ, let y⇐M [V/x] in K ↓

Σ, let x⇐val V in (let y⇐M in K) ↓

Σ, let x2⇐M1 in (let x1⇐M2 in K) ↓

Σ, let x1⇐(let x2⇐M1 in M2) in K ↓

Σ, let x1⇐M [V/x2, (rec f(x2 :τ1) :τ2 = M)/f] in K ↓

Σ, let x1⇐(rec f(x2 :τ1) :τ2 = M) V in K ↓

Σ, let x⇐val false in K ↓
` 6= `′

Σ, let x⇐` = `′ in K ↓

Σ[` 7→ inL`′], let x⇐val () in K ↓

Σ, let x⇐` := `′ in K ↓

Σ(`) = inL`′ Σ, let x⇐val `′ in K ↓

Σ, let x⇐ !` in K ↓

Σ[` 7→ inL`′], let x⇐val ` in K ↓
` 6∈ locs(Σ) ∪ locs(K) ∪ {`′}

Σ, let x⇐ref `′ in K ↓

Fig. 2. Operational Semantics of MILler (extract)

Definition 1 (Typed states and equivalence). If Σ,Σ′ are states, and ∆ is
a store type, we write Σ ∼ Σ′ : ∆ to mean ∀` ∈ dom ∆, Σ ∼ Σ′ : (` : ∆(`)),
where Σ ∼ Σ′ : (` : int) means ∃n ∈ Z.Σ` = inZn = Σ′` and Σ ∼ Σ′ : (` : σ′ ref)
means ∃`′ ∈ L.Σ` = inL`′ = Σ′` ∧ Σ ∼ Σ′ : (`′ : σ′). We say that a state Σ has
type ∆, and we write Σ : ∆, when Σ ∼ Σ : ∆.

The restricted grammar of storable types means that if Σ : ∆ then the part of
Σ accessible from dom(∆) will be acyclic.

The operational semantics is defined using a termination judgement [12]
Σ, let x ⇐ M in K ↓ where M is closed and K is a continuation term in x.
Typed continuation terms are defined by

∆;` val x : (x : τ)>
∆;x : τ ` M : Tτ ′ ∆;` K : (y : τ ′)>

∆;` let y⇐M in K : (x : τ)>

and the rules for defining untyped ones are the same with types (though not
variables) erased. Some of the rules defining the termination predicate are shown
in Figure 2.

Definition 2 (Contextual equivalence). Contexts, C[·], are ‘computation
terms with holes in’ and we write C[·] : (∆;Γ ` γ) ⇒ (∆;− ` Tτ) to mean that
whenever ∆;Γ ` G : γ then ∆;` C[G] : Tτ . If ∆;Γ ` Gi : γ for i = 1, 2 then we
write ∆;Γ ` G1 =ctx G2 : γ to mean

∀τ.∀C[·] : (∆;Γ ` γ) ⇒ (∆;− ` Tτ).∀Σ : ∆.
Σ, let x⇐C[G1] in val x ↓ ⇐⇒ Σ, let x⇐C[G2] in val x ↓

3 Denotational Semantics

We first summarize basic facts about FM-cpos. A more comprehensive account
appears in Shinwell’s thesis [16].

Fix a countable set of atoms, which in our case will be the locations, L.
Then an FM-set X is a set equipped with a permutation action: an operation
π • − : perms(L) × X → X that preserves composition and identity, and such
that each element x ∈ X is finitely supported : there is a finite set L ⊆ L such that
whenever π fixes each element of L, the action of π fixes x: π •x = x. There is a
smallest such set, which we write supp(x). A morphism of FM-sets is a function
f : X → Y between the underlying sets that is equivariant : ∀x.∀π. π • (f x) =
f (π • x).

An FM-cpo is an FM-set with an equivariant partial order relation v and
least upper bounds of all finitely-supported ω-chains. A morphism of FM-cpos
is a morphism of their underlying FM-sets that is monotone and preserves lubs
of finitely-supported chains. We only require the existence and preservation of
finitely-supported chains, so an FM-cpo may not be a cpo in the usual sense. The
sets Z, N, etc. are discrete FM-cpos with the trivial action. The set of locations,
L, is a discrete FM-cpo with the action π • ` = π(`).

The category of FM-cpos is bicartesian closed: we write 1 and × for the finite
products, ⇒ for the internal hom and 0,+ for the coproducts. The action on
products is pointwise, and on functions is given by conjugation: π •f

def
= λx.π •

(f (π−1 •x)). The category is not well-pointed: morphisms 1 → D correspond to
elements of 1 ⇒ D with empty support.

