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Abstract
We describe a Coq formalization of a subset of the x86 architecture.
One emphasis of the model is brevity: using dependent types, type
classes and notation we give the x86 semantics a makeover that
counters its reputation for baroqueness. We model bits, bytes, and
memory concretely using functions that can be computed inside
Coq itself; concrete representations are mapped across to math-
ematical objects in the SSREFLECT library (naturals, and inte-
gers modulo 2n) to prove theorems. Finally, we use notation to
support conventional assembly code syntax inside Coq, including
lexically-scoped labels. Ordinary Coq definitions serve as a pow-
erful “macro” feature for everything from simple conditionals and
loops to stack-allocated local variables and procedures with param-
eters. Assembly code can be assembled within Coq, producing a
sequence of hex bytes. The assembler enjoys a correctness theo-
rem relating machine code in memory to a separation-logic formula
suitable for program verification.

1. Introduction
The Coq proof assistant [27] is remarkably versatile, with appli-
cations that span deep, research-level mathematics [14], program-
ming language metatheory [1] and compiler correctness for realis-
tic languages [17]. As part of a larger project tackling verification
of systems software, we have used Coq to model a subset of the
x86 machine architecture, generate binary code for it, and specify
and prove properties of that code [16]. This paper concerns the first
two of these tasks, showcasing Coq as a rich language for giving
very readable (and executable) semantics for instruction set archi-
tectures, and as a tool for both writing assembly language programs
and generating machine code from them. Using the semantics and
assembler as a foundation, the full power of Coq’s abstraction and
proof capabilities can be brought to bear on low-level programs.

1.1 An example
Figure 1 presents code that computes the factorials of 10 and 12
and prints them to the console using an external printf function
whose address is loaded from an indirection table. When we run
coqc over this file, the code is assembled to produce a hexadecimal
dump, which is then easily transformed to binary.

>coqc fact.v
= "EB 1A B8 01 00 00 00 B9 01 00 00 00 EB 04 F7
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Definition call_cdecl3 f arg1 arg2 arg3 :=
PUSH arg3;; PUSH arg2;; PUSH arg1;;
CALL f;; ADD ESP, 12.

Definition main (printfSlot: DWORD) :=
(* Argument in EBX *)
letproc fact :=
MOV EAX, 1;;
MOV ECX, 1;;
(* while ECX <= EBX *)
while (CMP ECX, EBX) CC_LE true (
MUL ECX;; (* Multiply EAX by ECX *)
INC ECX

)
in
LOCAL format;
MOV EBX, 10;; callproc fact;;
MOV EDI, printfSlot;;
call_cdecl3 [EDI] format EBX EAX;;
MOV EBX, 12;; callproc fact;;
MOV EDI, printfSlot;;
call_cdecl3 [EDI] format EBX EAX;;
RET 0;;

format:;;
ds "Factorial of %d is %d";; db #10;; db #0.

Compute bytesToHex
(assemble #x"C0000004" (main #x"C0000000")).

Figure 1. x86 factorial, assembled by Coq

E1 FF C1 3B CB 0F 8E F4 FF FF FF FF E7 BB 0A 00 00
00 BF 2C 00 00 C0 EB DA BF 00 00 00 C0 50 53 68 61
00 00 C0 FF 17 81 C4 0C 00 00 00 BB 0C 00 00 00 BF
4C 00 00 C0 EB BA BF 00 00 00 C0 50 53 68 61 00 00
C0 FF 17 81 C4 0C 00 00 00 C3 46 61 63 74 6F 72 69
61 6C 20 6F 66 20 25 64 20 69 73 20 25 64 0A 00 "

: string

Even this tiny example shows the power of Coq as an assembler.
Ordinary Coq definitions, such as call_cdecl3, serve as user-
defined macros, here expanding to the standard calling sequence
for a three-argument function that uses the x86 cdecl calling
convention.

The while and letproc syntax are “built-in” macros that pro-
vide looping and procedural control constructs, hiding the use of
scoped labels, branching, and a simple calling convention behind
a useful abstraction. The LOCAL notation provides scoped labels,
here used to identify inline data, created using ds and db directives
for string and byte constants respectively.

Observe how assembly code syntax, familiar to users of tools
such as MASM, is embedded directly in Coq source. Also note
how the assembler itself is executed inside Coq (placing the code



at fixed address C0000004 and assuming that printf’s slot is at
C0000000), and its output (a sequence of bytes) can be sent to the
console in hexadecimal format.

One route to actually executing such code is to produce a stan-
dard executable format from within Coq, such as the Portable Exe-
cutable (PE) form used by Microsoft Windows:

Definition bytes :=
makePEfile EXE "winfact.exe" #x"00760000"
[::Build_DLLImport "MSVCRT.DLL"

[::ImportByName "printf"]]
(dd #0)
(fun _ imports ⇒ main (hd #0 (hd nil imports))).

Compute bytesToHex bytes.

The makePEfile function requires a load address for the image, a
list of imports from dynamically linked libraries (here, the printf
function that is located in the C runtime library MSVCRT.DLL), and
an assembler program, parameterized on the imports. Having run
coqc over this file we can then run a trivial hex-to-binary tool to
produce an executable:

>coqc winfact.v >winfact.hex
>hexbin winfact.hex winfact.exe
>winfact
Factorial of 10 is 3628800
Factorial of 12 is 479001600

Alternatively, we can run code on bare metal – or in a virtual
machine – by appending a small boot loader, outside of Coq, and
then constructing a CD image suitable for booting. Figure 2 shows
a screen shot of a larger example created this way: the classic Game
of Life written entirely in assembler in Coq.

Figure 2. Game of Life

1.2 Contributions
Modelling. We show how Coq features such as dependent types,
type classes, implicit coercions, indexed inductive types, and user-
defined notation combine to support a clean formalization of ma-
chine code – in our case, a subset of x86. Many others have formal-
ized machine code, but our approach has a number of interesting
features:

• The representation of machine words and operations is con-
crete, using tuples of booleans to represent bit vectors, and

implementing arithmetic and other operations directly as com-
putable Coq functions, but types are informative, with fine-
grained parameterization on word lengths. To prove theorems
we exploit the embedding Bn ↪→ N of bit strings into the nat-
urals and the isomorphism Bn ∼= Z2n of binary with with in-
tegers modulo 2n, enabling use of a rich collection of lemmas
from the SSREFLECT Mathematical Components library [15].
• An abstract, monadic treatment of readers and writers, with

separate functional, imperative and logical interpretations, is
unusual, and facilitates the reuse of binary format descriptions
and proofs of round-trip properties.
• The semantics of execution itself is particularly concise, due

mainly to our use of monadic syntax and careful factoring of
the instruction type and auxiliary definitions.

Assembling. Our approach to generating code entirely inside Coq
is novel:

• Coq notations and implicit coercions let us write assembly syn-
tax that is cut-and-paste-compatible with standard Intel syntax.
• We support lexically-scoped labels within assembly code,

through a kind of higher-order abstract syntax, and build veri-
fied abstractions such as control structures and procedure call-
ing conventions over the top.
• We have proved that our instruction decoder is a left-inverse

of our instruction encoder and that our assembler preserves
correctness proofs of the assembled programs.
• We show how a verified compiler for regular expressions may

be constructed, building on a third-party formalization of the
theory of Kleene algebras.

