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1 Introduction

As the title suggests, this paper will describe a (mechanized) proof that a par-
ticular compiler is correct. The real subject, however, is how to define a good
specification of when a low-level code fragment should be said to ‘correspond
to’ a phrase in a high-level language.

A straightforward compiler correctness theorem says that for every closed,
ground type source program P , the result C(P ) of running compiler C on P
is a target program whose observable behaviour (termination, final result, IO
behaviour) ‘matches’ that of C. Proving such a theorem involves a strength-
ened induction hypothesis, relating open source phrases of higher types to target
code (and values). This richer relation, typically some kind of (bi)simulation,
is often essentially the simplest extension of the function C itself that suffices
to establish the ‘big’ theorem about complete programs, which are, after all,
the only ones we can run according to the semantics of our source language.
But the ‘closed’ systems we really run are not the result of a single compila-
tion: they are composed by linking code from many places, including libraries,
the operating system, the runtime system and foreign functions, which may
be compiled with different compilers and written in many languages, including
‘cleverly’ handcrafted machine code. To reason modularly about all these com-
ponents, we need a clean specification of the interface between compiled code
and its environment, a job for which a naive induction hypothesis is inappro-
priate. The kind of specification we want should constrain only the observable
behaviour of code, rather than intensional details of just how it executes, and
make no reference to details of a particular compiler beyond those aspects of
data representation and calling conventions that have to be agreed upon for
interoperability. Similarly, the correctness relation should not be tweaked to
admit individual source-level optimizations, but should rather be closed under
a rich set of high-level equations (possibly even source contextual equivalence)
by construction.

In a previous paper, we addressed the question of when low-level code cor-
rectly realizes a source term by defining relations between the denotational
semantics of a simply-typed source language and the operational behaviour of
a lower-level virtual machine [3]. Here we take another step forward, treating a
source language with impredicative universal and existential types and defining
relations that express how parametricity and data abstraction principles from
the typed source translate to an untyped target. This is a non-trivial techni-
cal extension, and, as one of the examples will demonstrate, our realizability
relation captures the requirement on low-level code realizing quantified types
to behave parametrically from an extensional perspective, whilst allowing suffi-
cient freedom for it to implement that behaviour in a decidedly non-parametric
manner. We compositionally prove full functional correctness for a compiler for
the polymorphic language, which also performs tail-call optimizations. Another
major difference from our previous work is that we work with an operational,
rather than a denotational, semantics for the high-level language. Rather than
fix a high-level notion of equivalence that should be respected, we parameterize
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Values:

Θ; Γ, f : τ → τ ′, x : τ `M : τ ′

Θ; Γ ` rec f (x : τ) : τ ′ = M : τ → τ ′
Θ ` Γ Θ, X ` τ Θ, X; Γ ` V : τ

Θ; Γ ` ΛX.V : ∀X.τ
Θ ` Γ Θ, X ` τ Θ ` τ ′ Θ; Γ ` V : τ [τ ′/X]

Θ; Γ ` pack τ ′, V to∃X.τ : ∃X.τ
Expressions:

Θ; Γ ` V : τ

Θ; Γ ` [V ] : τ

Θ; Γ `M : τ Θ; Γ, x : τ ` N : τ ′

Θ; Γ ` let x = M in N : τ ′

Θ ` Γ Θ, X ` τ Θ; Γ ` V : ∀X.τ Θ ` τ ′

Θ; Γ ` V τ ′ : τ [τ ′/X]

Θ ` Γ Θ ` τ Θ, X ` τ ′ Θ; Γ ` V : ∃X.τ ′ Θ, X; Γ, x : τ ′ `M : τ

Θ; Γ ` unpackV asX,x inM : τ
Transition semantics:

let x = [V ] in N 7→ N [V/x] (ΛX.V ) τ 7→ V [τ/X]
(rec f (x : τ) : τ ′ = M)V 7→ M [(rec f (x : τ) : τ ′ = M)/f , V/x]

unpack (pack τ, V to∃X.τ ′) asX,x inM 7→ M [τ/X][V/x]

Figure 1: Selected typing and transition rules for Fv

our definitions and results by a novel form of adequate precongruence relation
on the source, incorporating an abstract notion of chain to capture analogues
of domain-theoretic admissibility.

All the metatheory and examples have been formally verified in the Coq
proof assistant, and the proof script is available from the authors’ web pages.

2 High- and Low-Level Languages

High-Level Language. Fv is a conventional call-by-value functional language
with recursion and impredicative universal and existential types. The types are:

τ := X | Int | τ → τ ′ | 1 | τ × τ ′ | τ + τ ′ | ∀X.τ | ∃X.τ
We separate values, V , from expressions, M , and restrict the syntax to ANF,
with explicit sequencing by let and inclusion of values into expressions by [·].
Selected typing rules for Fv are shown in Figure 1, where Θ and Γ are contexts
for type and term variables respectively. Write Value Θ Γ τ for the set of values
of type τ in contexts Θ; Γ (where Θ; Γ ` τ), CValue τ for the closed values of
(closed) type τ , and similarly for expressions. If Γ = x1 : τ1, . . . , xn : τn then
the set of environments EValue Γ is

∏
i=1...n CValue τi.

Selected transitions from the standard CBV semantics of Fv are also shown
in Figure 1. There is an equivalent big-step semantics and we write M |⇒ (resp.
M |⇒ V ) when the closed expression M converges (to the closed value V ).