The lift monad, (·)⊥, is defined as usual with the obvious action. The Kleisli
category is the category of pointed FM-cpos (FM-cppos) and strict continuous
maps, which is symmetric monoidal closed, with smash product ⊗ and strict
function space (. We use the same notation for partial constructions on the
category of FM-cpos, defined on the range of the forgetful functor from FM-
cppo. If D is a pointed FM-cpo then fix : (D ⇒ D) (D is defined by the lub
of an ascending chain in the usual way.

We now turn to the denotational semantics of MILler. Define the FM-cpo of
states, S, to be L ⇒ (Z + L), the finitely-supported functions mapping locations
to either locations or integers, and write JΣK for {S ∈ S | ∀` ∈ domΣ.S(`) =
Σ(`)}. The update operation ·[· 7→ ·] of type S×L× (Z + L) → S is equivariant
and continuous. The equivalence of operational states at a type of Definition 1
extends naturally to denotational states.

We write O for the flat two-element FM-cpo {⊥ v >}, with the trivial action
and then define the FM-cpo [[γ]], interpreting the type γ, inductively:

[[unit]] = 1 [[τ1 × τ2]] = [[τ1]]× [[τ2]]
[[int]] = Z [[τ1 + τ2]] = [[τ1]] + [[τ2]]

[[σ ref]] = L [[τ1 → Tτ2]] = [[τ1]] ⇒ T[[τ2]]
TD = (S ⇒ D ⇒ O) ((S ⇒ O)

For terms in context, we define [[∆;Γ ` G : γ]] ∈ [[Γ]] ⇒ [[γ]], where [[x1 :
τ1, . . . , xn : τn]] is the record {x1 : [[τ1]], · · · , xn : [[τn]]}, inductively. Some of

[[∆; Γ ` ` : σ ref]] ρ = `

[[∆; Γ ` let x⇐M1 in M2 : Tτ2]] ρ k S =
[[∆; Γ ` M1 : Tτ1]] ρ (λS′ : S.λd : [[τ1]].[[∆; Γ, x : τ1 ` M2 : Tτ2]] ρ[x 7→ d] k S′) S

[[∆; Γ ` val V : Tτ]] ρ k S = k S ([[∆; Γ ` V : τ]] ρ)

[[∆; Γ ` !V : Tσ]] ρ k S =

{
k S v if S([[∆; Γ ` V : σ ref]] ρ) = inJσKv
⊥ otherwise

[[∆; Γ ` V1 := V2 : Tunit]] ρ k S =
k S[([[∆; Γ ` V1 : σ ref]] ρ) 7→ inJσK([[∆; Γ ` V2 : σ]] ρ)] ∗

J∆; Γ ` ref V : Tσ refK ρ k S = k S[` 7→ inJσK(J∆; Γ ` V : σKρ)] `
for some/any ` 6∈ supp(λ`′.k S[`′ 7→ inσ(J∆; Γ ` V : σKρ)] `′).

[[∆; Γ ` (rec f x = M) : τ → Tτ ′]] ρ =
fix(λf ′ : [[τ → Tτ ′]].λx′ : [[τ]].[[∆; Γ, f : τ → Tτ ′, x : τ ` M : Tτ ′]] ρ[f 7→ f ′, x 7→ x′])

Fig. 3. Denotational Semantics of MILler (extract)

the cases are shown in Figure 3. The most interesting case is the definition
of the semantics of allocation. Note that the monad T combines state with
continuations, even though there are no control operators in MILler. However,
explicit continuations give us a handle on just what the new location has to be
fresh for, whilst the ambient use of FM-cpos is exactly what we need to ensure
that this really is a good definition, i.e. that one can pick a sufficiently fresh `
and, moreover, one gets the same result in O for any such choice. An equivalent,
perhaps simpler, definition uses the quantification

‘. . . for some/any ` 6∈ supp(k) ∪ supp(S) ∪ supp(J∆;Γ ` V : σKρ)’

Our formulation emphasizes that the notion of support is semantic, not syntactic.
The quantification can be seen as ranging not merely over locations that have not
previously been allocated (as in the operational semantics), but over all locations
that the specific continuation does not distinguish from any of the unallocated
ones, i.e. including those which are ‘extensionally garbage’.

Writing J∆;` K : (x : τ)>KK for λSd.J∆;x : τ ` K : Tτ ′K{x 7→ d}(λSd.>) S,
the following is proved via a logical ‘formal approximation’ relation:

Theorem 3 (Soundness and Adequacy). If ∆;` M : Tτ , ∆;` K : (x : τ)τ ,
Σ : ∆ and S ∈ JΣK then

Σ, let x⇐M in K ↓ ⇐⇒ J∆;` M : TτK{}J∆;` K : (x : τ)>KK S = >.

