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Abstract

We show how some classical static analyses for imperative pro-
grams, and the optimizing transformations which they enable, may
be expressed and proved correct using elementary logical and de-
notational techniques. The key ingredients are an interpretation of
program properties as relations, rather than predicates, and a real-
ization that although many program analyses are traditionally for-
mulated in very intensional terms, the associated transformations
are actually enabled by more liberal extensional properties.

We illustrate our approach with formal systems for analysing and
transforming while-programs. The first is a simple type system
which tracks constancy and dependency information and can be
used to perform dead-code elimination, constant propagation and
program slicing as well as capturing a form of secure information
flow. The second is a relational version of Hoare logic, which sig-
nificantly generalizes our first type system and can also justify opti-
mizations including hoisting loop invariants. Finally we show how
a simple available expression analysis and redundancy elimination
transformation may be justified by translation into relational Hoare
logic.
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1 Introduction

Although static program analyses are routinely proved correct, the
soundness of the optimizing transformations which they enable is
much less frequently addressed. Much of the work whichhasbeen
done on formalizing and validating analysis-based transformations
comes from the functional programming community (see Section5
for related work) – the literature on optimizations for imperative
languages contains few formal specifications of transformations, let
alone proofs of their correctness. One might think that this is be-
cause the correctness of most imperative optimizations is entirely
trivial, but what literature there is on the subject [22, 18, 19, 20]
(not to mention the occasional behaviour of real optimizing com-
pilers) indicates that this is not so.

Why is proving correctness of analysis-based transformations hard?
We wish to establish that, given the results of a static analysis, the
original program and the transformed program are observationally
equivalent. The first problem is that many transformations involve
locally replacing some partP of a larger programC[P] with a new
versionP′ which is not generally observationally equivalent toP
(i.e. P 6∼ P′), though theyare equivalent in that particular context:
C[P]∼C[P′]. Simply having an analysis which (albeit correctly) de-
duces that certain predicatesψ(P) hold of program fragments does
not straightforwardly allow one to justify such transformationsun-
lessthe predicatesψ(·) also somehow involve sets of contextsC[·],
which is often not the case.

The second difficulty in proving correctness of optimizing trans-
formations is that program analyses, especially for imperative lan-
guages, are often specified in a very intensional way. For example,
“an assignment[x := a]l may reacha certain program point if there
is an execution of the program wherex was last assigned a value at
l when the program point is reached”. Notions such as ‘program
point’ and ‘where a variable was last assigned’ are not present in
natural operational or denotational semantics, so the correctness of
these analyses is frequently formulated in terms of a new (and es-
sentially bogus)instrumented semanticswhich tracks the extra in-
formation. Even where the instrumented semantics is related back
to the original one, the relation is usually a rather weak form of ade-
quacy which certainly does not help with establishing equivalences:
the instrumented semantics will generally have a weaker equational
theory than the original one.

This paper demonstrates that, at least in some simple cases, both of
these difficulties can be overcome by use of elementary ideas which
are commonplace in the semantics community, but which have not
previously been fully exploited in the context of compiler analyses
and transformations.



The first difficulty is approached by taking seriously the notion of
the semantics of types as (special kinds of) relations, rather than
predicates. Typed lambda calculi are routinely presented using
judgements of the form

Γ `M = M′ : A

which does not assert “under assumptionsΓ, M equalsM′ and they
both have typeA”, but rather “under assumptionsΓ, M andM′ are
equalat type A”. Such calculi can be modelled by interpreting
types as partial equivalence relations over some untyped universe
such asD∞. Many program analyses are presented as non-standard
type systems, and partial equivalence relations have been used to
give semantics to these non-standard types (equivalently, elements
of abstract domains), at least in the cases of binding-time [15] and
security analyses [26]. However, even in those cases, the emphasis
has been on simple typing judgements rather than equational rea-
soning. Our approach is to treat all abstract properties as relations,
including those which have naive interpretations as predicates (e.g.
‘X is 5’), and to present transformations by giving rules for deriving
(non-standard) typed equations in context.

The second difficulty, the apparently intensional nature of proper-
ties, is often something of a red herring, attributable to a confusion
between certain analysis algorithms and the semantics of the in-
formation they produce. Of course, analyses relating to properties
such as time or space usage can only be justified relative to seman-
tic models which make those aspects of computation explicit. But
many transformations performed by optimizing compilers can be
justified using more extensional semantics, not only in the weak
sense that every input program is provably equivalent to its trans-
formed version, but also in the stronger sense that there is a generic
correctness argument for all programs. The true preconditions for
applying a transformation tend to be extensional (“this command
does not change the value ofX+Y”) even if an analysis algorithm
only discovers those properties if a stronger intensional property
holds (“this command does not contain any assignments toX or
Y”).

As a facetious example of the difference between the intensional
and extensional approaches, consider why the following transfor-
mation is correct:

X := 7; X := 7;
Y := Y+1; ==> Y := Y+1;
Z := X; Z := 7;

The extensional answer is “whenX is evaluated on the last line, its
value will always be 7”. The intensional answer is something like
“the only definition ofX which reaches its use on line 3 is the one
on line 1, and the right hand side of that definition does not contain
any variable which is assigned to in lines 1 or 2”. This may well be
an accurate account ofhowan algorithm works, but it is not a good
basis for thinking aboutwhat it establishes. Things get even worse
if we consider a sequence like

X := 7; X := 7; X := 7;
Y := Y+1; ==> Y := Y+1; ==> Y := Y+1;
X := 7; X := 7;
Z := X; Z := 7; Z := 7;

After the first transformation, the intensional justification for the
change to line 4 refers to the definition ofX on line 3. But after the
second transformation, that definition has gone, which complicates
proving the correctness of the combined transformation. Problems
of this sort occur both in real compilers (keeping analysis results

sound during transformations is notoriously tricky) and in proofs
(see for example the discussion of interference between ‘forward’
analyses and ‘backward’ transformation patterns in [20]).