2. Modelling x86
The x86 architecture and instruction set is notoriously complex:
the current Intel manual detailing the instruction set alone runs to
1288 pages [11]. Although we so far model only a small subset,
even here we must get to grips with rich addressing modes and
a variable-length, non-uniform instruction format. In addition to
aiming for brevity in our Coq description – to facilitate readability
and extension – we also wanted an executable semantics. Running
the first two instructions from the example in Figure 1 produces the
following state changes (assuming that the initial value of ESP is
D0000000):

Coq < Compute procStateToString (runFor 0 s).
= " EIP=C0000000 ESP=D0000000 EBP=00000000

EAX=00000000 EBX=00000000 ..."
Coq < Compute procStateToString (runFor 1 s).
= " EIP=C0000001 ESP=CFFFFFFC EBP=00000000

EAX=00000000 EBX=00000000 ..."
Coq < Compute procStateToString (runFor 2 s).
= " EIP=C0000003 ESP=CFFFFFFC EBP=CFFFFFFC

EAX=00000000 EBX=00000000 ..."

2.1 Bits, bytes and all that
We start with a concrete representation for bit vectors.

Definition BITS n := n.-tuple bool.
Definition NIBBLE := BITS 4.
Definition BYTE := BITS 8.
Definition WORD := BITS 16.
Definition DWORD := BITS 32.
Definition QWORD := BITS 64.
Definition DWORDorBYTE (d: bool) :=
BITS (if d then 32 else 8).



The n.-tuple type of SSREFLECT is used to represent n-bit
words concretely and efficiently, with synonyms defined for bytes,
16-bit words and 32-bit words. The DWORDorBYTE type is used for
literals in instructions that have byte and 32-bit word variants, and
illustrates well how ‘lightweight’ dependent types are handy for
formalizing machine semantics. Syntax is provided for decimal,
hexadecimal, binary and character constants:

Example fortytwo := #42 : BYTE.
Example fortytwo1 := #x"2A".
Example fortytwo2 := #b"00101010".
Example fortytwo3 := #c"*".

The notations #x and #b expand to the following two functions,
demonstrating another application of dependent types:

Fixpoint fromHex s : BITS (length s * 4) :=
if s is String c s
then joinNibble (charToNibble c) (fromHex s) else #0.

Fixpoint fromBin s : BITS (length s) :=
if s is String c s
then joinmsb (charToBit c, fromBin s) else #0.

The if . . . is notation is SSREFLECT syntactic sugar for match.
Using indexing in the type of words allows accurate typing

of machine operations such as arithmetic, shifts, and rotates. For
example, the “carry-out” of operations such as addition and shift-
left is simply expressed as the most significant bit of the result, and
full bit-length multiplication produces a result whose size is the
sum of the sizes of its inputs:

Fixpoint adcB n carry : BITS n → BITS n → BITS n.+1.
Definition dropmsb {n} : BITS n.+1 → BITS n.
Definition addB {n} (p1 p2: BITS n) :=

dropmsb (adcB false p1 p2).
Definition fullmulB {n1 n2} : BITS n1 → BITS n2

→ BITS (n1+n2).
Definition shlB {n} : BITS n → BITS n.+1.
Definition catB {n1 n2} : BITS n1 → BITS n2

→ BITS (n2+n1).
Notation "x ## y" := (catB x y)

(right associativity, at level 60).

This concrete representation also makes computation over words
relatively efficient; this is important as both code generation and
the direct execution of the machine model for testing purposes
involve performing substantial bit-level computation inside Coq.
Performance is adequate for these purposes: a quick test reveals
that we can achieve roughly 150,000 32-bit increments per second,
and 11,000 32-bit additions (on a 3.6Ghz Intel Xeon CPU).

Proofs of properties of word operations often proceed by induc-
tion on n. For arithmetic, however, we found it useful to map ma-
chine representations onto more abstract mathematical types pro-
vided by SSREFLECT, either embedding BITS n into nat or using
the bijection with ’Z_(2^n), the type of integers modulo 2n. (Note
that for both of these forms, representations are unique, so we can
reason using standard Coq equality.) Here, for example, is the proof
that addition is associative:

Lemma addBA n : associative (@addB n).
Proof. move ⇒ x y z. destruct n; first apply trivialBits.
apply toZp_inj. autorewrite with ZpHom.
by rewrite addrA. Qed.

The first line of the proof discharges the trivial case of zero bits.
Next we use the lemma toZp_inj, which states that

toZp: BITS n → ’Z_(2^n)

is injective, in order to transform the goal from

addB x (addB y z) = addB (addB x y) z

to

toZp (addB x (addB y z)) = toZp (addB (x y) z).

We then push the embedding inwards by appealing to the hint
database ZpHom, which contains lemmas expressing that toZp be-
haves homomorphically with respect to all relevant arithmetic op-
erations – in particular addB and addition on the ring. Finally we
use the associativity of addition on the target, as provided by the
SSREFLECT library. Many other properties are proved using the
same recipe.

2.2 Memory
To model memory we use an implementation of finite partial maps
whose domain is n-bit words. We could define this abstractly us-
ing BITS n -> option V, but as with machine words we prefer
something more concrete that can be used for efficient execution of
instruction semantics inside Coq. We use a variant of tries, splitting
on a bit of the address at each level, with NEPMAP n representing
non-empty maps, and PMAP n for possibly-empty maps:

Variable V: Type.
Inductive NEPMAP : nat → Type :=
| VAL : V → NEPMAP 0
| SPLIT : ∀ n (lo hi: NEPMAP n), NEPMAP n.+1
| LSPLIT : ∀ n (lo : NEPMAP n), NEPMAP n.+1
| RSPLIT : ∀ n (hi : NEPMAP n), NEPMAP n.+1.
Inductive PMAP n :=
| PMap : NEPMAP n → PMAP n
| EmptyPMap : PMAP n.

Definition lookup n (m: PMAP n) (p: BITS n) : option V
:= if m is PMap m’ then lookupNE m’ p else None.
Global Coercion lookup : PMAP � Funclass.

where lookupNE recurses down an NEPMAP; at each non-leaf level,
the constructor determines whether the left, right, or both subtrees
are present. A benefit of this fussiness is uniqueness of representa-
tion: two values of type PMAP n are equal in Coq if and only if they
are extensionally equal. This is expressed by the following lemma,
which makes use of the implicit coercion between function appli-
cation and lookup:

Lemma extensional_PMAP n V:
∀ (m1 m2: PMAP V n), (∀ x, m1 x = m2 x) → m1 = m2.

Memory is then a partial map from 32-bit addresses to bytes, in
which the absence of an element indicates that the memory is not
mapped, or is inaccessible:

Definition Mem := PMAP BYTE 32.

In future we plan to refine the model to account for non-writable
and non-executable memory.

2.3 Monads
To abstract a little from the details of execution, decoding, assem-
bling, and so on, we make use of monads. We employ Coq’s type
classes for packaging [25], defining a class MonadOps for syntax
and Monad for the monad laws, along with some useful notation.

Class MonadOps T :=
{ retn {X} : X → T X
; bind {X Y} : T X → (X → T Y) → T Y }.

Class Monad T {ops: MonadOps T} :=
{ id_l X Y (x: X) (f: X → T Y) : bind (retn x) f = f x
; id_r X (c: T X) : bind c retn = c
; assoc X Y Z (c: T X) (f: X → T Y) (g : Y → T Z) :
bind (bind c f) g = bind c (fun x ⇒ bind (f x) g) }.



Notation "’let!’ x = c ; d" := (bind c (fun x ⇒ d)) (...)
Notation "’do!’ c ; d" := (bind c (fun _ ⇒ d))

Concrete instances of Monad include an error monad and state
monad transformer, both of which are used in the semantics of in-
struction execution. For reading and writing memory, and decoding
and encoding of instructions, we define reader and writer monads,
which are discussed next.

2.4 Readers and writers
Reading and writing sequences of bytes representing some other
type of data, such as 32-bit words, or variable-length instructions,
pervades our framework. We found it surprisingly difficult to devise
an appropriate interface for these operations.