Our realizability relations will be parameterized by a notion of observational
approximation v on Fv. To cope abstractly with recursion, we take as basic
v̂ΘΓτ ⊆ (Value Θ Γ τ) × (Value Θ Γ τ)ω, a slightly unusual (type- & context-
indexed, but we usually omit indices) relation between values and sequences
of values, and derive the associated order on values via constant sequences:
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V v V ′ iff V v̂(λi ∈ ω.V ′). There are homonymous orders on expressions and
environments. A sequence 〈Vi〉i is a chain if Vi v Vj for all i ≤ j. One should
think of V v̂〈Wi〉i meaning V v tiWi in a domain-theoretic sense, but without
requiring lubs to exist.

The conditions on v̂ and v, eliding types and with the same conditions
applied, mutatis mutandis, to the order on expressions, are: [Chain] : if V v̂〈Wi〉i
then 〈Wi〉i is a chain; [Elem] : if 〈Wi〉i is a chain, Wjv̂〈Wi〉i for all j; [Refl] :
V v V for all V of the appropriate type; [Trans] : if Uv̂〈Vi〉i and Vjv̂〈Wi〉i for
all j, then Uv̂〈Wi〉i; [Subst] : if V v̂〈Wi〉i then V [U/x]v̂〈Wi[U/x]〉i and similarly
for type substitutions; [Compat] : all constructs of Fv preserve v̂, e.g.

Θ; Γ ` V v̂〈Wi〉i : τ [τ ′/X]

Θ; Γ ` pack τ ′, V to∃X.τv̂〈pack τ ′,Wi to∃X.τ〉i : ∃X.τ
[Beta] : let x = [V ] in N v N [V/x] and vice versa; [Adeq] : If Mv̂〈Ni〉i : Int
and M |⇒ n for some n, then there exists j such that Nj |⇒ n, and similarly
for the unit type; [Unfold] : rec f x.Mv̂〈recni f x.M〉i where recn0 f x.M =
rec f x. f x and recni+1 f x.M = λx.M [recni f x.M/f ]. These conditions
imply that v is an adequate precongruence satisfying an ‘unwinding theorem’
[12]. An important example is given by defining V v̂〈Wi〉i iff ∀C[·], C[V ] |⇒ =⇒
∃j,∀i ≥ j, C[Wi] |⇒; another is generated by a (non fully-abstract) step-indexed
logical relation like that of Ahmed [1].The extension of v̂ to environments, which
are typed lists of closed values, is pointwise.

Low-Level Machine. Our target is a variant SECD machine [9]. Although
the SECD machine was designed as a target for compiling functional languages,
the kind of relations we construct will work for lower-level targets too. The
substantial independence of our definitions from the fine detail of exactly what
compiled code looks like is part of the point of the compositional, extensional
approach we are espousing, and we have added new, non-functional, operations
to the original SECD machine to express more interesting and realistic low-level
optimizations.

A configuration is a quadruple 〈c, e, s, d〉 ∈ CESD, as defined in Figure 2.
An MVal is either a natural, a closure, a recursive closure, or a pair of val-
ues. The deterministic transition relation 7→ between configurations is defined
in Figure 3. The non-standard ‘no dump’ forms of application and selection do
not save a continuation on the dump and are used for tail-call optimizations.
PushE and PopE allow the environment to be modified. IsNum tests for num-
berhood, and Eq for intensional equality. Our previous paper [3] explains how
non-functional ‘reflective’ operations, such as Eq, in the target break a straight-
forward realizability interpretation of types in the presence of term-level recur-
sion, requiring step-indexing (or similar) in defining low-level interpretations of
high-level terms.

Configurations with no successor are terminated. Write cesd 7→k if cesd
takes at least k steps without having terminated, and say it diverges, written
cesd 7→ω, if it can always take a step. We say cesd terminates, and write
cesd 7→∗ , if it does not diverge.
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CESD
def
= Code×MEnv× Stack×Dump

c ∈ Code
def
= list Instruction

e ∈ MEnv
def
= list MVal

s ∈ Stack
def
= list MVal

d ∈ Dump
def
= list (Code×MEnv× Stack)

Instruction 3 inst := Pop | Push i | PushE | PopE | PushNn | Op ? | PushC c
| PushRC c | App | AppNoDump | Ret | Sel (c1, c2) | SelNoDump (c1, c2) | Join
| MkPair | Fst | Snd | Eq | IsNum

n, i ∈ N ? ∈ N× N→ N
MVal 3 v := n | CL (e, c) | RCL (e, c) | PR (v1, v2)

Figure 2: Extended SECD machine

Compiling Fv to SECD. The compiler is shown in Figure 4 and comprises
mutually-recursive functions, both written L· M, mapping typed Fv values and
expressions into Code. The compilation of expressions is parameterized by a
boolean flag ret that identifies expressions that are in ‘tail position’ and hence
expect to be immediately followed by a return instruction. Applications in tail
position are compiled with the AppNoDump instruction, which does not push the
calling context to the dump, so allowing the called function to return directly to
the caller’s caller. Similarly, conditionals normally push a common continuation
to the dump, and each branch ends with a Join; when the conditional is in tail
position, however, the pushing of the context is elided and each branch compiled
in tail position.