Another familiar example of the intensional/extensional distinction
arises in optimizing compilation of lazy functional languages [9].
Some analysis algorithms aimed at detecting when CBN can be
replaced by CBV look for functions which always evaluate their
arguments (‘neededness’), which is an intensional property. Their
correctness (and that of the associated transformation) can be es-
tablished in terms of the extensional property of strictness, which is
much easier to reason about. Of course, since the extensional prop-
erty is also weaker (holds of more functions) one is then naturally
led to reformulate the analysis to establish the extensional property
more directly.

2 The Language ofwhile -Programs

The syntax and denotational semantics of the language ofwhile -
programs are entirely standard (see, e.g. [34]). To fix notation,
they are briefly summarized in Figure1. We sometimes useFτ as a
metavariable ranging overτ exp whereτ ∈ {int ,bool }.

The denotational semantics is given in the category ofω-complete
partial orders (predomains) and continuous functions. We write
d·e : D → D⊥ for the injection of a domain into its lift and(·)∗ :
(D → D′⊥)→ (D⊥ → D′⊥) for the associated extension operation.
WhenR⊆ D×D, R⊥ ⊆ D⊥×D⊥ is the relation defined by

R⊥ = {(dxe,dye) | (x,y) ∈ R}∪{(⊥,⊥)}
If f : D→ E, x∈ D andy∈ E then we definef [x 7→ y] : D→ E in
the usual way:

( f [x 7→ y])(z) =
{

y if z= x
f (z) otherwise

The denotational semantics is fully abstract with respect to the ob-
vious operational semantics and definition of observational equiva-
lence.

3 Dependency, Dead Code and Constants

In this section we present DDCC, a simple analysis and transfor-
mation system forwhile -programs which tracks dependency and
constancy information, enabling optimizations such as constant-
folding and dead-code elimination. As indicated in the introduc-
tion, the system is presented as a non-standard type system for
deriving typed equalities between expressions and between com-
mands.

3.1 DDCC Syntax and Semantics

3.1.1 Formulae

We begin by defining the syntax of some non-standard types for
expressions. Forτ ∈ {int ,bool }, c∈ [[τ]]:

φτ := Fτ | {c}τ | ∆τ | Tτ

Intuitively, {c}τ is the type ofτ-expressions equal to the constant
c, ∆τ is the type ofτ-expressions whose value we do not know,
whilst Tτ is the type ofτ-expressions whose value we do not care
about. Fτ is an empty expression type, which we have included



Syntax

X ∈ V = {X,Y, . . .}
n∈ Z b∈ B= {true, f alse}

iop ∈ {+,×,−, . . .} ⊆ Z×Z→ Z
bop ∈ {<,=, . . .} ⊆ Z×Z→ B
lop ∈ {∨,∧, . . .} ⊆ B×B→ B

int exp 3 E := n | X | E iop E

bool exp 3 B := b | E bop E | not B | B lop B

com3C := skip | X:= E |C; C | if B then C else C | while B do C

Denotational Semantics

S∈ S= V→ Z
[[E]] ∈ S→ [[int ]] = S→ Z

[[n]]S = n
[[X]]S = S(X)

[[E1 iop E2]]S = ([[E1]]S) iop ([[E2]]S)

[[B]] ∈ S→ [[bool ]] = S→ B
[[b]]S = b

[[E1 bop E2]]S = ([[E1]]S) bop([[E2]]S)
[[B1 lop B2]]S = ([[B1]]S) lop ([[B2]]S)

[[not B]]S = ¬([[B]]S)

[[C]] ∈ S→ S⊥
[[skip ]] = λS.dSe

[[X:= E]] = λS.dS[X 7→ [[E]]S]e
[[C1; C2]] = [[C2]]∗ ◦ [[C1]]

[[if B then C1 else C2]] = λS.[[B]]S =⇒ [[C1]]S | [[C2]]S
[[while B do C]] = f ix f .λS.[[B]]S =⇒ f ∗([[C]]S) | dSe

Figure 1. Syntax and Semantics ofwhile Programs

for completeness.1 Semantically, the denotation ofφτ is a binary
relation on[[τ]]:

[[Fτ]] = /0
[[{c}τ]] = {(c,c)}

[[∆τ]] = {(x,x) | x∈ [[τ]]}
[[Tτ]] = [[τ]]× [[τ]]

Types for states are then finite maps from variables to types for
int exp s, written as lists with the usual conventions. In particular,
writing Φ,X : φint implies thatX does not occur inΦ.

Φ := − |Φ,X : φint

State types are interpreted as binary relations onS:

[[−]] = S×S
[[Φ,X : φint ]] = [[Φ]]∩{(S,S′) | (S(X),S′(X)) ∈ [[φint ]]}

3.1.2 Entailment

There is a subtyping relation≤ on expression types, which is ax-
iomatised as follows:

Fτ ≤ φτ {c}τ ≤ ∆τ

φτ ≤ Tτ φτ ≤ φτ

φτ ≤ φ′τ φ′τ ≤ φ′′τ

φτ ≤ φ′′τ
1This is really just a matter of taste.Fτ does not appear in many

interesting derivations.

The above induces a depth- and width-subtyping relation on state
types:

Φ≤− Φ,X : Fint ≤Φ′

Φ≤Φ′

Φ≤Φ′,X : Tint

Φ≤Φ′ φint ≤ φ′int

Φ,X : φint ≤Φ′,X : φ′int

BecauseΦ,X :Tint ≤Φ andΦ≤Φ,X :Tint , absence of a variable
from a state type is equivalent to it being present with typeTint .