Firstly, there are issues with edge cases. Typically one has a
pointer which is advanced as bytes are read or written; but the
situation at the top-of-memory must be handled, and we wish to
model contiguous memory ranges, possibly empty, and possibly all
of memory. To tackle this we introduced a Cursor type, a value of
which is either a concrete n-bit address, or a value top representing
the address just beyond the end of memory.

Variable n:nat.
Inductive Cursor := mkCursor (p: BITS n) | top.

When reading or writing bytes, the cursor is advanced, but does not
wrap around to zero, instead taking on the value top. (Compare
the notion of EOF used in file I/O.) Memory ranges can be repre-
sented by a pair of cursors (p,q) interpreted as the memory from p
inclusive to q exclusive.

A second issue was the need for multiple ‘views’ of reading and
writing. Sometimes we wish to view reading and writing in a pure,
functional style, in which a reader consumes, and a writer produces,
a sequence of bytes. In other situations we want to make reads and
writes on our concrete model of memory, for example, when speci-
fying the execution behaviour of instructions. A third view, used in
specifications, interprets readers and writers as predicates on partial
states, with sequencing interpreted by separating conjunction.

To support these various views of reading and writing, we intro-
duce inductively-defined terms for readers and writers.

Readers. A reader is defined as follows:

Inductive ReaderTm T :=
| readerRetn (x: T)
| readerNext (rd: BYTE → ReaderTm T)
| readerCursor (rd: Cursor 32 → ReaderTm T).

Class Reader T := getReaderTm : ReaderTm T.
Instance readBYTE : Reader BYTE :=
readerNext (fun b ⇒ readerRetn b).

A reader for type T either returns a value of type T immediately,
or consumes a single byte and then continues, or asks for the
current value of the cursor and continues. This last feature is used
in instruction decoding to implement relative addressing for branch
instructions. Given appropriate definitions for monad unit and bind
operations, we can define MonadOps Reader and Monad Reader
instances, and easily create readers for various types. For example,
here is a reader for 32-bit words, in little-endian format:

Definition bytesToDWORD (b3 b2 b1 b0: BYTE) : DWORD :=
b3 ## b2 ## b1 ## b0.

Instance readDWORD : Reader DWORD :=
let! b0 = readNext;
let! b1 = readNext;
let! b2 = readNext;
let! b3 = readNext;
retn (bytesToDWORD b3 b2 b1 b0).

Let’s now interpret readers. First, functionally:

Definition runReader T :
Reader T → Cursor 32 → seq BYTE →

option (Cursor 32 * seq BYTE * T).

Given a list of bytes and an initial cursor position, bytes are read
sequentially, resulting in a new position (possibly top), residual
bytes, and a value; the value None is returned if there are insuffi-
cient bytes or if bytes at top are read.

Our second interpretation is imperative and operates on our
model of memory, Mem. This time we distinguish between read-
ing beyond the end of memory (readerWrap), and reading an un-
mapped byte (readerFail).

Inductive readerResult T :=
readerOk (x: T) (q: Cursor 32)

| readerWrap | readerFail.
Definition readMem T :
Reader T → Cursor 32 → Mem → readerResult T.

Finally, we can give a logical view of a reader, expressed as a ‘store
predicate’ (SPred) which we discuss in detail elsewhere [16].

Definition interpReader T:
Reader T → Cursor 32 → Cursor 32 → T → SPred.

Given a reader R for type T, the predicate interpReader R p q x
holds of a state if the bytes between cursors p and q can be ‘read
back’ as value x of type T.

Writers. For writers, we again define a term syntax with appro-
priate monadic unit and bind operations; a writer for type T is then
a function from T to WriterTm unit.

Inductive WriterTm A :=
| writerRetn (x: A)
| writerNext (b: BYTE) (w: WriterTm A)
| writerCursor (w: Cursor 32 → WriterTm A)
| writerFail.
Class Writer T := getWriterTm: T → WriterTm unit.

As with readers, our monadic syntax makes the definition of writers
for various types straightforward:

Instance writeBYTE : Writer BYTE :=
fun b ⇒ writerNext b (writerRetn tt).

Instance writeDWORD : Writer DWORD := fun d ⇒
let: (b3,b2,b1,b0) := split4 8 8 8 8 d in
do! writeBYTE b0;
do! writeBYTE b1;
do! writeBYTE b2;
do! writeBYTE b3;
retn tt.

Writers have functional, imperative, and logical interpretations:

Definition runWriter T :
Writer T → Cursor 32 → T → option (seq BYTE).

Definition writeMem T :
Writer T → Cursor 32 → T → Mem →
option (Cursor 32 * Mem).

Definition interpWriter T :
Writer T → Cursor 32 → Cursor 32 → T → SPred.

To show that a reader correctly decodes anything produced by a
writer, we construct an inductively defined simulation relation be-
tween them. The relation simrw x p R W says that reader R simu-
lates writer W for the purpose of reading value x starting at position
p, meaning that R and W essentially proceed in lock step, except that
they are allowed to read the cursor position independently of each
other. If the writer fails, there is no restriction on the reader.

Inductive simrw {X T} (x: X) :
Cursor 32 → Reader X → WriterTm T → Prop :=

| simrw_retn p t:
simrw x p (readerRetn x) (writerRetn t)



| simrw_next p R b W’:
simrw x (next p) (R b) W’ →
simrw x p (readerNext R) (writerNext b W’)

| simrw_rcursor p R’ W:
simrw x p (R’ p) W →
simrw x p (readerCursor R’) W

| simrw_wcursor p R W’:
simrw x p R (W’ p) →
simrw x p R (writerCursor W’)

| simrw_fail p R:
simrw x p R writerFail

| simrw_top R b W’:
simrw x (top _) R (writerNext b W’).

If for any x and position p a reader R and writer W are related by
simrw then they satisfy a round-trip property:

Class Roundtrip X (R: Reader X) (W: Writer X) :=
roundtrip: ∀ x p, simrw x p R (W x).

The following implication about round-tripping holds in our pro-
gram logic [16], which intuitively means “if memory from p to q
contains x as written by W, then reading back that range of memory
with R produces the same x”.

Lemma interpWriter_roundtrip X (W: Writer X) (R: Reader X)
{RT: Roundtrip R W} p q x:

interpWriter p q x ` interpReader p q x.

The X, R and W arguments to the interpretations above are implicit.

2.5 Instructions
The x86 instruction set design is complex, and shows its history.
However, some structure can be discerned, and is sufficient to
support the definition of a Coq inductive type for instructions that
is total: every value in the type represents a valid instruction, for
which there is a defined encoding.

Registers. The 32-bit x86 processor has eight general-purpose
registers, a flags register (EFLAGS), and an instruction pointer
(EIP). (We do not yet model the legacy segment registers, FPU
registers or SIMD registers.) We further divide the general-purpose
registers into ESP (the stack pointer) and the remainder, because
ESP is not allowed to participate in certain addressing modes.

Inductive NonSPReg :=
| EAX | EBX | ECX | EDX | ESI | EDI | EBP.
Inductive Reg := nonSPReg (r: NonSPReg) | ESP.
Inductive AnyReg := regToAnyReg (r: Reg) | EIP.

Some instructions can address the original 8-bit subregisters of the
8086.

Inductive BYTEReg := AL|BL|CL|DL|AH|BH|CH|DH.
Definition DWORDorBYTEReg (d: bool) :=
if d then Reg else BYTEReg.