3 Logical Relations

We will now define two logical relations between components of the SECD ma-
chine and terms of Fv. � specifies when a low-level component approximates
(in the observational sense of ‘diverging in more contexts than’) a source term at
a particular type, whilst � expresses the converse. These two relations can be
seen as corresponding to the traditional soundness and adequacy theorems used
to show correspondence between an operational and a denotational semantics.

We start by giving a broad overview of the constructions used in defining
the relations. Firstly, both relations are parameterized by v̂, an approximation
relation on the source satisfying the conditions we gave in Section 2. v can be
taken to be the contextual preorder for Fv, but may be something weaker, such
as the order of some non-fully abstract denotational model. The factorization
separates concerns and provides some ‘tuneability’ in the degree to which the
realizability relation is required to preserve source-level equivalence. Secondly,
the � relation, which is intuitively about specifying that low-level code should
diverge in certain contexts, involves step-indexing [2] on the low-level side. Di-
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〈Pop :: c, e, v :: s, d〉 7→ 〈c, e, s, d〉
〈Push i :: c, [v1, . . . , vk], s, d〉 7→ 〈c, [v1, . . . , vk], vi :: s, d〉

〈PushE :: c, e, v :: s, d〉 7→ 〈c, v :: e, s, d〉
〈PopE :: c, v :: e, s, d〉 7→ 〈c, e, v :: s, d〉
〈PushNn :: c, e, s, d〉 7→ 〈c, e, n :: s, d〉
〈PushC bod :: c, e, s, d〉 7→ 〈c, e, CL (e, bod) :: s, d〉
〈PushRC bod :: c, e, s, d〉 7→ 〈c, e, RCL (e, bod) :: s, d〉

〈App :: c, e, v :: CL (e′, bod) :: s, d〉 7→ 〈bod , v :: e′, [], (c, e, s) :: d〉
〈App :: c, e, v :: RCL (e′, bod) :: s, d〉 7→

〈bod , v :: RCL (e′, bod) :: e′, [], (c, e, s) :: d〉
〈AppNoDump :: c, e, v :: CL (e′, bod) :: s, d〉 7→ 〈bod , v :: e′, [], d〉
〈AppNoDump :: c, e, v :: RCL (e′, bod) :: s, d〉 7→ 〈bod , v :: RCL (e′, bod) :: e′, [], d〉

〈Op ? :: c, e, n2 :: n1 :: s, d〉 7→ 〈c, e, n1 ? n2 :: s, d〉
〈Ret :: c, e, v :: s, (c′, e′, s′) :: d〉 7→ 〈c′, e′, v :: s′, d〉
〈Sel (c1, c2) :: c, e, v :: s, d〉 7→ 〈c1, e, s, (c, [], []) :: d〉 (if v 6= 0)
〈Sel (c1, c2) :: c, e, 0 :: s, d〉 7→ 〈c2, e, s, (c, [], []) :: d〉

〈SelNoDump (c1, c2) :: c, e, v :: s, d〉 7→ 〈c1, e, s, d〉 (if v 6= 0)
〈SelNoDump (c1, c2) :: c, e, 0 :: s, d〉 7→ 〈c2, e, s, d〉

〈Join :: c, e, s, (c′, e′, s′) :: d〉 7→ 〈c′++c, e, s, d〉
〈MkPair :: c, e, v1 :: v2 :: s, d〉 7→ 〈c, e, PR (v2, v1) :: s, d〉
〈Fst :: c, e, PR (v1, v2) :: s, d〉 7→ 〈c, e, v1 :: s, d〉
〈Snd :: c, e, PR (v1, v2) :: s, d〉 7→ 〈c, e, v2 :: s, d〉
〈Eq :: c, e, v1 :: v2 :: s, d〉 7→ 〈c, e, 1 :: s, d〉 (if v1 = v2)
〈Eq :: c, e, v1 :: v2 :: s, d〉 7→ 〈c, e, 0 :: s, d〉 (if v1 6= v2)
〈IsNum :: c, e, n :: s, d〉 7→ 〈c, e, 1 :: s, d〉
〈IsNum :: c, e, v :: s, d〉 7→ 〈c, e, 0 :: s, d〉 (if 6 ∃n, v = n.)

Figure 3: Operational Semantics of Extended SECD Machine

vergence arises as the limit as k increases of ‘takes at least k steps without
terminating’.

A third important construction is the use of biorthogonality to ‘extension-
alize’ the sets of low-level values that are related to particular Fv terms. We
are trying to define compositional specifications for components of SECD con-
figurations, in particular instruction sequences c ∈ Code, but we want those
specifications to ultimately depend only on the observable behaviour of com-
plete, runnable configurations. This is achieved, building on ideas of Pitts and
of Krivine, by making our specifications ‘>>-closed’ [12, 13]. The rough idea
here is that one starts with an over-intensional set of computations, constructs
the set of all contexts that yield some particular observation when linked with
any element of the initial set, and then constructs the set – larger than that
with which one started – of those computations that yield the observation when
combined with any of those contexts. In the case of �, the observation will be
divergence (actually, stepping for at least some number of steps), whilst for �
the observation will be termination.
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Values: LΘ; ~xj : ~τj ` xi : τiM = [Push i]
L()M = [PushN 0]
LnM = [PushNn]