LEMMA 1.

1. For all φτ andΦ, [[φτ]] and [[Φ]] are partial equivalence rela-
tions.

2. The≤ relation on state types is reflexive and transitive.

3. If φτ ≤ φ′τ then[[φτ]]⊆ [[φ′τ]].

4. If Φ≤Φ′ then[[Φ]]⊆ [[Φ′]].

3.1.3 Judgements

DDCC has two basic forms of judgement. For expressions, with
F,F ′ ∈ τ exp , we have judgements of the form

` F ∼ F ′ : Φ⇒ φτ

whilst for commands,C,C′ ∈ com, there are judgements of the form

`C∼C′ : Φ⇒Φ′



We write ` C : Φ ⇒ Φ′ as shorthand for̀ C ∼ C : Φ ⇒ Φ′ and
similarly for single-subject expression judgements. If we define

[[Φ⇒ φτ]] ⊆ (S→ [[τ]])× (S→ [[τ]])
≡ {( f , f ′) | ∀(S,S′) ∈ [[Φ]]. ( f S, f ′S′) ∈ [[φτ]]}

[[Φ⇒Φ′]] ⊆ (S→ S⊥)× (S→ S⊥)
≡ {( f , f ′) | ∀(S,S′) ∈ [[Φ]]. ( f S, f ′S′) ∈ [[Φ′]]⊥}

then the intended meanings of the judgements are:

|= Fτ ∼ F ′τ : Φ⇒ φτ ≡ ([[Fτ]], [[F ′τ ]]) ∈ [[Φ⇒ φτ]]
|= C∼C′ : Φ⇒Φ′ ≡ ([[C]], [[C′]]) ∈ [[Φ⇒Φ′]]

LEMMA 2. [[Φ ⇒ φτ]] is a PER and[[Φ ⇒ Φ′]] is an admissible
PER.

Some basic rules for deriving DDCC judgements are shown in Fig-
ure2. The rules for expressions refer to abstract versionsôpof each
primitive binary operatorop in the language. A typical definition is
that for multiplication:

×̂ Fint {0}int {n}int ∆int Tint
Fint Fint Fint Fint Fint Fint
{0}int Fint {0}int {0}int {0}int {0}int
{m}int Fint {0}int {m×n}int ∆int Tint

∆int Fint {0}int ∆int ∆int Tint
Tint Fint {0}int Tint Tint Tint

The general correctness condition for abstract operations is familiar
from abstract interpretation:

Definition 1. We sayôp soundly abstracts the operationop if

∀(x,x′) ∈ [[φτ]],(y,y′) ∈ [[φ′τ]]. (x op y,x′ op y′) ∈ [[φτ ôpφ′τ]].

The most interesting of the rules in Figure2 are those for condi-
tionals andwhile -loops. Observe that for two conditionals to be
related, not only do their true and false branches have to be pair-
wise related, but they also have to agree on which branch is taken;
this is expressed by the use of∆bool in the premises of the rule.
Similar considerations apply to the rule forwhile -loops, which en-
sures that related loops execute in lockstep.

3.2 Equations

Using only the rules in Figure2, most of the interesting judgements
one can prove relate a phrase to itself at some type. In other words,
they constitute an analysis system but not yet a program transfor-
mation system. However, the advantage of our formulation is that
program transformations can now be specified and justified simply
by adding new inference rules whose soundness may be straightfor-
wardly and independently checked in terms of the semantics.

3.2.1 Basic equations

Our first set of transformation rules express universally applicable
structural equivalences forwhile -programs, without requiring any
of the extra information gathered by the analysis.

Sequential unit laws:

`C : Φ⇒Φ′
[D-SU1]

` (skip; C)∼C : Φ⇒Φ′

`C : Φ⇒Φ′
[D-SU2]

` (C;skip )∼C : Φ⇒Φ′

Associativity:

` (C1; C2); C3 : Φ⇒Φ′

` ((C1; C2); C3)∼ (C1; (C2; C3)) : Φ⇒Φ′

In practice, one usually identifies programs up to associativity
of sequential composition, rather than making explicit use of
the rule above.

Commuting conversion for conditional:

` if B then C1 else C2 : Φ⇒Φ′ `C3 : Φ′⇒Φ′′
[D-CC]

` (if B then C1 else C2); C3
∼ if B then (C1; C3) else (C2; C3) : Φ⇒Φ′′

Loop unrolling:

` while B do C : Φ⇒Φ′ [D-LU1]

` while B do C
∼ if B then C; (while B do C) else skip : Φ⇒Φ′

` while B do C : Φ⇒Φ′ [D-LU2]

` while B do C
∼ while B do (C;if B then C else skip ) : Φ⇒Φ′

Self-assignment elimination:

` X:= X ∼ skip : Φ,X : φint ⇒Φ,X : φint [D-SAs]

In conjunction with the core rules, the rules above can be used to
derive many of the basic equalities one might expect.2 From a prag-
matic point of view, however, they are somewhat unwieldy: even
very simple proofs get quite large, with many applications of the
symmetry and transitivity rules and many repeated sub-derivations.
Reformulating the rules as logically equivalent versions which can
be applied in more general contexts helps immensely. For example,
a better formulation of one of theskip rules is the following:

`C∼ skip : Φ⇒Φ′ `C′ ∼C′′ : Φ′⇒Φ′′
[D-SU1’]

` (C; C′)∼C′′ : Φ⇒Φ′′

Presenting rules in this style is essentially trying to produce a sys-
tem with a kind of cut-elimination property, but we leave serious
consideration of proof-theoretic matters to future work.

3.2.2 Optimizing Transformations

In this section we consider some more interesting rules, in which
equations are predicated on information in the type system.