Addressing modes. The addressing modes used by most instruc-
tions are captured by the inductive definitions of Figure 3. To take
an example, binary operations such as arithmetic and logical oper-
ations take two operands, one of which is also used as the desti-
nation. The instruction add EAX, [EBX + ECX*4 + 14] makes
use of the most complex addressing mode, indirecting through an
address that is computed as the sum of a base register EBX, an in-
dex register ECX scaled by 4, and the fixed offset 14. This would be
represented by

DstSrcRM EAX (mkMemSpec EBX (Some(ECX, S4)) #14).

Instructions. Now let’s tackle the instructions themselves. We
abstract just far enough above the binary encoding, but not too far.
Sometimes there is more than one way to encode essentially the
same instruction, and we do not make this distinction in the data

Inductive Scale := S1 | S2 | S4 | S8.
Inductive MemSpec :=
mkMemSpec (base: Reg)

(indexAndScale: option (NonSPReg*Scale))
(offset: DWORD).

Inductive RegMem d :=
| RegMemR (r: DWORDorBYTEReg d)
| RegMemM (ms: MemSpec).
Inductive Src :=
| SrcI (c: DWORD)
| SrcM (ms: MemSpec)
| SrcR (r: Reg).
Inductive DstSrc (d: bool) :=
| DstSrcRR (dst src: DWORDorBYTEReg d)
| DstSrcRM (dst: DWORDorBYTEReg d) (src: MemSpec)
| DstSrcMR (dst: MemSpec) (src: DWORDorBYTEReg d)
| DstSrcRI (dst: DWORDorBYTEReg d) (c: DWORDorBYTE d)
| DstSrcMI (dst: MemSpec) (c: DWORDorBYTE d).

Figure 3. Addressing modes

Inductive BinOp :=
| OP_ADC | OP_ADD | OP_AND | OP_CMP
| OP_OR | OP_SBB | OP_SUB | OP_XOR.
Inductive UnaryOp :=
| OP_INC | OP_DEC | OP_NOT | OP_NEG.
Inductive Condition :=
| CC_O | CC_B | CC_Z | CC_BE | CC_S | CC_P | CC_L | CC_LE.
Inductive Instr :=
| UOP d (op: UnaryOp) (dst: RegMem d)
| BOP d (op: BinOp ) (ds: DstSrc d)
| BITOP (op: BitOp) (dst: RegMem true) (bit: RegImm false)
| TESTOP d (dst: RegMem d) (src: RegImm d)
| MOVOP d (ds: DstSrc d)
| MOVX (signextend w:bool) (dst: Reg) (src: RegMem w)
| SHIFTOP d (op: ShiftOp) (dst: RegMem d) (count: ShiftCount)
| MUL {d} (src: RegMem d)
| IMUL (dst: Reg) (src: RegMem true)
| LEA (reg: Reg) (src: RegMem true)
| JCC (cc: Condition) (cv: bool) (tgt: Tgt)
| PUSH (src: Src)
| POP (dst: RegMem true)
| CALL (tgt: JmpTgt) | JMP (tgt: JmpTgt)
| CLC | STC | CMC
| RETOP (size: WORD)
| OUT (d: bool) (port: BYTE)
| IN (d: bool) (port: BYTE)
| HLT | BADINSTR.

Figure 4. Supported instruction set

type. Furthermore, the encoding of branches and certain calls uses
EIP-relative addressing. Our data type uses absolute addresses uni-
formly – this makes it slightly easier to formalize the execution se-
mantics, and much easier to support scoped labels and proof rules
for control-flow instructions, as code addresses are uniform. The
instructions we have currently formalized are shown in Figure 4.
Notice the extensive use of dependency (the d parameter) in in-
structions such as MOV that have two flavours, one for bytes, the
other for 32-bit words.

2.6 Operational semantics
In essence, the machine is modelled as a state-to-state transition
function, a single step consisting of decoding the next instruction
and then executing it. The function is partial – because we only
model a subset of instructions, and some behaviour is left unspec-



ified – and so we structure it monadically, layering an option
monad over a state monad.

Machine state. The machine state splits into three: registers,
flags, and memory. Register state is modelled as a (finite) func-
tion:

Definition RegState := AnyReg → DWORD.

We model flags separately, in order to model the unspecified effect
that some x86 instructions have on them.

Definition Flag := BITS 5.
Definition CF: Flag := #0. Definition PF: Flag := #2.
Definition ZF: Flag := #6. Definition SF: Flag := #7.
Definition OF: Flag := #11.
Inductive FlagVal := mkFlag (b: bool) | FlagUnspecified.
Coercion mkFlag : bool � FlagVal.
Definition FlagState := Flag → FlagVal.

Putting registers, flags, and memory together gives us the pro-
cessor state:

Record ProcState := mkProcState
{ registers:> RegState; flags:> FlagState; memory:> Mem }.

Instruction decoding. Instruction decoding is implemented as an
instance of Reader, making good use of the monadic syntax mixed
with simple Coq computation. The fragment here, for example, has
just decoded an FE byte:

let! (opx,dst) = readNext;
if opx == #b"000" then
retn (UOP false OP_INC dst)

else
if opx == #b"001" then
retn (UOP false OP_DEC dst)

else retn BADINSTR),

In the operational semantics, we interpret the instruction reader us-
ing readMem, picking up the memory component from the proces-
sor state.

Using Readers that can be interpreted directly on the machine
state improves somewhat on the approach of Myreen [21, Ap-
pendix A], in which the operational semantics always fetches 20
bytes from memory and checks for overflow only after decoding.

Instruction execution. Instruction execution makes significant
use of the state monad for reading and writing registers, flags and
memory. Through careful use of auxiliary definitions to capture
commonality, our formalization is small and easily understood.
Here is the interpretation of the RET instruction.

| RETOP offset ⇒
let! oldSP = getRegFromProcState ESP;
let! IP’ = getDWORDFromProcState oldSP;
do! setRegInProcState ESP
(addB (oldSP+#4) (zeroExtend 16 offset));

setRegInProcState EIP IP’

Putting it together. Given a machine state, the processor (a) de-
codes the bytes addressed by EIP to determine which instruction
to execute; (b) advances EIP to the next instruction; and (c) exe-
cutes the instruction. All this is captured by the following single-
step transition function, written in monadic style.

Definition step : ST unit :=
let! oldIP = getRegFromProcState EIP;
let! (instr,newIP) = readFromProcState oldIP;
do! setRegInProcState EIP newIP;
evalInstr instr.

In addition to state, the processor monad incorporates excep-
tional behaviour which is used for actual processor exceptions
such as division-by-zero and memory violations, but is also used
to model unspecified behaviour. For example, the x86 specifi-
cation states that flags SF and PF are undefined after executing
the MUL instruction. We model this using an additional flag state
FlagUnspecified, which if later scrutinized by a conditional
branch instruction is interpreted as undefined behaviour, modelled
by evalInstr returning the None value.

3. Assembling x86
A particular emphasis of our work on machine code verification is
on using Coq as a place to do everything: modelling the machine,
writing programs, assembling or compiling programs, and proving
properties of programs. Coq’s powerful notation feature makes it
possible to write assembly programs, and higher-level language
programs, inside Coq itself with no need for external tools.

3.1 Basics of assembly code
Syntax. At its most superficial, assembly code support means
nice syntax for the Instr type, which is achieved using Coq’s
Notation and Coercion features. For example, the instruction
ADD EAX, [EBX + ECX*4 + 14] considered earlier is valid syn-
tax both in our Coq development and in real-world assemblers that
make use of Intel-style syntax for x86.

Labels. An important aspect of assembly programs is the ability
to define and reference named labels. To this end we define a
type program to represent sequences of instructions, label scoping,
label definition, and inline data:

Inductive program :=
prog_instr (c: Instr)

| prog_skip | prog_seq (p1 p2: program)
| prog_declabel (body: DWORD → program)
| prog_label (l: DWORD)
| prog_data {T} {R: Reader T} {W: Writer T}

(RT: Roundtrip R W) (v: T).
Coercion prog_instr: Instr � program.
Infix ";;" :=
prog_seq
(at level 62, right associativity).