Corollary 4. J∆;Γ ` G1 : γK = J∆;Γ ` G2 : γK implies ∆;Γ ` G1 =ctx G2 : γ.

The denotational semantics validates as contextual equivalences the basic
equalities of the computational metalanguage and simple properties of assign-
ment and dereferencing. It also proves the ‘swap’ equivalence:

∆;Γ ` V1 : σ1 ∆;Γ ` V2 : σ2 ∆;Γ, x : σ1 ref, y : σ2 ref ` N : Tτ

∆;Γ ` let x⇐ref V1 in (let y⇐ref V2 in N)
=ctx let y⇐ref V2 in (let x⇐ref V1 in N) : Tτ

But many interesting valid equivalences, including the garbage collection rule

∆;Γ ` V : σ ∆;Γ ` N : Tτ
x 6∈ fvN

∆;Γ ` let x⇐ref V in N =ctx N : Tτ

are, unfortunately, not equalities in the model. The above fails because the model
contains undefinable elements that test for properties like ∃` ∈ L.S(`) = inZ(3)
(note that this has empty support) and so make the effect of the initialization
visible. The garbage collection and swap equations correspond to two of the
structural congruences for restriction in the π-calculus. One might regard them
as rather minimal requirements for a useful model, but they also fail in other
models in the literature: Levy’s possible worlds model [3] fails to validate either
and, like ours, a model due to Stark [19, Chapter 5] fails to validate the garbage
collection rule.

4 A Parametric Logical Relation

We now embark on refining our model using parameterized logical relations.
Many authors have used forms of parametricity to reason about storage; our
approach is particularly influenced by the work of Pitts and Stark [12] and of
Reddy and Yang [14]. We will define a partially ordered set of parameters, p, and
a parameter-indexed collection of binary relations on the FM-cpos interpreting
states and types: ∀p.RS(p) ⊆ S × S and ∀p.∀γ.Rγ(p) ⊆ JγK × JγK. We then
show that the denotation of each term is related to itself and, as a corollary,
that typed terms with related denotations are contextually equivalent.

An important feature of the state relations we choose will be that they depend
on only part of the state: this will allow us to reason that related states are still
related if we update them in parts on which the relation does not depend.

One might expect that the notion of support, which is already built into
our denotational model, would help here; for example by taking relations to be
finitely-supported functions in S× S ⇒ 1 + 1. Unfortunately, the support is not
the right notion for defining separation of relations. For example, the relation

{S1, S2 | ∃`1, `2.S1(`1) = S2(`2) = inZ0 ∧ S1(`) = inL`1 ∧ S2(`) = inL`2}

has only ` in its support, but writing to the existentially quantified locations ‘in
the middle’ can make related states unrelated. Even with only integers in the
store, a relation like {(S1, S2) | ∃`, S1` = 0 = S2`} can be perturbed by writes
outside of its (empty) support.

Separation logic [6] leaves the part of the store which is ‘relevant’ to a pred-
icate implicit and enforces separation by existential quantification over partial
stores in the definition of the (partial) separating conjunction ∗. We instead
make the finite part of the state on which our relations depend explicit, using
what we call accessibility maps. Because, as above, relations can ‘follow pointers’,
the set of locations on which a relation depends can itself be a function of the
states. We make no explicit use of support in this section, though working with
FM-cpos allows the use of equality of locations, rather than partial bijections,
in our definitions.

Definition 5 (Accessibility map). An accessibility map A is a function from
S to finite subsets of L, such that:

∀S, S′ ∈ S, (∀` ∈ AS, S` = S′`) =⇒ A(S) = A(S′)

The subtyping ordering <: is defined as:

A <: A′ ⇐⇒ ∀S, A(S) ⊇ A′(S)

The subtype relation is a partial order, and the function λS.∅, abbreviated ∅,
is the greatest accessibility map with respect to <:. One source of concrete
accessibility maps is our existing notion of state type:

Definition 6 (Accessible part of a state at a type). If ∆ is a state type,
then Acc∆ : S → Pfin(L) is defined by Acc∆(S) =

⋃
(`:σ)∈∆ Acc(`, σ, S) where

Acc(`, int, S)
def
= {`} and

Acc(`, σ ref, S)
def
= {`} ∪

{
Acc(`′, σ, S) if S ` = inL`′

∅ otherwise

Lemma 7. Acc∆ is an accessibility map, and if ∆ ⊆ ∆′ then Acc∆′ <: Acc∆.