Dead assignment elimination:

` (X:= E)∼ skip : Φ,X : φint ⇒Φ,X : Tint [D-DAs]

Intuitively, the dead assignment rule says that an assignment
to a variable is equivalent toskip if we are in a context in
which the value of that variable does not matter.

2Though the rules presented are in no sense complete. There
are sound rules (arithmetic identities and equivalences for nested
conditionals, for example) which are not consequences of the ones
we have given.



Subtyping and Structural

`C∼C′ : Φ,X : Fint ⇒Φ′ [D-CT] ` Fτ ∼ F ′τ : Φ⇒ Tτ [D-ET1]

` Fτ ∼ F ′τ : Φ,X : Fint ⇒ φτ [D-ET2]
` Fτ ∼ F ′τ : Φ⇒ φτ

[D-ESym]
` F ′τ ∼ Fτ : Φ⇒ φτ

` Fτ ∼ F ′τ : Φ⇒ φτ Φ′ ≤Φ φτ ≤ φ′τ
[D-ESub]

` Fτ ∼ F ′τ : Φ′⇒ φ′τ

`C∼C′ : Φ1 ⇒Φ2 Φ′
1 ≤Φ1 Φ2 ≤Φ′

2
[D-CSub]

`C∼C′ : Φ′
1 ⇒Φ′

2

` Fτ ∼ F ′τ : Φ⇒ φτ ` F ′τ ∼ F ′′τ : Φ⇒ φτ
[D-ETr]

` Fτ ∼ F ′′τ : Φ⇒ φτ

`C∼C′ : Φ⇒Φ′
[D-CSym]

`C′ ∼C : Φ⇒Φ′
`C∼C′ : Φ⇒Φ′ `C′ ∼C′′ : Φ⇒Φ′

[D-CTr]
`C∼C′′ : Φ⇒Φ′

Expressions

` X ∼ X : Φ,X : φint ⇒ φint [D-V] ` n∼ n : Φ⇒{n}int [D-N]

` b∼ b : Φ⇒{b}bool [D-B]
` Fτ ∼Gτ : Φ⇒ φτ ` F ′τ ∼G′τ : Φ⇒ φ′τ

[D-op]
` Fτ op F ′τ ∼Gτ op G′τ : Φ⇒ (φτ ôp φ′τ)

Commands

` skip ∼ skip : Φ⇒Φ [D-Skip]
`C1 ∼C′1 : Φ⇒Φ′ `C2 ∼C′2 : Φ′⇒Φ′′

[D-Seq]
` (C1; C2)∼ (C′1; C′2) : Φ⇒Φ′′

` E ∼ E′ : Φ,X : φint ⇒ φ′int
[D-Ass]

` X:= E ∼ X:= E′ : Φ,X : φint ⇒Φ,X : φ′int

` B∼ B′ : Φ⇒ ∆bool `C∼C′ : Φ⇒Φ
[D-Whl]

` (while B do C)∼ (while B′ do C′) : Φ⇒Φ

` B∼ B′ : Φ⇒ ∆bool `C1 ∼C′1 : Φ⇒Φ′ `C2 ∼C′2 : Φ⇒Φ′
[D-If]

` (if B then C1 else C2)∼ (if B′ then C′1 else C′2) : Φ⇒Φ′

Figure 2. Core DDCC System

Equivalent branches for conditional:

`C1 ∼C2 : Φ⇒Φ′
[D-BrE]

` if B then C1 else C2 ∼C1 : Φ⇒Φ′

Constant folding:

` Fτ : Φ⇒{c}τ
[D-CF]

` Fτ ∼ c : Φ⇒{c}τ

Known branch:

` B : Φ⇒{true} `C1 ∼C′ : Φ⇒Φ′
[D-KBT]

` (if B then C1 else C2)∼C′ : Φ⇒Φ′

` B : Φ⇒{ f alse} `C2 ∼C′ : Φ⇒Φ′
[D-KBF]

` (if B then C1 else C2)∼C′ : Φ⇒Φ′

Dead while:

` B : Φ⇒{ f alse}
[D-DWh]

` (while B do C)∼ skip : Φ⇒Φ

Divergence:

` B : Φ⇒{true} `C : Φ⇒Φ
[D-Div]

` (while B do C) : Φ⇒Φ′

The typeΦ′ in the conclusion of the rule above is arbitrary
because the loop will diverge when executed in any state in
the domain ofΦ.

The following is an easy induction, relying on Lemmas1 and2:

THEOREM 1. Assuming the abstract operations satisfy the cor-
rectness condition given in Definition1, the core DDCC rules of
Figure2 and the additional rules of Section3.2are all sound:

` Fτ ∼ F ′τ : Φ⇒ φτ =⇒ |= Fτ ∼ F ′τ : Φ⇒ φτ

`C∼C′ : Φ⇒Φ′ =⇒ |= C∼C′ : Φ⇒Φ′

3.3 Example Transformations

These rules are sufficient to capture some non-trivial transforma-
tions, including constant propagation, dead-code elimination and
program slicing [33]. Some example derivations are shown in Fig-
ure3. We leave it as an exercise to prove larger examples, such as
the slicing transformation:



Constants, known branches and dead code:

D1 :
[D-V]

` X : Φ,X : {3}⇒ {3}
[D-N]

` 3 : Φ,X : {3}⇒ {3}
[D-=]

` X = 3 : Φ,X : {3}⇒ {true}

[D-N]
` 7 : Φ,X : {3}⇒ {7}

[D-Ass]
` X:= 7 : Φ,X : {3}⇒Φ,X : {7}

[D-KBT]
` (if X = 3 then X:= 7 else skip )∼ (X:= 7) : Φ,X : {3}⇒Φ,X : {7}

D2 :
[D-V]

` X : Φ,X : {7},Z : Tint ⇒{7}
[D-N]