Notation "’LOCAL’ l ’;’ p" :=
(prog_declabel (fun l ⇒ p))
(at level 65, l ident, right associativity).

Notation "l ’:;’" :=
(prog_label l)
(at level 8, no associativity, format "l ’:;’").

The first three constructors just give us possibly-empty instruction
sequences. The prog_declabel constructor and LOCAL notation
introduces a new label name l, scoped within p. This use of Coq
variables for object-level ‘variables’ (here, labels) is reminiscent of
higher-order abstract syntax. The prog_label constructor (with
familiar colon notation) is a pseudo-instruction whose address the
assembler will assign to the label.

Here is an example of using labels to define a simple ‘skip over’
conditional:

(* Determine max(r1,r2), leaving result in r1 *)
Definition max (r1 r2: Reg) : program :=
LOCAL Bigger;
CMP r1, r2;; JG Bigger;; MOV r1, r2;;

Bigger:; .

The final constructor prog_data packs a value together with
round-tripping reader and writer; we can use this to define handy
inline data directives, as used in the example of Figure 1. The
ability of readers and writers to observe their current ‘cursor’ lets us



define alignment directives similar to those supported by traditional
assemblers:
Example exalign :=
LOCAL str; LOCAL num;
str:;; ds "Characters";;
num:;; align 2;; (* Align on 2^2 boundary i.e. DWORD *)

dd #x"87654321". (* DWORD value *)

The assembler. To turn a program into a sequence of bytes suit-
able for execution, we must do two things: assign concrete ad-
dresses to prog_declabel-bound variables, and encode the in-
structions themselves.

For encoding, we create an instance of Writer for instructions,
with various helper instances for auxiliary types used in instruc-
tions. Here is the fragment that deals with three variants of push:
Instance encodeInstr : Writer Instr := fun instr ⇒
match instr with
| PUSH (SrcI c) ⇒
if signTruncate 24 (n:=7) c is Some b
then do! writeNext #x"6A"; writeNext b
else do! writeNext #x"68"; writeNext c

| PUSH (SrcR r) ⇒
writeNext (PUSHPREF ## injReg r)

| PUSH (SrcM src) ⇒
do! writeNext #x"FF";
writeNext (#6, RegMemM true src)

As the reader will observe, writeNext is overloaded: in the first
case, it is used to write a BYTE and then a DWORD, in the second
case, we concatenate a constant prefix of five bits onto a three-
bit encoding of registers, and in the third case, we use a Writer
instance for the x86 r/m32 addressing mode.

For label resolution, we use the classic two-pass approach. On
the first pass over program, we instantiate each prog_declabel
with a fresh DWORD that uniquely identifies the label, encode
instructions only to obtain their size, and update a map from
label declaration identifiers to addresses when encountering a
prog_label. On the second pass, we instantiate prog_declabel
with the calculated addresses and accumulate instruction encod-
ings. Our current scheme assumes that label occurrences (for ex-
ample, in branches) have fixed length encodings – a scheme that
used more efficient variable-length encodings would iterate until
label assignments reach a fixed point [5].

The assembler is packaged up as a Writer program that com-
bines the passes in a clean monadic style, with runWriter used to
compute the final sequence of generated bytes.

The assembler will fail if the instructions run off the end of
memory or if the program uses labels in an ill-formed manner such
as placing the same label twice.

Assembler correctness. No discussion of an assembler con-
structed within a proof assistant would be complete without some
discussion of proof ; and indeed, we have proved that the assembler
does its job. First, we can prove that instruction encoding commutes
with instruction decoding:
Instance RoundtripInstr : Roundtrip readInstr encodeInstr.

The correctness of the assembler itself is not a Roundtrip instance
since there is no Reader program. There is instead an interpreta-
tion of program into separation logic [16], interpProgram, and
we can prove correctness relative to this:
Theorem write_program_correct (i j: DWORD) (p: program):
interpWriter i j p ` interpProgram i j p.

This theorem is analogous to the interpWriter_roundtrip
lemma from the end of Section 2.4: a program after assembly
corresponds to its own logical interpretation.

Definition callproc f :=
LOCAL iret;
MOV EDI, iret;; JMP f;;
iret:;.

Definition defproc (p: program) :=
p;; JMP EDI.

Notation "’letproc’ f ’:=’ p ’in’ q" :=
(LOCAL skip; LOCAL f;
JMP skip;;
f:;; defproc p;;
skip:;; q)
(at level 65, f ident, right associativity).

(* Multiply EAX by nine, trashing EBX *)
Example ex :=
letproc tripleEAX :=
MOV EBX, EAX;; SHL EAX, 2;; ADD EAX, EBX

in
callproc tripleEAX;; callproc tripleEAX.

Figure 5. Example: procedure macros

3.2 Macros
A feature of most assemblers – though perhaps little used, now that
most assembly code is machine-produced – is the provision of both
built-in and programmer-defined macros.

Structured control. Built-in macros are used, for example, to
build conditionals and loops without going through the pain of
declaring labels and branching. In Coq, simple definitions, together
with scoped labels and judicious use of notation, make this very
easy. Here, for example, is a conditional construct that tests whether
flags according to condition code cond have boolean value value,
and executes pthen or pelse accordingly.

Definition ifthenelse (cond: Condition) (value: bool)
(pthen pelse: program) : program :=
LOCAL THEN; LOCAL END;
JCC cond value THEN;;
pelse;; JMP END;;

THEN:;; pthen;;
END:;.

A while-loop can be defined similarly, this time incorporating test
code ptest that sets the flags appropriately. (See Figure 1 for an
example of its use.)

Definition while (ptest: program)
(cond: Condition) (value: bool)
(pbody: program) : program :=
LOCAL BODY; LOCAL test;
JMP test;;

BODY:;; pbody;;
test:;;
ptest;;
JCC cond value BODY.

Such definitions really shine when proving correctness of machine
code programs using our separation logic framework [16], as we
can give derived Hoare-style proof rules for the macros.

Procedures. We can also devise macros to package up procedures
and their calling conventions. For example, Figure 5 codes a non-
standard ‘leaf’ calling convention in which the return address is
simply stored in the register EDI, together with some notation for
locally-scoped procedure declarations. Earlier we saw an applica-
tion of this in the factorial example of Figure 1. We consider this
further in Section 4.2.



4. More substantial examples
4.1 Multiplication by a constant
Using Coq definitions, possibly involving recursion, we can write
macros that are akin to the instruction selection phase of a com-
piler. For example, the function below generates shift and addition
instructions to compute r1 := r1 + r2 · m for some constant m.
(In the good old days, this would have been more efficient than
using the processor’s own multiplication instruction. Alas, this is
probably no longer the case, but hopefully it illustrates the power
of macros.)

Fixpoint add_mulc nbits (r1 r2: Reg) (m: nat) :=
if nbits is nbits’.+1
then if odd m

then ADD r1, r2;;
SHL r2, 1;;
add_mulc nbits’ r1 r2 m./2

else SHL r2, 1;;
add_mulc nbits’ r1 r2 m./2

else prog_skip.

Of course, one could imagine doing something similar in a high-
level language such as Haskell. The crucial difference is that we can
also state and prove correctness of a specification for the macro:

Lemma add_mulcCorrect nbits : ∀ (r1 r2: Reg) m,
m < 2^nbits →
` ∀ v, ∀ w,
basic
(r1 7_ v ** r2 7_ w ** OSZCP_Any)
(add_mulc nbits r1 r2 m)
(r1 7_ addB v (mulB w (fromNat m)) ** r2? ** OSZCP_Any).