Definition 8 (Accessible equality of states). If A is an accessibility map,
we define S ∼ S′ : A to mean ∀` ∈ A(S), S` = S′`.

Definition 9 (Finitary State Relation). A finitary state relation r is a pair
〈|r|, Ar〉 where |r| ⊆ S×S and Ar is an accessibility map, subject to the following
saturation condition: if S1 ∼ S′1 : Ar and S2 ∼ S′2 : Ar then (S1, S2) ∈ |r| ⇐⇒
(S′1, S

′
2) ∈ |r|.

Lemma 10.

1. If A and A′ are accessibility maps then so is A∧A′, where ∀S. (A∧A′)(S) =
(A(S)) ∪ (A′(S)).

2. > def
= 〈S× S, ∅〉 is a finitary state relation.

3. If 〈|r|, A〉 is a finitary state relation and A′ <: A then 〈|r|, A′〉 is a finitary
state relation.

4. id∆
def
= 〈∼∆,Acc∆〉 is a finitary state relation.

Definition 11 (Separating conjunction). Given two finitary state relations,

r1 = 〈|r1|, A1〉 and r2 = 〈|r2|, A2〉, define r1 ⊗ r2 def
= 〈|r1 ⊗ r2|, A1 ∧A2〉 where

(S1, S2) ∈ |r1 ⊗ r2| ⇐⇒
{

(S1, S2) ∈ |r1| ∩ |r2|
∀i ∈ {1, 2}, A1(Si) ∩A2(Si) = ∅

Lemma 12. If r1 and r2 are finitary state relations, so is r1⊗r2. The conjunc-
tion is associative and commutative, with > as a unit.

We now have all the ingredients needed to define the parameters of our
relations. The intuition is that the parameters express that one part of the
store is directly accessible, or visible, and that functions in the context also give
access to other locations. Since we can do anything with visible locations, related
states must be equal on that part. Moreover, we will preserve any invariant on
hidden locations that is preserved by all the functions we can use, provided
that invariant does not also depend on the contents of visible locations. Our
parameters comprise these two components: the set of visible locations and a
hidden invariant.3

Definition 13 (Parameters). A parameter is a pair (∆, r), where ∆ is a state
type and r is a finitary relation; we will abbreviate this to ∆r. If ∆r is a param-
eter, we define the binary relation on states RS(∆r)

def
= |id∆ ⊗ r| and define

the partial order � on parameters by

∆r � ∆′r′ ⇐⇒ (∆ ⊇ ∆′) ∧ (∃r′′, r = r′ ⊗ r′′)

Definition 14 (Logical Relation). We define the parameter- and typed- in-
dexed family of relations Rγ(∆r) by induction over the types:

Runit(∆r) = {(∗, ∗)}
Rint(∆r) = {(n, n) | n ∈ N}

Rτ×τ ′(∆r) = {((d1, d
′
1), (d2, d

′
2)) | (d1, d2) ∈ Rτ (∆r) ∧ (d′1, d

′
2) ∈ Rτ ′(∆r)}

Rτ1+τ2(∆r) = {(in1d1, in1d2) | (d1, d2) ∈ Rτ1(∆r)}
∪{(in2d1, in2d2) | (d1, d2) ∈ Rτ2(∆r)}

Rσ ref(∆r) = {(`, `) | (` : σ) ∈ ∆}
Rτ→Tτ ′(∆r) =
{(f1, f2) | ∀∆′r′ � ∆r, (v1, v2) ∈ Rτ (∆′r′), (f1v1, f2, v2) ∈ RTτ ′(∆′r′)}

For continuations, we define Rτ>(∆r) to be

{(k1, k2) | ∀∆′r′�∆r, (v1, v2) ∈ Rτ (∆′r′), (S1, S2) ∈ RS(∆′r′), k1S1v1 = k2S2v2}

and for computations, RTτ (∆r) is defined as {(f1, f2) | ∀∆′r′ � ∆r, (k1, k2) ∈
Rτ>(∆′r′), (S1, S2) ∈ RS(∆′r′), f1k1S1 = f2k2S2}.
3 This is in the style of Reddy and Yang [14]. Pitts and Stark [12] got away with

simpler parameters, adding a new visible location ` to a parameter r by r⊗ id{`}. In
the presence of references to references, this doesn’t work, as it prevents one visible
location pointing to another.