` 1 : Φ,X : {7},Z : Tint ⇒{1}
[D-+]

` X +1 : Φ,X : {7},Z : Tint ⇒{8}
[D-CF]

` X +1∼ 8 : Φ,X : {7},Z : Tint ⇒{8}
[D-Ass]

` Z:= X +1
∼ Z:= 8

: Φ,X : {7},Z : Tint ⇒Φ,X : {7},Z : {8} Φ,X : {7},Z : {8} ≤ Φ,X : Tint ,Z : {8}
[D-CSub]

` Z:= X +1
∼ Z:= 8

: Φ,X : {7},Z : Tint ⇒Φ,X : Tint ,Z : {8}
D3 :

[D-DAss]
` (X:= 7)∼ skip : Φ,X : {3},Z : Tint ⇒Φ,X : Tint ,Z : Tint

` (8) : Φ,X : Tint ,Z : Tint ⇒{8}
` Z:= 8 : Φ,X : Tint ,Z : Tint ⇒Φ,X : Tint ,Z : {8}

[D-SU1’]
` (X:= 7; Z:= 8)∼ Z:= 8 : Φ,X : {3},Z : Tint ⇒Φ,X : Tint ,Z : {8}

D1 D2
[D-Seq]

` (if X = 3 then X:= 7 else skip; Z:= X +1)
∼ (X:= 7; Z:= 8) : Φ,X : {3},Z : Tint ⇒Φ,X : Tint ,Z : {8} D3

[D-CTr]

` (if X = 3 then X:= 7 else skip; Z:= X +1)
∼ (Z:= 8) : Φ,X : {3},Z : Tint ⇒Φ,X : Tint ,Z : {8}

Figure 3. Examples of DDCC Transformations

I := 1; I := 1;
S := 0;
P := 1; P := 1
while I<N do ( ==> while I<N do (

S := S+I;
P := P*I; P := P*I;
I := I+1;) I := I+1;)

at typeN : ∆int ⇒ P : ∆int . Here we expressed the fact that we
were only interested in the final value ofP simply by transforming
it at a result type which only constrains the value of that variable to
be preserved – all the others (in particularS) are typed atTint and
so are allowed to take any value.

3.4 Secure Information Flow

It is worth observing that theT,∆ fragment of our calculus can be
seen as a non-interference type system. Figure4 presents a version
of a type system for secure information flow due to Smith and Vol-
pano [27]. In this system, asecurity level, σ, is either low (L) or
high (H). A contextγ is then a finite map from variables to security
levels:

γ := − | γ,X : σint

Given such a context, the type system assigns a security level (σint
or σbool ) to each expression and (σcom) to each command. The

property which the type system ensures is that any typeable com-
mand does not allow information to flow (either directly, via as-
signment, or indirectly, via control flow) from high security vari-
ables to low security ones. We define a translation(·)∗ from the
Smith/Volpano system into DDCC as follows:

Expression types: L∗τ = ∆τ andH∗
τ = Tτ.

Contexts: −∗ =− and(γ,X : σint )∗ = γ∗,X : σ∗int .

Judgements:

(γ ` F : στ)∗ = ` F ∼ F : γ∗⇒ σ∗τ
(γ `C : Lcom)∗ = `C∼C : γ∗⇒ γ∗

(γ `C : Hcom)∗ = `C∼ skip : γ∗⇒ γ∗

THEOREM 2. For any judgementJ derivable in the Smith/Volpano
system,J∗ is derivable in DDCC

PROOF. This is a simple induction, relying on the dead assignment
axiom in the case of high assignment statements, sequential unit
for high sequential compositions and the equivalent branch rule for
high conditionals.

Definition 2. In the context of a security type assignmentγ, a com-
mandC satisfiesstrong sequential noninterferenceif |= C ∼ C :
γ∗⇒ γ∗.



γ,X : σint ` X : σint γ ` n : σint γ ` b : σbool

γ ` E : σint γ ` E′ : σint
+ similar forbopandlop

γ ` E iopE′ : σint

γ,X : σint ` E : σint

γ,X : σint ` X:= E : σcom

γ `C : σcom γ `C′ : σcom

γ `C; C′ : σcom

γ ` B : σbool γ `C : σcom γ `C′ : σcom

γ ` if B then C else C′ : σcom

γ ` B : Lbool γ `C : Lcom

γ ` while B do C : Lcom

γ ` F : Lτ

γ ` F : Hτ

γ `C : Hcom

γ `C : Lcom

Figure 4. Smith/Volpano Type System

This version of non-interference is the semantic security property
intended by Smith and Volpano, though the actual property estab-
lished by the soundness proof in [27] is more syntactic and inten-
sional, as it is defined in terms of their particular typing rules. Our
notion of intereference isstrongbecause it is termination-sensitive:
varying the high-security inputs affects neither the low-security out-
putsnor the termination behaviour. In the absence of any termina-
tion analysis, this is enforced by the rather brutal approach of mak-
ing all high-security commands total. The weaker notion of non-
interference that is achieved by the earlier system of Volpano, Smith
and Irvine [29] does not seem to translate directly into DDCC.

Even without constant tracking, DDCC is marginally more power-
ful than the Smith/Volpano system. For example, ifH is a high-
security variable, andL is low-security then the following are easily
shown to satisfy non-interference in DDCC, but would be rejected
by the Smith/Volpano system:

1. if H > 3 then H := L ; L := 1 else L := 1

2. L := H ; L := 3

4 Relational Hoare Logic

There are many common optimizing transformations which are not
captured by DDCC. In particular:

• It does not capture any transformations that take advantage of
the fact that one knows statically which way a boolean test
must have evaluated if one is within a particular branch of a
conditional, or either in the body of or have just left awhile -
loop. For example, the judgement

` (if X = 3 then Y:= X else Y:= 3)
∼ (Y:= 3) : X : ∆⇒Y : {3}

is semantically valid but not derivable.