The syntax following ` is an expression in our specification
logic [16]. It states that add_mulc bits nbits r1 r2 m be-
haves as a block of code with single entry and exit points, and
can be specified by a basic Hoare-style triple, whose precondition
gives initial values v and w for registers r1 and r2, assumes that the
five standard flags have arbitrary values, and whose postcondition
assigns the appropriate result to register r1 and says nothing about
r2 and the flags. Notice the use of separating conjunction, written
as **; in this specification it serves merely to ensure that r1 and r2
are distinct.

Having proved a crisp specification for add_mulc we can use it
from within subsequent code and their proofs of correctness just as
if there existed a special add-and-multiply instruction.

More complex and cunning use of x86 instructions can be en-
capsulated in such definitions. So, for example, the macro instanti-
ation

add_mulcFast EDI EDX #160

reduces to

SHL EDX, 5;;
ADD EDI, EDX;;
LEA EDI, [EDI + EDX * 4 + 0]

that uses x86 address arithmetic in addition to a shift operation.
The specification of add_mulcFast is identical to that of the less
efficient add_mulc.

4.2 Calling conventions
To some extent it’s possible to hide details of calling conventions
using macros: we already saw an example of this in Figure 1, where
the calling sequence for a three-argument cdecl function call was
packaged up as a Coq definition. More interestingly, we can gen-
erate caller and callee boilerplate code, and its specification, from
descriptions of calling conventions.

We consider three standard x86 calling conventions, described
using an enumeration type:

Inductive CallConv := cdecl | stdcall | fastcall.

We then write a function callconv that takes takes a calling
convention and arity, and returns a pair (call, def) in which
call is a pseudo-instruction that expands to the calling sequence
for that convention and number of arguments, and def wraps a
function body with appropriate prologue and epilogue, and supplies
argument accessors. The type of callconv is mildly dependent, in
that the types of call and def vary according to the specified arity.

Here it is used to define and call a function that computes the
sum of its three arguments:

Example addfun (cc: CallConv) :=
let (call, def) := callconv cc (mkFunSig 3 true) in
LOCAL MyFunc;
MyFunc:;; def (fun arg1 arg2 arg3 ⇒
MOV EAX, arg1;;
ADD EAX, arg2;;
ADD EAX, arg3);;

call MyFunc 2 3 4.

Let’s see what happens when we instantiate addfun with the
three standard calling conventions. First, with cdecl, in which
arguments are passed on the stack, right-to-left, and the caller has
to clean up the stack:

LOCAL MyFunc;
MyFunc:;;
PUSH EBP;; MOV EBP, ESP;; (* prologue *)
MOV EAX, [EBP + 8];;
ADD EAX, [EBP + 12];;
ADD EAX, [EBP + 16];;
POP EBP;; RET 0;; (* epilogue *)

PUSH 4;; PUSH 3;; PUSH 2;;
CALL MyFunc;; ADD ESP, 12

Second, with stdcall, in which arguments are again passed on the
stack, right-to-left, but the callee cleans up the stack:

LOCAL MyFunc;
MyFunc:;;
PUSH EBP;; MOV EBP, ESP;; (* prologue *)
MOV EAX, [EBP + 8];;
ADD EAX, [EBP + 12];;
ADD EAX, [EBP + 16];;
POP EBP;; RET 12;; (* epilogue *)

PUSH 4;; PUSH 3;; PUSH 2;;
CALL MyFunc

Lastly, with fastcall, in which the first two arguments are passed
in registers ECX and EDX:

LOCAL MyFunc;
MyFunc:;;
PUSH EBP;; MOV EBP, ESP;;
MOV EAX, ECX;;
ADD EAX, EDX;;
ADD EAX, [EBP + 8];;
POP EBP;; RET 4;;

PUSH 4;; MOV ECX, 2;; MOV EDX, 3;;
CALL MyFunc.

Compared to earlier work on formalization of calling conven-
tions [22], the potential of a proof assistant such as Coq is in gener-
ating specifications from calling convention descriptions. We hope
to develop this idea further, even using the types in C-style signa-
tures to generate more precise specifications for calls to external
libraries whose implementation is not under our control.



4.3 Regular expressions
Writing large amounts of raw assembly code is tedious and dif-
ficult, and verifying it even more so. To produce non-trivial pro-
grams, we clearly want to move up the abstraction stack for both
programming and proving as quickly as possible. The kind of
macros we have shown so far take the first step in that direction;
the next is to implement more self-contained domain-specific lan-
guages.

Coq, and dependently-typed languages in general, offer an ideal
environment for embedding domain-specific languages (DSLs) [6,
9, 23]. Dependent types support the type-safe embedding of ob-
ject languages [4] and Coq’s mixfix notation system enables rea-
sonably idiomatic domain-specific concrete syntax. The assembler,
and Coq’s powerful abstraction facilities, potentially provide a flex-
ible framework in which to not only implement and verify a range
of domain-specific compilers [12, 24], but also to combine them,
and reason about their combination. Working with many DSLs op-
timizes the “horizontal” compositionality of systems, and favours
reuse of building blocks, by contrast with the “vertical” composi-
tion of the traditional compiler pipeline, involving a stack of com-
paratively large intermediate languages that are harder to reuse the
higher one goes.

The idea of building compilers from reusable building blocks
is a common one, of course. But the interface contracts of such
blocks tend to be complex, so combinations are hard to get right.
We believe that being able to write and verify formal specifications
for the pieces will make it possible to know when components
can be combined, and should help in designing good interfaces.
Furthermore, the fact that Coq is also a system for formalizing
mathematics enables one to establish a close, formal connection
between embedded DSLs and non-trivial domain-specific models.
The possibility of developing software in a truly ‘model-driven’
way is an exciting one.

As a small example, we present in this section a certified com-
piler from regular expressions to x86 machine code. We make cru-
cial use an existing Coq formalization, due to Braibant and Pous
[7], of the theory of Kleene algebras. We do not merely use the the-
ory developed in that library to prove correctness of our little com-
piler, but actually reuse the Coq-executable translation from regu-
lar expressions to deterministic finite-state automata (DFAs) that is
part of their formalization. We write and certify a compiler from
DFAs to machine code, which composes with the library’s certified
translation to yield a verified compiler for regular languages. That
this works despite the fact that the Kleene algebra formalization
was developed with no thought of implementation is a nice illustra-
tion of the power of constructive mathematics.

We later apply the resulting pipeline to recognize strings rep-
resenting floating-point numbers. One could certainly write such a
particular validator in assembly. However, proving the correctness
of a special instance is likely to be as laborious as proving the cor-
rectness of the more generally useful regular expression compiler.

DFAs: We generate machine code from DFAs, which have the
following components:

Variables
(alphabet: list DWORD)
(dfa_size : nat)
(dfa_init: dfa_state)
(trans: dfa_state → DWORD → dfa_state)
(accept: dfa_state → bool).

where dfa_state is ’I_dfa_size, the SSREFLECT finite type of
naturals less than dfa_size, and alphabet specifies the allowable
subset of DWORD. The initial state of the automaton is dfa_init
while the accepting states are specified by accept. The transition
function is coded by trans.

Definition transition : program :=
(tnth labels s):;;

(* Move pointer to next character *)
MOV EBX, [EAX] ;;
ADD EAX, (#4 : DWORD) ;;

(* Accept/reject if end of string: *)
CMP EBX, (#0: DWORD) ;;
JE (if accept s then acc else rej);;

(* Jump table: *)
foldr prog_seq prog_skip

[seq CMP EBX, (c: DWORD) ;;
JE (tnth labels (trans s c))

| c <- alphabet] ;;

(* Not in alphabet: *)
JMP rej.