Definition 15 (Relations in context). We define RΓ (∆r) to be {(ρ1, ρ2) |
∀(xi : τi) ∈ Γ, (ρ1xi, ρ2xi) ∈ Rτi(∆r)} and RΓ`γ(∆r) to be {(v1, v2) | ∀∆′r′ �
∆r,∀(ρ1, ρ2) ∈ RΓ (∆′r′), (v1ρ1, v2ρ2) ∈ Rγ(∆′r′)}.

We now have to prove a number of non-trivial technical lemmas, which we
omit here. These allow us to show that the interpretations of all the MILler
typing rules preserve the logical relation, and hence deduce:

Theorem 16 (Fundamental lemma). If ∆;Γ ` G : γ, then

∀r. (J∆;Γ ` G : γK, J∆;Γ ` G : γK) ∈ RΓ`γ(∆r).

Theorem 17 (Soundness of relational reasoning). If ∆;Γ ` Gi : γ for
i = 1, 2 and

(J∆;Γ ` G1 : γK, J∆;Γ ` G2 : γK) ∈ RΓ`Tτ (∆>)

then ∆;Γ ` G1 =ctx G2 : γ.

Accessibility maps are convenient to prove generic results, but working with
specific ones can be a little awkward. In most examples we do not need their full
generality (for example, allowing the accessible locations to depend on the integer
contents of a particular location). We find it useful to generalize the notion of
state type a little, introducing a top type and a simple form of subtyping. This
allows a corresponding generalization of the accessibility map associated with a
state type that suffices to specify the accessiblity maps we need even in tricky
cases in which there are pointers between the visible and hidden parts of the
state, but the invariant does not follow them far enough to be affected.

Definition 18 (Extended storable types). Extended storable types are given
by the grammar α ::= T | int | α ref. We define an order <: between extended
storable types by: int <: T, α ref <: T, and if α <: α′ then α ref <: α′ ref.

Definition 19 (Extended state type). An extended state type θ is a map
from L to location types which is T for all but a finite number of locations.
Subtyping is defined pointwise.

The types α say how much of the value stored in a location is relevant: T means
that we do not care about the value of the location. For instance, a location has
type T ref if the value it carries is always a location, but we do not specify the
type of this location: it might be an integer or a location.

Definition 20 (Accessibility map for extended state type). The map

Accθ is defined as in Definition 6, with the extra clause Acc(`, T, S)
def
= ∅.

Lemma 21. Accθ is an accessibility map. If θ <: θ′, Accθ′ <: Accθ.

5 Examples

Garbage Collection If x is not free in M , and ∆;Γ ` M : Tτ , then

Γ ` let x⇐ref V in M =ctx M : Tτ

We prove that Jlet x⇐ref V in MK and JMK are related by RΓ`Tτ (∆>), and
we conclude using Theorem 17. Let ∆′r′ � ∆> be a parameter and (ρ1, ρ2) ∈
RΓ (∆′r′). We need to prove that (Jlet x⇐ref V in MKρ1, JMKρ2) ∈ RTτ (∆′r′).
Let ∆′′r′′ � ∆′r′, (k1, k2) ∈ Rτ>(∆′′r′′) and (S1, S2) ∈ RS(∆′′r′′). We have to
prove that

Jlet x⇐ref V in MKρ1k1S1 = JMKρ2k2S2

For ` 6∈ supp(λ`′.k1S1[`′ → JV Kρ]`′)

Jlet x⇐ref V in MKρ1k1S1 = JMKρ1k1S1[` → JV Kρ1]

because x is not free in M . Since we can pick any such `, we actually choose one
also out of Acc∆′′(Si) ∪ Ar′′(Si) for i = 1, 2. By the fundamental lemma, JMK
is related to itself by RΓ`Tτ (∆>), so if we prove that (S1[` → JV Kρ1], S2) ∈
RS(∆′′r′′) we are done.

First, since ` 6∈ Acc∆′′(Si), (S1[` → JV Kρ1], S2) ∈ id∆′′ , and since ` 6∈
Ar′′(Si), (S1[` → JV Kρ1], S2) ∈ r′′. By definition of accessibility maps, Acc∆′′

and Ar′′ are unchanged, so they still do not overlap, which concludes the proof.

Meyer-Sieber 6 We can validate all the Meyer-Sieber examples [4]. We explain
here example 6, which can be translated in MILler as the program M :

let x⇐ref 0 in
let almost add2 ⇐ λz.if z = x

then x := 1
else let y⇐ !x in let y′⇐y + 2 in x := y′in

p(almost add2);
let y⇐ !x in

if !x mod 2 = 0 then divergeunit else val ()

This program always diverges: we prove that (J;Γ ` M : TunitK, λρks.⊥) ∈
RΓ`Tunit(∅>). We have, for some fresh `:

JMKρkS = ρ(p)f
(

λS′v.