L〈V1, V2〉M = LV1M++LV2M++[MkPair]
LinlV M = [PushN 1]++LV M++[MkPair]
LinrV M = [PushN 0]++LV M++[MkPair]
Lλx.MM = [PushC (LMMtrue)]

Lrec f x = MM = [PushRC (LMMtrue)]
LΛX.V M = LV M

Lpack τ ′, V to∃X.τM = LV M
Expressions:

LretM = if ret = true then [Ret] else []
L[V ]Mret = LV M++LretM

LV1 ? V2Mret = LV1M++LV2M++[Op ?]++LretM
LV1 > V2Mret =

LV1M++LV2M++[Op (λ(n1, n2).n1>n2 ⊃ 1 | 0), PushN 0, MkPair]++LretM
Lπ1(V )Mret = LV M++[Fst]++LretM
Lπ2(V )Mret = LV M++[Snd]++LretM

LcaseV of inlx.M1 | inr y.M2Mtrue
= LV M++[Dup, Snd, PushE, Fst, SelNoDump (LM1Mtrue, LM2Mtrue), PopE]

LcaseV of inlx.M1 | inr y.M2Mfalse
= LV M++[Dup, Snd, PushE, Fst, Sel (LM1Mfalse++[Join], LM2Mfalse++[Join]), PopE]

Llet x = M in NMret = LMMfalse++[PushE]++LNMret++[PopE]
LV1 V2 :Mtrue = LV1M++LV2M++[AppNoDump]
LV1 V2Mfalse = LV1M++LV2M++[App]
LV τ ′Mret = LV M++LretM

LunpackV asX,x inMMret = LV M++[PushE]++LMMret++[PopE]

Figure 4: Compiler for Fv

We will clearly want to relate source terms both to constructed machine
values and to instruction sequences, but it is convenient to work with pairs

(c, s) ∈ MComp
def
= Code × Stack instead of isolated bits of code. If c ∈ Code,

write ĉ ∈ MComp for (c, []), and if v ∈ MVal, write v̂ ∈ MComp for ([], [v]).
We will use concatenation to link elements of MComp with contexts, which are
themsleves elements of CESD .

Approximating High-level By Low-level. The � relation works with
step-indexed entities. We write iMValue for N×MVal, iMComp for N×MComp
and iCESD for N×CESD. The relation is ‘logical’, with each type constructor
having an associated relational action. Biorthogonality is used in defining the
action of the lifting monad that, whilst not reflected explicitly in Fv types, is
morally there in the distinction between expressions and values. Given a relation
R between Fv values and machine values, we’ll want a relation between Fv
expressions and machine computations. A direct approach would say something
about the expression and the computation evaluating to R-related values, but
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that would overspecify just how the low-level code must compute, requiring a
non-observable intermediate configuration of a particular shape. We instead
exploit two maps, each of which is half of a contravariant Galois connection,
between the lattice of subsets of iCESD and those of subsets of iMValue and of
iMComp, respectively. If pe ∈ MEnv and P ⊆ iMValue, define

↓pe (P )
def
= {(j, 〈c, e, s, d〉) | ∀(i, v) ∈ P, 〈c, pe++e, v :: s, d〉 7→min(i,j)}
⊆ iCESD.

So an indexed context is in ↓pe (P ) if whenever we link it with an indexed value
from P and the machine environment pe, the resulting configuration takes a
number of steps that is at least the minimum of the two indices. Coming back
the other way, if pe ∈ MEnv and Q ⊆ iCESD, define

⇑pe (Q)
def
= {(i, (c′, s′)) | ∀(j, 〈c, e, s, d〉) ∈ Q, 〈c′++c, pe++e, s′++s, d〉 7→min(i,j)}
⊆ iMComp.

The maps are indexed by an (an extension of) the environment as a way of
sharing the environment between the computation and the context.

If e ∈ MEnv, τ is a closed type and RT i ⊆ MVal×(CValue τ) is a N-indexed
relation between machine values and closed Fv values of type τ , then define the
indexed relation 〈RT e

⊥〉i ⊆ MComp× (CExp τ) by1

〈RT e
⊥〉i = {(comp,M) |

(i, comp) ∈⇑e (↓e ({(j, v) | ∃V : τ,M |⇒ V ∧ (v, V ) ∈ RT j}))}
If τ is a closed source type, then let iRelτ be the set of N-indexed relations

Ri ⊆ MVal × (CValue τ). We say such a relation is decreasing when R0 ⊇
R1 ⊇ . . .. The intuition of step-indexing is that a relation R is approximated by
relations of the form ‘not detectably un-related within i-steps’, so the relations
should get finer as more steps are available for testing. If Θ = X1, . . . , Xn is a
type variable environment, then a relation environment for Θ is a vector ~τR of
pairs τ1R1, . . . , τnRn where each τk is a closed type and Rk ∈ iRelτk .