Figure 6. Compilation of a transition

The language accepted by a DFA is defined inductively over an
input word, i.e. a list of DWORDs:

Fixpoint lang (s: dfa_state) (w: seq DWORD): bool :=
if w is a::w’
then (a \in alphabet) && lang (trans s a) w’
else accept s.

We say that the word w is accepted by the automaton if

lang dfa init w ≡ true

Compiling DFAs: From a DFA we generate code that processes
a 0-terminated string of DWORDs, stored in memory at some address
buffer. In our logic, we write buffer :->0 w, for w a sequence
of non-null double words, for this precondition. The compiler cre-
ates a tuple of assembler labels

labels : dfa_size.-tuple DWORD

that are in one-to-one correspondence with the states of the automa-
ton. Each label corresponds to the entry-point of the transition func-
tion at that state; the label associated with a DFA state s is obtained
by the tuple-lookup [tnth labels s].

The key component of code generation is the compilation of the
transition function at a single state s. Besides potentially jumping
to the labels associated with other states, each transition function
can take two possible “continuations”: it can either jump to address
acc to accept a word, or to address rej to reject a word.

Compiling a transition: The compilation of a transition is pre-
sented in Figure 6. EAX points to a symbol, initially the first ele-
ment of the buffer. If the current character is the terminating sym-
bol 0, we take the accepting or rejecting continuation, depending
on whether the current state is accepting or not. Note that meta-
programming is at play here: the if statement is evaluated in Coq,
at compile time.

If the current character is non-zero, it is processed through a
sequence of conditional branches: if any character of the alphabet
matches, the code jumps to the appropriate state label according to
the DFA’s transition function. Again, the jump table is computed in
Coq. If we reach the end of the jump table, the character in memory
is not in the alphabet so the word is rejected. The resulting code
is therefore a rather direct assembler translation of the function
trans s.

Compiling the DFA: The code for the whole DFA is obtained by
iterating over all states, concatenating the compiled version of the



Lemma DFA_to_x86_correct
(w: seq DWORD) :

` ∀ l,

( (safe ⊗ (lang dfa_init w
∧ EIP 7_ acc) ⊗ EAX?)

∧ (safe ⊗ (¬ lang dfa_init w
∧ EIP 7_ rej) ⊗ EAX?)

(* ----------------------------------*)
−→ safe ⊗ EIP 7_ l ⊗ EAX 7_ buffer )

(* Memory: *)
⊗ EBX?

⊗ buffer 7→0 w

(* Program: *)
� l 7→ DFA_to_x86.

Figure 7. Correctness of the DFA compiler

individual transition functions. Because each snippet generated by
transition s starts with the label s, the assembler will resolve
these names automatically to the desired addresses. To start the
automaton, we simply jump to the initial state:

Definition DFA_to_x86: program :=
JMP (tnth labels dfa_init);;
foldr prog_seq prog_skip

[tuple transition labels s
| s < dfa_size].

Generating the DFA: Braibant and Pous’s ATBR library [7] ex-
ports a datatype regex of regular expressions, with constructors
for the empty set, the empty word, literals, concatenation, and star
operators. They also define their own type DFA.t of DFAs, operat-
ing over sequences of Coq’s positives and a computable function
from regular expressions to their automata:

Definition X_to_DFA (a: regex): DFA.t := (...)

Given a regex r, we construct the components of one of our DFAs
from X_to_DFA r; this is morally the identity, but for the transla-
tion from non-zero DWORDs to positive. Applying DFA_to_x86
to these components, buffer, acc and rej then yields an x86 pro-
gram that recognizes the original regular expression.

Correctness of DFA compilation: The correctness of DFA com-
pilation follows naturally from the close correspondence between
execution of the source DFA and the target code. Where the DFA
takes a transition from one state to another upon recognizing a char-
acter, the machine jumps to the associated label. Where the DFA ac-
cepts or rejects a word based on the status of the final state, the ma-
chine jumps to acc or rej, the choice of which depends on whether
the state is accepting or not.

The formal statement of the correctness of DFA compilation
is shown in Figure 7. The generated code is unstructured, being a
mutually-recursive collection of blocks, each of which can call the
others or jump out to either of the exit labels acc and rej. The
traditional Hoare-triple expressed by basic, which only allows for
a single precondition and a single postcondition, is not therefore
appropriate. We instead use a more primitive continuation-passing
style of specification [2, 16, 26]: if it is safe to jump to the two exits
(EIP 7_ acc and EIP 7_ rej , with appropriate conditions holding),
then it is safe to jump to the entry point of the compiled code
(EIP 7_ l).

We work under a ‘read-only’ frame [16], which specifies the
preservation of the program code located at address l, and two

frames, the first stating the existence of the EBX flag and an-
other stating the existence of a null-terminated string w at ad-
dress buffer. In this context, it is safe to execute the code
at address l with EAX pointing to the buffer – expressed by
safe⊗ EIP 7_ l ⊗ EAX 7_ buffer – provided that:

• it is safe to take the continuation acc, formally

safe⊗ (. . .) ∧ EIP 7_ acc

when the word in memory is accepted by the DFA, formally

lang dfa init w

• it is safe to take the continuation rej, formally

safe⊗ (. . .) ∧ EIP 7_ rej

when the word in memory is not accepted by the DFA, formally

¬(lang dfa init w)

That is, the x86 code takes the success (respectively, failure) con-
tinuation if and only if the DFA accepts (respectively, rejects) the
word w. Note that we only enforce partial correctness: the infinite
loop is a valid implementation of this specification.

The correctness proof for the compiler relies on a Bekič-like
lemma that uses the Löb rule to establish safety for sets of mutu-
ally recursive code fragments. We proved the specification by first
showing simple memory safety and then straightforwardly extend-
ing the specifications with the logical invariants concerning lan-
guage acceptance. Note that this specification requires the original
string to be preserved in memory, as the computation is framed un-
der the buffer containing w. A small modification yields a version
that would also be satisfied by an implementation that read the data
destructively.

Correctness of regular expression compilation: Braibant and
Pous prove [7] three results that together imply that the language
accepted by a regular expression r and the language accepted by
the DFA.t (X_to_DFA r) coincide:

Lemma X_to_DFA_correct:
∀ a, DFA.eval (X_to_DFA a) == a.

Lemma X_to_DFA_bounded: ∀ a, DFA.bounded (X_to_DFA a).

Theorem language_DFA_eval: ∀ A, DFA.bounded A →
regex_language (DFA.eval A) == DFA_language A.

Composing these results with a lemma stating that lang dfa_init
coincides with their DFA_language (X_to_DFA r) (on strings
from alphabet), we can rewrite the correctness theorem of Fig-
ure 7 using the following equivalence, for w a sequence of DWORDs
containing no zeros:

lang dfa_init w ↔
regex_language r (map char_of_DWORD w)

∧ (all (fun a ⇒ a \in alphabet) w).

to get a fully verified pipeline for regular expression compilation.
Further, the specification is then compatible with the rest of ATBR,
potentially allowing more complex language-theoretic results about
the behaviour of the code to be derived.

Matching floating-point numbers: As a small test, we exercised
our pipeline on the following regular expression

Definition FP: regex :=
[[ "-" , "+"]]? ’
[{ "0" , "9" }]* ’ $"." ? ’
[{ "0" , "9" }]+ ’
($"e" ’ [[ "-" , "+"]]? ’ [{ "0" , "9" }]+)?.



that recognizes strings representing signed floating-point numbers.
Note the use of Coq notation to provide an intuitive syntax for
defining regular expressions.