{
kS′∗ if S` = inZn for some odd n
⊥ otherwise

)
S[` → 0]

where

fzks =

ks[` → 1]∗ if z = `
ks[` → n + 2]∗ if z 6= ` and s` = inZn
⊥ otherwise

Let ∆′r′�∆r be two parameters, (ρ1, ρ2) ∈ RΓ (∆r), (k1, k2) ∈ Runit>(∆′r′) and
(S1, S2) ∈ RS(∆′r′). We let r′′ = r′⊗〈{(S1, S2) | S1` and S2` hold even integers},
Acc{`:int}〉 and prove that

(f, f) ∈ Rint ref→Tunit(∆′r′′)

the proof is then straightforward.
Suppose ∆4r4�∆3r3�∆′r′′, (v3

1 , v3
2) ∈ Rint ref(∆3r3), (k4

1, k
4
2) ∈ Runit(∆4r4),

(S4
1 , S4

2) ∈ RS(∆4r4). As ∆4r4�∆′r′′, (S1, S2) ∈ r4 ⊆ r′′, so S1 and S2 hold even
integers n1 and n2. v3

1 = v3
2 is a visible location. As Ar4 <: Ar′′ , ` ∈ Ar4(Si),

which entails that v3
i 6= `. We get

fv3
i k4

i S4
i = k4

i S4
i [` → ni + 2]

(S1[` → ni + 2], S2[` → ni + 2]) ∈ RS(∆4r4), because our invariant is preserved,
and, by non interference, the other parts of the invariant are preserved too, so

fv1k1S1 = k1S1[` → n1 + 2] = k2S2[` → n2 + 2] = fv2k2S1

Extended types To illustrate the extended types, we give an example involving
a pointer from the invariant to the visible locations. We show that the following
program M diverges:

let x⇐ref 0 in
let y⇐ref x in
p x;
let z⇐ !y in
if z = x then divergeunit else val ()

As before, we prove that (JMK,⊥) ∈ RΓ`Tunit(∅>). For any fresh `x, `y:

JMKρkS = ρ(p)`
(

λS′′v.

{
⊥ if S′′`y = inL`x

k1S
′′∗ otherwise

)
S′1

where S′1 = S1[`y → `x, `x → 0]. We want to prove that when we reach the
continuation, the value held in `y is `x. `x is given to p, so it must be visible,
but the invariant “`y holds `x” is about the location held by `y, but not about
what this location holds. We have to define an accessibility map that does not
contain `x: the invariant is

dr = 〈{(S1, S2) | S1`y = inL`x},Acc{`y:T ref}〉

Secrecy We can prove some examples (very) loosely inspired by the work of
Sumii and Pierce [20] on logical relations and encryption. The idea, though we
certainly do not claim this is a particularly good model of cryptography, is that
encrypted messages are sent through hidden locations. Encrytion is encoded as
writing in a hidden location, and decryption as reading the same hidden location.
The visible locations are the keys the context knows, and the locations in the
invariant the private keys. We can represent public keys by providing a function
that wraps the assignment.

For instance, in the following dummy protocol, A (the first function) sends a
message to B (the second function) containing a fresh key, and B reads this key

and sends a message i using this key. The program Mi is

let x⇐ref 0 in
let kb⇐ref x in
let cipher⇐val λ〈k, n〉.k := n in
let decipher⇐val λk.!k in
val 〈λ().let ka⇐ref 0 in cipher 〈kb, ka〉,

λ().let k⇐decipher kb in cipher 〈k, i〉〉

We prove that M1 is equivalent to M2, which shows that the information
written in k is not accessible from the context, thus kept secret.4 An easy cal-
culation gives, for fresh `x and `b:

JMiKkS = kS[`b → `x → 0]〈φA, φB
i 〉

where
φA = λ ∗ kS.kS[`b → `a → 0] ∗ for a fresh `a

φB
i = λ ∗ kS.