Now for each Θ, matching relation environment ~τR and type σ such that
Θ ` σ, the indexed relation

E
~τR,σ
i ⊆ MVal× (CValue (σ[τk/Xk]))

is defined by induction on σ, as shown in Figure 5. The relational interpretation
of a type variable is looked up in the relation environment, machine integers ap-
proximate the corresponding high-level value, any machine value approximates
the unit value, and machine pairs approximate Fv pairs pointwise. High-level
sum values are approximated by tagged pairs on the machine. The case for
functions follows the usual pattern of monadic Kripke logical relations: at all
future worlds (smaller indices) take related arguments to results related by the
monadic lifting of the relational interpretation of the result type. This is where
the low-level interface for function types, the calling convention, is specified: a
machine value approximates a high-level function when putting it on the stack

1The lifting is a form of possibility modality, in the sense of Evaluation Logic [11], whence
the notation 〈R〉.
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E
~τR,Xk

i = (Rk)i

E
~τR,Int
i = {(n, n) | n ∈ N}

E
~τR,1
i = {(v, ()) | v ∈ MVal}

E
~τR,σ1×σ2

i = {(PR (v1, v2), 〈V1, V2〉) | (v1, V1) ∈ E
~τR,σ1

i ∧ (v2, V2) ∈ E
~τR,σ2

i }

E
~τR,σ1+σ2

i = {(PR (n+ 1, v), inlV ) | (v, V ) ∈ E
~τR,σ1

i , n ∈ N}

∪ {(PR (0, v), inrV ) | (v, V ) ∈ E
~τR,σ2

i }

E
~τR,σ1→σ2

i = {(f, F ) | ∀k ≤ i,∀(v, V ) ∈ E
~τR,σ1

k ,

(([App], [v, f ]), (F V )) ∈ 〈(E ~τR,σ2)
[]
⊥〉k}

E
~τR,∀X.σ
i = {(v, V ) | ∀τ ′,∀R′ ∈ iRelτ ′ ,

decreasing R′ → (v̂, (V τ ′)) ∈ 〈(E ~τR,τ ′R′,σ)
[]
⊥〉i}

E
~τR,∃X.σ
i = {(v, pack τ ′, V to∃X.σ) | ∃R′ ∈ iRelτ ′ ,

decreasing R′ ∧ (v, V ) ∈ E
~τR,τ ′R′,σ
i }

Figure 5: The relation E
~τR,σ
i

with a value approximating a high-level argument and executing an App in-
struction yields behaviour that approximates that of the high-level application.
Universally quantified types are intepreted using relational parametricity, where
we quantify over all decreasing indexed relations between machine values and
values of some Fv type. Similarly, a machine value v is related to a high-level
existential package if there is some decreasing relation between low-level values
and values of the witnessing Fv type such that v is related to the packed value.

We lift E to environments pointwise. If Θ ` Γ where Γ is x1 : σ1, . . . , xm :

σm, and ~τR is a relation environment for Θ, then the indexed relation E
~τR,Γ
i ⊆

MEnv× (EValue (Γ[τk/Xk])) is the set of pairs ([v1, . . . , vm], [V1, . . . , Vm]) such

that vj E
~τR,σj

i Vj for all 1 ≤ j ≤ m. Then for expressions in context:

E
~τR,Γ`σ
i ⊆ MComp× (Exp [] (Γ[τk/Xk]) (σ[τk/Xk]))

= {(comp,M) | ∀i′ ≤ i,∀(e, ~V ) ∈ E
~τR,Γ
i′ , (comp,M [Vj/xj ]) ∈ 〈(E ~τR,σ)e⊥〉i′}

which is again ‘logical’, taking related environments to related computations for
all smaller indices. That was for closed types.

For open expressions of Θ; Γ ` σ, we define

EΘ;Γ`σ
i ⊆ MComp× Exp Θ Γσ

= {(comp,M) | ∀ ~τR : Θ,decreasing ~R→ comp E
~τR,Γ`σ
i (M [τk/Xk])}

by quantifying over all decreasing relation environments (i.e. those for which
every Rk is decreasing) for Θ. Finally, we can define the true� relations between
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the machine and Fv by quantifying over all step indices and combining with the
v relation:

comp �Θ;Γ`σ M∈Exp Θ Γσ
def⇐⇒ ∃M ′,Θ; Γ `M ′ vM : σ ∧ ∀i, comp EΘ;Γ`σ

i M ′.

Approximating Low-Level By High-Level. The � relation expresses when
a machine computation is approximated by an Fv term. We again use biorthog-
onality on the machine side, but this time with respect to the observation of
termination. The property of being less than some fixed high-level term is a
safety property of machine computations, for which step indexing is appropri-
ate, whereas being greater is a liveness property: we will be specifying that
certain machine configurations terminate. We again start with maps between
sets of contexts and sets of values and of computations, defining a notion of
orthogonality. For pe ∈ MEnv, P ⊆ MVal, Q ⊆ CESD, define

↓pe(P ) = {〈c, e, s, d〉 | ∀v ∈ P, 〈c, pe++e, v :: s, d〉 7→∗ } ⊆ CESD

⇑pe(Q) = {(c′, s′) | ∀〈c, e, s, d〉 ∈ Q, 〈c′++c, pe++e, s′++s, d〉 7→∗ } ⊆ MComp

and now, for a closed type τ and a relation RT ⊆ MVal× (CValue τ), define a
relational lifting modality by

[RT e⊥] ⊆ MComp× (CExp τ)

= {(comp,M) | ∀V,M |⇒ V → comp ∈ ⇑e(↓e({v | v RT V }))}
That is, given a low-high relation RT on values, the lifted relation holds between
a low computation to a high one if whenever the high computation yields a value
V , the low computation terminates in all contexts that terminate whenever they
are fed values v that are related to V by RT .