• It cannot express the preservation of the values of expressions,
except where they are statically known to be a particular con-
stant. These means even trivial code-motion transformations
cannot be derived.

We can address these shortcomings by making piecemeal additions
to the system, such as quantification over variables ranging over
integers or PERs. However, there is a simple and elegant system,
which we call Relational Hoare Logic (RHL), into which many of
these extensions or alternative type systems can be embedded.

Unlike DDCC, RHL does not look like a conventional type-based
analysis system – it has a rather general syntax for relations and
is parameterized on some system for deciding the entailment re-
lation between them. The intention is that more specific analyses
and transformations can be formulated as subsystems of RHL by
restricting the syntax of assertions and providing particular approx-
imations to the entailment relation. Another way in which RHL
goes beyond DDCC is that it is not restricted to partial equivalence
relations, which deserves some comment.

PERs are certainly privileged: they are the basis of equational rea-
soning, and we will nearly always be trying to prove that one pro-
gram phrase is related to another by a PER so that we can per-
form a rewrite in some context. However, in order to establish that
two phrases are related by a PER, we often have to do some lo-
cal reasoning using more general relations. This is familiar in the
semantics of polymorphic type theories: types are interpreted by
PERs, and polymorphism by quantification over PERs, but para-
metricity theorems and equivalence results for implementations of
abstract dataypes arise from substituting more general relations. To
give some intuition for why this might be so, consider proving the
equivalence

X := -Y; X := Y;
Z := Z-X; ==> Z := Z+X;
X := -X;

at, say,Y : ∆int ,Z : ∆int ⇒X : ∆int ,Y : ∆int ,Z : ∆int . If we try to to
establish that the two commands are related by this PER by relating
their intermediate states (though this is not the only approach one
could take), we will need to use the relation that the value ofX in
one state is the negation of that in the other, which is not a PER.

RHL is an extremely simple variation on traditional Floyd-Hoare
logic [13]. Instead of assertions which denote predicates on states
and judgements which say that terminating execution of a command
in a state satisfying a precondition will yield a state satisfying a
postcondition, we directly axiomatise when apair of commands
map a given pre-relation into a given post-relation. Binary rela-
tions on states are simply specified by boolean expressions of the
language over variables tagged with an indication of which of the
two states they refer to. At first sight, this may seem frighteningly
simple-minded, but it actually works rather nicely. In this presen-
tation we do not consider quantification over metavariables (“ghost
variables”) denoting integers: their addition is straighforward, but
simple global analyses seem to be expressible without them.



` skip ∼ skip : Φ⇒Φ [R-Skip]
`C∼C′ : Φ∧ (B〈1〉∧B′〈2〉)⇒Φ′ ` D∼ D′ : Φ∧not (B〈1〉∨B′〈2〉)⇒Φ′

[R-If]
` if B then C else D∼ if B′ then C′ else D′ : Φ∧ (B〈1〉= B′〈2〉)⇒Φ′

`C∼C′ : Φ⇒Φ′ ` D∼ D′ : Φ′⇒Φ′′
[R-Seq]

`C ; D∼C′ ; D′ : Φ⇒Φ′′
` X := E ∼Y := E′ : Φ[E〈1〉/X〈1〉,E′〈2〉/Y〈2〉]⇒Φ [R-Ass]

`C∼C′ : Φ∧ (B〈1〉∧B′〈2〉)⇒Φ∧ (B〈1〉= B′〈2〉)
[R-Whl]

` while B do C∼ while B′ do C′ : Φ∧ (B〈1〉= B′〈2〉)⇒Φ∧not (B〈1〉∨B′〈2〉)

`C∼C′ : Φ1 ⇒Φ2 |= Φ′
1 ≤Φ1 |= Φ2 ≤Φ′

2
[R-Sub]

`C∼C′ : Φ′
1 ⇒Φ′

2

`C∼C′ : Φ⇒Φ′ |= PER(Φ⇒Φ′)
[R-Sym]

`C′ ∼C : Φ⇒Φ′
`C∼C′ : Φ⇒Φ′ `C′ ∼C′′ : Φ⇒Φ′ |= PER(Φ⇒Φ′)

[R-Tr]
`C∼C′′ : Φ⇒Φ′

Figure 5. Core Relational Hoare Logic

4.1 RHL Syntax and Semantics

4.1.1 Syntax

We define generalized expressions and relational assertions as fol-
lows:

gexp 3GE := n | X〈1〉 | X〈2〉 |GE iop GE

relexp 3Φ := b |GE bop GE | not Φ |Φ lop Φ

We overload the notation(·)〈1〉 and(·)〈2〉 to stand for homomor-
phic embeddingsint exp → gexp andbool exp → relexp in the
obvious way. The basic judgement form is̀C ∼ C′ : Φ⇒Φ′
(though the use of∼ for arbitrary relations is arguably bad).

4.1.2 Semantics

The semantics of generalized expressions as integer-valued func-
tions of two states, and of relational assertions as relations on states
is unsurprising:

[[GE]] ∈ S×S→ Z
[[n]](S1,S2) = n

[[X〈1〉]](S1,S2) = S1(X)
[[X〈2〉]](S1,S2) = S2(X)

[[E iop F ]](S1,S2) = ([[E]](S1,S2)) iop ([[F ]](S1,S2))

[[Φ]] ⊆ S×S
= {(S,S′) | χΦ(S,S′) = true}

χtrue (S′S′) = true
χfalse (S,S′) = f alse

χE bop F (S,S′) = [[E]](S,S′) bop [[F ]](S,S′)
χΦ lop Φ′(S,S′) = χΦ(S,S′) lop χΦ′(S,S′)

χnot Φ(S,S′) = ¬(χΦ(S,S′))

The intended meaning of judgements is given by

|= C∼C′ : Φ⇒Φ′
≡ ∀(S1,S2) ∈ [[Φ]]. ([[C]](S1), [[C′]](S2)) ∈ [[Φ′]]⊥

We will also need some auxiliary semantic judgements, whose
meanings are as follows:

|= Φ≤Φ′ ≡ [[Φ]]⊆ [[Φ′]]
|= PER(Φ) ≡ ([[Φ]]◦ [[Φ]]⊆ [[Φ]]) and([[Φ]]−1 ⊆ [[Φ]])

LEMMA 3.