{
kS[` → i]∗ if S`b = inL`
⊥ otherwise

Let ∆r be a parameter (k1, k2) ∈ R(τ×τ)>(∆r) and (S1, S2) ∈ RS(∆r), where
τ = unit → Tunit is the type of the processes A and B. The invariant dr says
that `b holds a reference to an integer, which makes `b and, later, `a secret. Let
r′ = r⊗ dr, and S′i = Si[`b → `x → 0]. Of course (S′1, S

′
2) ∈ RS(∆r′). If we show

that (φA, φA) and (φB
1 , φB

2) are in Rτ (∆r′), then we are done.
Let ∆′′r′′ � ∆r′, (k′′1 , k′′2) ∈ Runit>(∆′′r′′) and (S′′1 , S′′2) ∈ RS(∆′′r′′). We

write r′′ = r ⊗ dr ⊗ dr′. We can pick a fresh `a such that, for both i = 1, 2:

φA ∗ k′′i S′′i = k′′i S′′i [`b → `a → 0]∗

It is easy to check that the new states are still related by RS(∆′′r′′): they are
in dr, they also are in the other parts of the relation id∆′′ , r and dr′ thanks to
the separating condition, because the only locations that were changed are `b

(which is in AdrSi) and `a (which was fresh), and there is no new cross pointer
between these parts. This gives (φA, φA) ∈ Rτ (∆r′).

The same holds for φB
1 and φB

2 because the relation dr only states that `x

holds an integer, not which integer. We get the expected contextual equivalence
of M1 and M2.

On the other hand, if the key is public, i.e. we give an encryption function
to the context, then the secrecy is broken: the opponent can write a message
to B, giving it a channel it can read, so that the value i written by B can be
deciphered afterwards. We give to the context (as a third element in the tuple)
the function

public cipher = λn.cipher 〈kb, n〉
4 The equivalence of two pairs of functions of type unit → Tunit with no free loca-

tions is not completely trivial: each pair might have differing intertwined termination
behaviour, depending on hidden state.

public cipher does not respect the relation RS(∆r′):

public cipher `kS = kS[`b → `]∗

`b certainly points to a reference to an integer after it is called, so it is in dr
as before, but now this reference is `, which is visible (since it is given by the
context), so the separating condition between id∆ and dr no longer holds.

Snapback. Our logical relation fails to capture the irreversibility of state changes,
which is a source of incompleteness relative to contextual equivalence. Consider
the element ‘snapback’ of J(unit → Tint) → TunitK defined by

snapback f k S = f ∗ (λS′.λn.k S n) S

Snapback calls its argument f , passing it the state S and a continuation that
will set the state back to S, discarding any updates made by f . Snapback is
not definable, but it is parametric: assume ∆′r′ � ∆r are parameters, (f1, f2) ∈
Runit→Tint(∆r), (k1, k2) ∈ Rint>(∆′r′) and (S1, S2) ∈ RS(∆′r′). We only have to
show that the continuations λS′n.kiSin are related by Rint>(∆′r′). Let ∆′′r′′ �
∆′r′ and (S′′1 , S′′2) ∈ RS(∆′′r′′). The only values related by Rint(∆′′r′′) are
(m,m) for some m ∈ N. We have (λS′n.kiSin)S′′i m = kiSim, and, since (k1, k2) ∈
Rint>(∆′r′) and (S1, S2) ∈ RS(∆′r′), k1S1m = k2S2m, so we’re done.

The fact that our relation does not eliminate snapback prevents us from
proving some useful and valid contextual equivalences. For example, ; p : (unit →
Tint) → Tunit) ` M =ctx N : Tunit where

M = let x⇐ref 0 in
p(λ . x := 1; 0);
let y⇐ !x in
if iszero y then val () else divergeunit

N = p (λ .divergeint)

but this is not provable with our relation, as if p is snapback, then M con-
verges and N diverges. Intuitively, the problem here is one of linearity: note that
snapback duplicates S and discards S′.

6 Discussion and Further Work

There is much related work on the semantics of Algol-like languages; we can
only pick out a few relevant highlights. Meyer and Sieber [4] gave a model for
an Algol-like language with local integer variables which was based on a notion
of ‘support’ and a refined model based on the preservation of (unary) predicates
on stores that depend only on a finite number of locations. Reynolds [15] and
Oles [9] pioneered the functor-category, or possible-worlds approach to modelling
storage, further developed by O’Hearn and Tennent [7] and Sieber [18] to incor-
porate relational parametricity. This gives a good semantics for the locality of
local variables but, like our relation, still does not account for the irreversibil-
ity of state changes: essentially the same snapback example as we have given

above causes incompleteness. Reynolds and O’Hearn [5] gave models via trans-
lations from Algol-like languages into a predicatively polymorphic linear lambda
calculus, ruling out snapback. Pitts [10] used that idea to give an operationally-
based logical relation for an Algol-like language that is complete for contextual
equivalence. Following [5, 10], we believe a relatively small modification to the
logical relation (involving lifting of states) may rule out snapback in our model
too (strict relations over pointed cpos give a rather weak model of the poly-
morphic linear lambda calculus, but as snapback relies on both contraction and
weakening, this seems to suffice), but we have not yet worked through all the
details.