The intermediate DFA consists of 12 states over an alphabet of
14 letters. This results in 2321 bytes of machine code. We have
packaged this code into an executable that retrieves a string from
the standard input (through a system call to gets), run the DFA
on that string, and reports its status through the puts system call.
Adding the (currently unverified) wrapper yields a 4K-byte binary.

5. Discussion and related work
There is a long tradition of using proof assistants to formalize pro-
cessors and verify low-level programs. Notable early work includes
the verification in the Boyer-Moore prover of the the Piton assem-
bler for the verified FM8502/9001 microprocessors [18]. For rea-
sons of space, we here discuss just a few more recent pieces of
related work.

Tuch et al. [28] describe an Isabelle/HOL formalization in
which a C-language view of memory as a collection of typed ob-
jects is layered over an underlying total map from addresses to
bytes. Isabelle’s type classes are used to infer the byte-encodings
of different types and a ghost heap type description allows separa-
tion between the representations of distinct types to be inferred and
maintained fairly automatically. A further separation logic layer
is used to deal with non-aliasing between values of the same C
language type.

Mulligan and Sacerdoti Coen [20] have used Matita to formalize
the MCS-51 microcontroller and the correctness of an assembler
for it. The assembler uses pseudoinstructions for jumps to labels,
which may be expanded into different kinds of branch in the object
code. Correctness is then presented as a simulation between the op-
erational semantics of object and assembly programs, but the result
is conditional on the program (dynamically) not manipulating ad-
dresses in ways judged to be ill-behaved (e.g. performing arithmetic
on them), and on the correctness of the branch displacement deci-
sions. Our assembler does not currently make branch decisions; we
plan to address this at a slightly higher level of abstraction, giving
a semantic (rather than syntactic) interpretation to a low-level type
system distinguishing pointers from more concrete data.

The targets of the CompCert compiler [17] are comparatively
high-level assembly languages for PowerPC, ARM and x86. The
operational semantics of these assembly languages are defined over
a C-like memory model (rather than the lower-level array of bytes
view we take here), and there are pseudoinstructions for label,
allocation and stack operations. CompCert’s treatment of machine
integers is less pervasively dependent than ours, exploiting Coq’s
module system to provide operations on integers of particular sizes,
and using Coq’s arbitrary precision integers, together with proofs
that they are within a certain range, rather than raw sequences of
bits.

RockSalt [19] is a verified checker for the sandboxing policy
used in Google’s Native Client. The verification of RockSalt re-
lies on a Coq model of x86, built using two domain specific lan-
guages. One is a regular expression parser, used to decode bitstrings
in memory into an inductive datatype of x86 instructions. The ab-
straction provided by this DSL is similar to that of our reader mon-
ads, though non-determinism in the grammars makes establishing
the determinism of decoding somewhat involved. The second DSL
is a register transfer language, used to define the transition function
for decoded instructions, which plays a similar role to the impera-
tive monadic language we use for the same purpose. Our embed-
dings are shallow, however, whilst those used in RockSalt are deep
(i.e. there are inductive datatypes for both grammars and RTL in-
structions). RockSalt uses CompCert’s libraries for machine inte-
gers.

Chlipala has built a model of x86 in Coq for the purpose of
verifying OCaml-extractable verifiers for machine code [8]. In this
work, the Coq functions work on an assembly-level type of instruc-
tions, with binary decoding being delegated to an OCaml func-
tion. His Bedrock framework [10] for programming and verify-
ing (with an impressive degree of automation) low-level programs
works with a rather idealized assembly language. Like our system,
Bedrock makes good use of Coq’s customizable syntax to allow
low-level programs to be written in a convenient way within the
proof assistant, including user-defined macros. Bedrock’s program
syntax also embeds pre- and post-conditions and hints to the proof
automation.

Fox and Myreen have formalized the ARMv7 ISA in HOL4 [13].
This is an unusually comprehensive formalization, presented in a
monadic style somewhat like ours, and has been subjected to test-
ing against real hardware. Myreen has also built a model of x86
machine code and used it to verify a JIT compiler for a simple
language [21]. This model is notable for carefully modelling the
x86 instruction cache and treating both encoding and decoding of
instructions.

There are many similarities between these projects and the work
described here, but none have our focus on making it convenient to
write, compile and verify the code that actually runs, relative to a
model of the underlying hardware, entirely within one system.

This paper has focused mainly on the modelling and program-
ming aspects, as our earlier paper [16] describes the program logic
in some detail. Many features of Coq on which we rely for these
first two tasks have analogues in other systems. Haskell and Is-
abelle both feature type classes and, whilst not dependently typed,
can simulate some of our uses of dependency (e.g. using type-level
naturals to express n-bit words), and the use of HOAS for rep-
resenting object level binding is common in DSLs embedded in
functional languages. Full dependent types are more powerful and
straightforward than clever encodings in Haskell (and we use them
extensively), but the main advantage of Coq is certainly the close
integration with verification. We believe that such tight integration
may partially compensate for the fact that languages embedded in
a system like Coq will inevitably be more ‘clunky’ than ones with
their own custom parser, type checker, error messages and so on.

For producing trustworthy software, proof assistants are the
only tools in which all the artefacts in which we are interested
(programs, languages, models, specifications, proofs, . . . ) can co-
exist and be formally related. Modern software components are of-
ten comparatively small and specialized, but must meet specifica-
tions that are inherently rather rich, in that they involve non-trivial
mathematical structures that cannot be directly expressed and rea-
soned about in the logics of traditional verification tools. A fully
integrated approach suggests that one could construct systems with
strong correctness guarantees by combining verified components
written in several domain-specific languages, each with its own
domain-specific metatheory. Our regular expression compiler pro-
vides a simple example of how a piece of formalized mathematics
(not originally designed for use in generating or proving machine
code) can be used in verification; some other compiler correctness
results have a similar flavour [3, 21]. Of course, just having all the
components programmed in one metalanguage does not magically
make them compatible, but having them accompanied by specifica-
tions makes it possible to both say what compatibility means, and
to prove properties of combined systems in the case that the com-
ponents are compatible.

Promising though such ideas are, the combination of Coq, Proof
General and Emacs is, we must admit, still some way from being
the multilanguage integrated development and verification environ-
ment of our dreams. Predictable things we would like include better
techniques for dealing with object language binding and integration



with external solvers (though we could certainly do much more in
terms of automation entirely within Coq). Nor has our experience
with doing all computation within Coq itself been entirely trouble-
free. Though this is intellectually appealing and (arguably) reduces
the TCB, computation within Coq is inherently less efficient than
extracting and compiling to native code, internal terms can be large,
and additional time and space is used reducing non-computational
parts of them. More critically, it is all too easy to make definitions
that do not compute at all; this is a common problem when using
the SSREFLECT libraries, which use opaque definitions to improve
efficiency of proving. Avoiding such issues, particularly when us-
ing third-party libraries, still feels like something of a black art. It
remains to be seen to what extent our current approach to compu-
tation can really scale, but Coq continues to improve in this regard,
and we always have the option of extraction to fall back on.

Finally, we note an interesting phenomenon. The requirements
of verification tend to push us towards writing even small frag-
ments of assembly code in a surprisingly abstracted, modular style.
For example, a single increment instruction used to step through a
string is naturally abstracted as the ‘next’ function of a much more
generic abstract iterator interface, just because that’s the best way
to structure the associated proof. On the one hand, such refactor-
ings feel like good software engineering and really do make the
surrounding verified code usefully more generic; on the other, they
do make programs very ‘bitty’, as one rarely writes more than a
handful of instructions without wanting to abstract something one
would not (or possibly could not) have abstracted without the re-
quirements (or possibility) of verification. Whether this should be
counted as a benefit or drawback of our approach, we are as yet
undecided.
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