1. For all GE,GE′,X,S,S′:

[[GE[GE′/X〈1〉]]](S,S′)
= [[GE]](S[X 7→ [[GE′]](S,S′)],S′)

And similarly forX〈2〉 andS′.

2. For all Φ, GE,X,S,S′:

χΦ[GE/X〈1〉](S,S′) = χΦ(S[X 7→ [[GE]](S,S′)],S′)

And similarly forX〈2〉 andS′.

3. For all Φ andΦ′, [[Φ⇒Φ′]] is an admissible relation.

4.1.3 Inference Rules

The core rules for RHL are shown in Figure5. Observe that, as was
the case in DDCC, the basic rules ensure that the same conditional
branches are taken and that loops are executed the same number
of times on the two sides. Note also that one could add distinct
semantic judgements for symmetry and transitivity, rather than re-
quiring both. The assignment rule is surprisingly liberal, but there



is no reason to require the assigned variables to be the same in both
commands.

4.2 Equations

As with DDCC, we will specify optimizing transformations by
adding extra (sound) rules to the core. But even before we do that,
RHL can justify some useful transformations. Here’s an example
of removing a redundant evaluation:

1. ` Z:= Y+1
∼ Z:= X :

X〈1〉= X〈2〉∧
Y〈1〉+1 = X〈2〉 ⇒ X〈1〉= X〈2〉∧

Z〈1〉= Z〈2〉 by

[R-Ass]

2. ` X:= Y+1
∼ X:= Y+1

:
Y〈1〉+1 = Y〈2〉+1∧
Y〈1〉+1 = Y〈2〉+1 ⇒ X〈1〉= X〈2〉∧

Y〈1〉+1 = X〈2〉
by [R-Ass]

3. |= (Y〈1〉= Y〈2〉)≤ Y〈1〉+1 = Y〈2〉+1∧
Y〈1〉+1 = Y〈2〉+1 by logic

4. ` X:= Y+1
∼ X:= Y+1

: Y〈1〉= Y〈2〉 ⇒ X〈1〉= X〈2〉∧
Y〈1〉+1 = X〈2〉 by

[R-Sub] applied to 2. and 3.

5. ` X:= Y+1; Z:= Y+1
∼ X:= Y+1; Z:= X : Y〈1〉= Y〈2〉 ⇒ X〈1〉= X〈2〉∧

Z〈1〉= Z〈2〉
by [R-Seq] applied to 4. and 1.

4.2.1 Basic Equations

The basic equations we presented in the context of DDCC are still
valid for RHL, with the exception of self-assignment elimination,
though it is best to add them in ‘contextual’ versions like [D-SU1’].
For general relations, rather than PERs, these variants are more
powerful than the more type-like ones we gave for DDCC.

4.2.2 Optimizing Transformations

Falsity:

`C∼C′ : false ⇒Φ [R-F]

Dead assignment:

` X:= E ∼ skip : Φ[E〈1〉/X〈1〉]⇒Φ [R-DAssL]

` skip ∼ X:= E : Φ[E〈2〉/X〈2〉]⇒Φ [R-DAssR]

These rules subsume our previous dead-assignment and self-
assignment rules, as well as [R-Ass].

Common branch:

`C∼ D : Φ∧B〈1〉 ⇒Φ′ `C′ ∼ D : Φ∧not B〈1〉 ⇒Φ′
[R-CBL]

` if B then C else C′ ∼ D : Φ⇒Φ′

Plus a version with the conditional on the right. These sub-
sume our earlier equivalent branch rule, and (via [R-F]) the
known-branch rules and [R-If].

Dead while:

`while B do C∼ skip : Φ∧not B〈1〉 ⇒Φ∧not B〈1〉 [R-DWhlL]

Plus the variant withskip on the left.

Soundness is a simple induction, relying on Lemma3:

THEOREM 3. For all C,C′,Φ,Φ′, if `C∼C′ : Φ⇒Φ′ is derivable
using the rules in Figure5 and Section4.2then|=C∼C′ : Φ⇒Φ′.

4.3 Examples

With these rules, one can prove the correctness of many traditional
compiler optimizations, including various forms of code motion
and predicated transformation. Producing proofs in RHL is fairly
straightforward, so we just give a couple of small examples of the
sort of thing one can prove.

Invariant hoisting:
while I<N do X := Y+1;

X := Y+1; ==> while I<N do
I := I+X; I := I+X;

at typeΦ⇒Φ whereΦ is I〈1〉= I〈2〉∧N〈1〉= N〈2〉∧Y〈1〉=
Y〈2〉. Note that the lifting is only valid because we do not
care about the final value ofX. The proof makes two uses of
the dead-assignment rule, which is a common pattern for per-
forming code-motion in RHL: one effectively addsskip s to
both sides to make them the same ‘shape’, shows the equiva-
lence using the congruence rules and then removes theskip s.