General dynamic allocation is more complex than the stack-structured local
variables of Algol. Pitts and Stark [11, 19] introduced the ν-calculus, a simply-
typed (and recursion-free) CBV lambda calculus with dynamic generation of
pure names. They present both operational logical relations and monadically-
structured denotational models, based on parametric functor categories, for the
ν-calculus. We have already mentioned their later work [12] and that of Reddy
and Yang [14], from which we drew much inspiration. Levy [3] has given an
adequate, but non-parametric, possible-worlds semantics for an ML-like language
with storage of arbitrary values, including functions. Our FM-cpo semantics for
MILler derives from a model for FreshML due to Shinwell and Pitts [17, 16].

Although most of the pieces of our model and logical relation are closely
related to ones in the literature, the way they are combined here is novel (possibly
the first domain-theoretic, parametric treatment of dynamic allocation), elegant
and, above all, elementary. Our basic model is considerably easier to work with
than a functor category, and the relational reasoning principle is easy to apply.
We believe our formulation of separation is more powerful than that of [14].

We would like to be able to reason relationally about references to values of
functional (and recursive) types. Appropriate technology seems to exist [13], but
it remains to be seen whether we can apply it successfully in our setting.

We have experimented with a simple inference system for proving expres-
sions are related. Developing this, perhaps using ideas from nominal logic, may
open the way to automated support. We have also looked at methods to prove
the soundness of the effect-based transformations we previously studied opera-
tionally (and rather unsatisfactorily) in [1]. Something can certainly be pushed
through using our current definitions, but making it work smoothly seems to
call for some interesting modifications to our logical relation. We also plan to
investigate more seriously the applications to secure information flow and the
correctness of cryptographic protocols.

References

1. N. Benton and A. Kennedy. Monads, effects and transformations. In 3rd Interna-
tional Workshop on Higher Order Operational Techniques in Semantics (HOOTS),
Paris, volume 26 of Electronic Notes in Theoretical Computer Science. Elsevier,
September 1999.

2. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. Technical report, Microsoft Research, February 2005.

3. P. B. Levy. Possible world semantics for general storage in call-by-value. In Proceed-
ings of the Annual Conference of the European Association for Computer Science
Logic (CSL), volume 2471 of Lecture Notes in Computer Science. Springer-Verlag,
September 2002.

4. A. R. Meyer and K. Sieber. Towards a fully abstract semantics for local variables:
Preliminary report. In Proceedings of the 15th Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL), January 1988.

5. P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-
calculus. Journal of the ACM, 47(1):167–223, January 2000.

6. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of the Annual Conference of the European
Association for Computer Science Logic (CSL), 2001.

7. P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. Journal of
the ACM, 42(3):658–709, May 1995.

8. P. W. O’Hearn and R. D. Tennent, editors. Algol-like Languages. Progress in
Theoretical Computer Science. Birkhäuser, 1997. Two volumes.

9. F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming Lan-
guages. PhD thesis, Syracuse University, 1982.

10. A. M. Pitts. Reasoning about local variables with operationally-based logical re-
lations. In [8], 1997.

11. A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions
that dynamically create local names, or: What’s new? In Proceedings of the 18th
International Symposium on Mathematical Foundations of Computer Science, vol-
ume 711 of Lecture Notes in Computer Science, pages 122–141. Springer-Verlag,
1993.

12. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state.
In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Techniques
in Semantics, Publications of the Newton Institute, pages 227–273. Cambridge
University Press, 1998.

13. A.M. Pitts. Relational properties of domains. Information and Computation,
127(2), 1996.

14. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, March 2004.

15. J. C. Reynolds. The essence of Algol. In Proceedings of the International Sympo-
sium on Algorithmic Languages, 1981. Reprinted in [8].

16. M. R. Shinwell. The Fresh Approach: Functional Programming with Names and
Binders. PhD thesis, Computer Laboratory, University of Cambridge, December
2004.

17. M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoretical
Computer Science, 2005. To appear.

18. K. Sieber. New steps towards full abstraction for local variables. In Proceedings of
the ACM SIGPLAN Workshop on State in Programming Languages, 1993.

19. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, Computer Lab-
oratory, University of Cambridge, December 1994. Available as Technical Report
363.

20. E. Sumii and B. C. Pierce. Logical relations for encryption. Journal of Computer
Security, 11(4), 2003.

21. R. D. Tennent and D. R. Ghica. Abstract models of storage. Higher-Order and
Symbolic Computation, 13(1/2):119–129, 2000.