For closed τ , let Relτ be P(MVal × (CValue τ)). If Θ = X1, . . . , Xm, a

relation environment for Θ is now a vector ~τR of pairs of closed types and
relations, where Rk ∈ Relτk . For each ~τR : Θ and Θ ` σ, we now define the
relation

D
~τR,σ ⊆ MVal× (CValue (σ[τk/Xk]))

by induction on σ, as shown in Figure 6. This relation also lifts pointwise to en-

vironments. For Γ = x1 : σ1, . . . , xn : σn and Θ ` Γ and ~τR : Θ, define D ~τR,Γ ⊆
MEnv × (EValue (Γ[τk/Xk])) to be the set of pairs ([v1, . . . , vn], (V1, . . . , Vn))

such that (vj , Vj) ∈ D ~τR,σj for all j. Then for computations in context,

D ~τR,Γ`σ ⊆ MComp× (Exp [] (Γ[τk/Xk]) (σ[τk/Xk]))

= {(comp,M) | ∀(e, ~V ) ∈ D ~τR,Γ, (comp,M [Vj/xj ]) ∈ [(D ~τR,σ)e⊥]}
For open types, we define DΘ;Γ`σ by universally quantifying over all relation
environments ~τR : Θ, just as we did for the EΘ;Γ`σ

i . The true � relations are
then given by combining with v̂ as follows:

comp �Θ;Γ`σ M∈Exp Θ Γσ
def⇐⇒ ∃〈Ni〉i,Θ; Γ `Mv̂〈Ni〉i : σ ∧ ∀j, comp DΘ;Γ`σ Nj .

Realizability. The conjunction of the two approximation relations is our
notion of when a machine computation realizes an Fv term:

comp |=Θ;Γ`σ M
def⇐⇒ comp �Θ;Γ`σ M ∧ comp �Θ;Γ`σ M

9



D
~τR,Xk = Rk

D
~τR,Int = {(n, n) | n ∈ N}

D
~τR,1 = {(v, ()) | v ∈ MVal}

D
~τR,τ1×τ2 = {(PR (v1, v2), (V1, V2)) | (v1, V1) ∈ D

~τR,τ1 ∧ (v2, V2) ∈ D
~τR,τ2}

D
~τR,σ1+σ2 = {(PR (n+ 1, v), inlV ) | (v, V ) ∈ D

~τR,σ1 , n ∈ N}

∪{(PR (0, v), inlV ) | (v, V ) ∈ D
~τR,σ2}

D
~τR,σ1→σ2 = {(f, F ) | ∀(v, V ) ∈ D

~τR,σ1 , (([App], [v, f ]), (F V )) ∈
[
(D

~τR,σ2)
[]
⊥

]
}

D
~τR,∀X.σ = {(v, V ) | ∀τ ′,∀R′ ∈ Relτ ′ , (v̂, (V τ ′)) ∈

[
(D

~τR,τ ′R′,σ)
[]
⊥

]
}

D
~τR,∃X.σ = {(v, pack τ ′, V to∃X.σ) | ∃R′ ∈ Relτ ′ , (v, V ) ∈ D

~τR,τ ′R′,σ}

Figure 6: The relation D ~τR,σ

It is immediate from the definitions that the |= relations are closed on the right
under ==, the symmetric closure of v. We note again that these definitions
make surprisingly little reference to actual low-level code and values. We specify
the encoding for base types, pairs and sums and otherwise the only real piece of
code that shows up is the application instruction in the definition of the relations
at function types. That calling convention is the interface across which linked
components communicate.

If (c′, s′) ∈ MComp, we say (c′, s′) diverges unconditionally if for any c, e, s, d,
〈c′++c, e, s′++s, d〉 7→ω.

Lemma 3.1 (Ground divergence adequacy) For any comp ∈ MComp, type
τ = Int or 1, and M ∈ CExp τ if comp |=[];[]`τ M and the Fv term M diverges,
then comp diverges unconditionally.

Say a computation (c′, s′) converges to a natural n if plugging it into an arbitrary
context equiterminates with plugging n into that context:

∀c, e, s, d, 〈c, e, n :: s, d〉 7→∗ =⇒ 〈c′++c, e, s′++s, d〉 7→∗ 
∧ 〈c, e, n :: s, d〉 7→ω =⇒ 〈c′++c, e, s′++s, d〉 7→ω .

If a computation realizes a closed Fv term that evaluates to an integer n, then
it converges to n:

Lemma 3.2 (Ground convergence adequacy) For any comp ∈ MComp,
M ∈ CExp Int and n ∈ N, if comp |=[];[]`Int M and M |⇒ n then comp
converges to n.

Convergence adequacy also holds for observation at the unit type, with a defi-
nition of convergence that quantifies over test contexts cesd whose termination
is independent of the value on the top of the stack (since any value realizes ()).
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What allows the realizability semantics to be used for modular reasoning
about linking code obtained from different places, and proved by different means,
is that it is compositional. An important case is that of function application:

Lemma 3.3 (Compositionality for application) For any cf, cx ∈ Code and
Vf ∈ Value Θ Γ (τ → τ ′), Vx ∈ Value Θ Γ τ ,

(cf, []) |=Θ;Γ`τ→τ ′
[Vf ] ∧ (cx, []) |=Θ;Γ`τ [Vx] =⇒ (cf++cx++[App], []) |=Θ;Γ`τ ′

Vf Vx.

4 Examples

Compiler Correctness. Whilst the realizability relation is defined without
reference to our compiler, we do of course intend that the compiler is correct,
in the sense that compiled code always realizes the original source term:

Theorem 4.1 (Compositional Compiler Correctness) 1. For all Θ,Γ, V, τ ,
if Θ; Γ ` V : τ then LV M |=Θ;Γ`τ [V ].

2. For all Θ,Γ,M, τ , if Θ; Γ `M : τ then LMMfalse |=Θ;Γ`τ M .

Both directions of the above are proved by simultaneous structural induction,
with a strengthened induction hypothesis to account for compilation of expres-
sions with the ret flag set to true. In the � direction, the case for recursive
functions involves a nested induction over step indices, whilst in the the �
direction, we appeal to the unwinding property of the v parameter relation.

A consequence is that compiled code for whole programs has the correct
operational behaviour according to the operational semantics of the programs:

Corollary 4.2 (Correctness for whole programs) For any M ∈ CExp Int,
if M diverges, then LMMfalse diverges unconditionally and if M |⇒ n, then
LMMfalse converges to n.

The corollary is normally thought of as compiler correctness, but it is The-
orem 4.1 that lets us reason about combining compiled code with code from
elsewhere.

Hand-written fixed-point combinator. One can use the rec construct to
write a CBV fixed-point combinator in Fv:

FixC = ΛX.ΛY. λF : (X → Y )→ (X → Y ). rec f x. F f x

which compiles to code using SECD’s recursive closures:

[PushC [PushRC [Push 2, Push 1, App, PushE, Push 0, Push 1, AppNoDump, PopE], Ret]]

Alternatively, we can hand-encode λF. λx. (λy. F (λz. y y z)) (λy. F (λz. y y z))x,
which is an untyped CBV fixpoint combinator, as the following SECD code:

YCombinator =
[PushC [PushC [

PushC [Push 2, PushC [Push 1, Push 1, App, Push 0, App, Ret], App, Ret],
PushC [Push 2, PushC [Push 1, Push 1, App, Push 0, App, Ret], App, Ret],
App, Push 0, App, Ret], Ret]]
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Direct reasoning about the operational semantics of low-level code and of Fv,
not involving anything to do with the compiler, shows the following:

Lemma 4.3 YCombinator, [] |=`∀X. ∀Y. ((X→Y )→X→Y )→X→Y FixC.

Together with Theorem 4.1 and the compositionality of the realizability rela-
tion, the above implies that linking the handcrafted code with code produced
by the compiler for any term with an appropriately typed free variable will
be observationally indistinguishable from linking in the compiled code for any
source-level term that is == to the explicitly recursive FixC.

Context manipulation. For this machine, most interesting examples of
the difference between intensional and extensional specifications involve higher-
order functions and cunning use of the intensional equality test. But one simple
first-order example is that for any n ∈ N,

([PushNn, PushN 1, Sel ([Join, PushN 0, Pop], [])], []) |=`Int [n]

This code would not be in a simple direct-style realizability relation because
as well as pushing n onto the stack, it modifies its context (non-observably),
appending push and pop instructions to the end of the current continuation.

Hand-optimized polymorphic list module.. We now give an example that
involves relational parametricity, for both universal (polymorphic) and existen-
tial (abstract) types. Consider a signature for a polymorphic list module:

SigPolList = ∀X.∃LX.LX × (X × LX → LX)× (LX → Option (X × LX))

where Option τ = 1 + τ and we write none and some for the constructors as
usual. The signature says that an implementation of polymorphic lists should
have some private representing type LX, equipped with three standard list
manipulation operations: constructors nil : LX, cons : X × LX → LX and a
destructor split : LX → Option (X × LX).

Now one concrete implementation of the signature is given by the well-known
Church-encoding of lists:

PList : SigPolList = ΛX. pack ListX, (nilX , consX , splitX) to . . .

where List τ = ∀Y. Y × (τ × Y → Y ) → Y for any type τ and a fresh type
variable Y , and where

nilτ : List τ = ΛY. λ(n, c). n
consτ (hd : τ) (tl : List τ) : List τ = ΛY. λ(n, c). c (hd, tl Y (n, c))
splitτ (l : List τ) : Option (τ × List τ) =
l (Option (τ × List τ)) (noneτ×List τ ,
λ(hd, htl). casehtl of inl (). someτ×List τ (hd,nilτ )

| inr (hd′, tl). someτ×List τ (hd, consτ hd
′ tl))

The Church encoding is elegant, but inefficient: the list splitting operation is
O(n), rather than O(1), for example. But without recursive types, we can do
no better in the Fv source language. However, one can treat the inefficient
encoding of lists as a specification, and write some cunning, hand-optimized
SECD machine code that provably realizes, i.e. behaves exactly the same as
from the point of view of well-behaved clients, PList. There are two tricks
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in our implementation. First, we represent lists as nested tuples of elements,
which would not be typeable in Fv. We then further optimize by playing a
highly non-parametric low-level representation trick: when the representation
of list elements is (dynamically!) observed to be a natural number, we further
compress the representation via a (potentially iterated) Gödel numbering of
sequences of natural numbers. The optimized implementation of the list module
in SECD code is parameterized by pairing and projection functions on natural
numbers:

npair : N→ N→ N, nfst : N→ N, nsnd : N→ N

such that,

∀n,m ∈ N, npair nm > 0, nfst (npair nm) = n, and nsnd (npair nm) = m.

One could take npair nm to be 2n×3m, with matching projection functions, for
example. We assume low-level implementations NPair,NSplit ∈ Code of these
pairing operations, such that

∀c e s d nm ∃k 〈NPair++c, e, m :: n :: s, d〉 7→k 〈c, e, npair nm :: s, d〉
∀c e s d n∃k 〈NSplit++c, e, n :: s, d〉 7→k 〈c, e, PR (nfstn, nsndn) :: s, d〉

Exploiting the instruction IsNum that checks if a given machine value is a num-
ber, one can compactly represent a list of machine values as follows:

encodeM (vs : listMVal) : MVal =


0 if vs = []
npair nm if vs = n :: tl ∧ encodeM tl = m
PR (hd, tl) otherwise (vs = hd :: tl)

The following are implementations of the three functions of SigPolList in
SECD according to the above representation.

NilM=[PushN 0]
ConsM=[PushC [Push 0, Fst, IsNum,

Sel ([Push 0, Snd, IsNum, Join], [Push 0, Snd, PushN 0, Join]),
Sel (NPair++[Join], [MkPair, Join]),
Ret]]

SplitM=[PushC [Push 0,
Sel ([PushN 0, Push 0, IsNum, Sel (NSplit++[Join], [Join]),

MkPair, Join],
[PushN 1, PushN 1, MkPair, Join]),

Ret]].

To aid understanding, we give pseudo-Fv terms interpreting the above code:

NilM ≈ 0
ConsM ≈ λ(hd, tl). if hd = n ∧ tl = m then npair nm else PR (hd, tl)
SplitM ≈ λ l. if l 6= 0 then if l = n then some (nfstn, nsndn) else some l

else none

One can then verify that the above optimized low-level implementation realizes,
and is therefore substitutable for (in any related context) the code compiled
from, the Church-encoded Fv module PList:

Lemma 4.4 (NilM++ConsM++SplitM++[MkPair, MkPair], []) |=`SigPolList PList.
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Whilst frivolous, this shows a non-trivial extensionally parametric specification
being realized by an implementation that is intensionally unequivocally non-
parametric.

5 Discussion

We have presented a compositional and extensional operational realizability re-
lation between a parametrically polymorphic source language and a low-level
untyped abstract machine. The relation was used to establish both full func-
tional correctness for an optimizing compiler and to justify the linking of code
from any compiler meeting the specification with hand-optimized fragments of
low-level code. The relation involves relational parametricity, biorthogonality
and step-indexing, as well as being parameterized by a novel form of adequate
precongruence, amounting to a kind of ideal closure operation, on the source
language.

The results and examples are all formalized in the Coq proof assistant, using
a strongly-typed representation of polymorphic terms and substitutions that we
describe in a companion paper [4]. Using the strongly-typed representation in-
volves some occasionally-vexing manipulation of casts and heterogeneous (‘John
Major’) equality; this led the second author to develop a Coq library for rewrit-
ing with heterogenous equality [8], which is exploited in the latest version of
the proofs for the present paper. The full formalization of the source language,
machine, logical relations, compiler correctness proof and examples is around
6000 lines, which seems very reasonable, though this is now at least our third
completely fresh version of a mechanized compiler correctness theorem. Our ini-
tial formalization for this language was over twice as long; the improvement is
partly in the formulation of the logical relations and partly in the details of the
mechanization. The reasons for mechanizing at all are twofold. Firstly, the rea-
soning is already sufficiently complex that we really would have low confidence
in (and would find it hard to manage) paper proofs, especially for non-trivial
examples such as the polymorphic list module. Secondly, mechanization would
be an integral part of any realistic infrastructure based on certified code, so we
simultaneously want to establish the feasibility of (and extend (or encourage
others to extend) the state of the art in) doing mechanized proofs in this area.

The closest related work is our own paper on relating the denotational se-
mantics of a simply-typed language to a similar machine [3]. There have been
many other compiler correctness proofs done in the last 35 years or so, amongst
which we particularly mention the classic work on the VLISP verified Scheme
compiler [7], which relates a denotational semantics to, ultimately, real machine
code; the Coq formalization of compiler correctness for a total functional lan-
guage by Chlipala [6]; and the work of Leroy [10] on mechanically verifying a
realistic compiler for a C-like language. A distinguishing feature of our work
is the focus on compositional specifications that are independent of any partic-
ular compiler and can be used to independently verify foreign code. We have
also looked at low-level semantic type soundness in a similar style [5] and the

14



present work arose naturally from an attempt to understand the way in which
that semantics failed to be sufficiently abstract.

Step-indexing has been widely used to tame recursive phenomena in opera-
tional semantics in the last decade. During the course of this research, however,
we have found that it does inhibit some aggresive low-level program transfor-
mations that we believe should be legal. Intuitively, non-functional operations
such as comparing function pointers allow one to look ‘too far’ into the future,
so clever optimizations make misbehaving computations misbehave ‘too soon’
to respect current forms of step-indexed relations. Finding a way around this
problem will be interesting and challenging. Other avenues for further work
include looking at recursive types and references, and transferring our results
to a lower level target machine. We would also like to make our specifications
even more independent of the source language, by expressing them in a logic
that talks only about the low-level machine.
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