Sophisticated dead-code:
if X>3 then Y=X else Y=7 ==> skip

at type (X〈1〉 = X〈2〉 ∧ Y〈1〉 > 2∧Y〈2〉 > 2) ⇒ (Y〈1〉 >
2∧Y〈2〉 > 2). I.e. if all that matters about the value ofY
in the rest of the derivation is that it is greater than2, then the
conditional has no effect. This is proved by using [R-DAssL]
twice to show each branch is equivalent toskip and then ap-
plying [R-CBL] and [R-Sub].

The main weakness of RHL as presented here relates to its treat-
ment of loops. Since we insist that transformed programs have
the same termination behaviour as the original, but have no non-
trivial termination analysis, this is hardly suprising. I believe it is
possible to add sound rules which can justify some cases of loop
distribution/fusion, but more ambitious loop optimizations seem to
require either a language with restricted iteration constructs or a
logic which can reason about termination.

4.4 Embedding Simpler Logics in RHL

RHL is powerful but hardly suitable for direct implementation in
a compiler. However, it can provide a useful framework for de-
veloping sound type and transformation systems which are more
specific. One would start by identifying a restricted sublanguage of
relational assertions. For example, several useful analyses can be
formulated using only partial equivalence relations generated from
axioms such as:

` PER(E〈1〉= E〈2〉) ` PER(B〈1〉= B〈2〉)

` PER(B〈1〉∧B〈2〉)
plus rules stating that PERs are closed under conjunction, disjoint
union and the arrow constructor. Our earlier DDCC system is of this
form, with state relations being formed as conjunctions of primitive
assertions of the formsX〈1〉= X〈2〉 andX〈1〉= n∧X〈2〉= n. The
rules of DDCC can then be presented as derived rules in RHL.

A natural question is whether the usual Hoare logic can be em-
bedded in RHL. One’s first thought might be that a partial cor-
rectness judgement{P}C{Q} would be equivalent to the ‘squared’
RHL judgement̀ C∼C : P〈1〉∧P〈2〉 ⇒Q〈1〉∧Q〈2〉, but this is
not the case becauseC’s termination behaviour might differ on two
states satisfyingP. Nor can one simply intersect the pre- and post-
relations with the identity relation on states, since we do not have



syntax for that ‘global’ identity relation. If we fixC, however, we
can conjoin the pre- and post-relations withX〈1〉= X〈2〉 for every
variableX occurring inC and thus effectively recover Hoare logic.3

Going the other way, one can soundly extend RHL with the squared
versions of validtotal correctness judgements[P]C[Q].

As a simple, concrete example of the embedding approach, Fig-
ure 6 presents (a very naive version of) a type system AERC for
available expression analysis and removal of redundant evaluation.
State typesΘ are finite sets{Xi = Ei | 1≤ i ≤ n} of equalities be-
tween variables and expressions (in which the same variable may
occur multiple times on the left) and we writeΘ ≤ Θ′ for Θ ⊇ Θ′.
The macroskill andgenare defined by

kill(Θ,X) = {(Xi = Ei) ∈Θ | Xi 6= X∧X 6∈ Ei}

gen(X,E) =
{ {X = E} if X 6∈ E
{} otherwise

The translation of the AERC into RHL is indexed by a finite setV
of variables. Define

Θ∗V =
^

X∈V

(X〈1〉= X〈2〉)∧
^

(X=E)∈Θ
(X〈1〉= E〈1〉)

It is easy to see that for anyΘ, |= PER(Θ∗V) and thatΘ≤Θ′ implies
Θ∗V ≤ Θ′∗V . The following asserts the soundness of the translation,
and hence of AERC:

THEOREM 4. For any expressionsE,F and commandsC,D all of
whose variables occur inV,

1. If ` E ∼ F : Θ ⇒ τ then |= Θ∗V ≤ (E〈i〉 = F〈 j〉) for i, j ∈
{1,2}.

2. If ` C ∼ D : Θ ⇒ Θ′ in AERC theǹ C ∼ D : Θ∗V ⇒ Θ′∗V in
RHL.

PROOF. The interesting case is the AERC rule for assignment,
which generates the following verification condition in RHL: if
|= Θ∗V ≤ (E〈1〉 = E′〈2〉) then |= Θ∗V ≤ (kill(Θ,X)∪ gen(X,E)∪
gen(X,E′))∗V [E〈1〉/X〈1〉,E′〈2〉/X〈2〉], which is straightforward to
check.

5 Related Work

As we said in the introduction, there has been a good deal of
work on proving the correctness of optimizing transformations for
functional languages, especially from the group at Northeastern
[30, 28, 32, 31] but also by Amtoft on strictness analysis [5], Dami-
ani and Giannini on dead-variables [10, 11], Kobayashi on dead-
variables [17] and Benton and Kennedy on effects [8]. Damiani and
Giannini explicitly use PERs in giving the semantics of their anal-
ysis system but give a more algorithmic account its use in transfor-
mation. Benton and Kennedy present optimizing transformations
as equations in context, but derive those (rather clumsily) from a
predicate-based semantics for the analysis.

Recently Lacey et al. [19] described how some of the classical
[16, 12, 4] transformations considered here (dead code elimination,
constant folding and a simple code-motion transformation) can be
formulated as conditional rewrite rules on control flow graphs. The
rewrites are predicated on temporal logic formulae expressing (in-
tensionally) the contexts in which the rewrites may be applied. The

3The civilised way to do this is to index all our judgements by
finite sets of variable names.

authors then use a small-step operational semantics to verify that
under these conditions, their transformations preserve the observ-
able behaviour of programs. Lacey et al. express strongly the view
that more traditional semantic techniques, in particular denotational
ones, are either unable to express the properties which justify op-
timizing transformations or can only do so at the cost of complex
proofs and ‘mathematically sophisticated’ techniques. I believe the
present paper provides some evidence to the contrary.

Lerner et al. [20] have built an implementation of a domain specific
language for specifying and justifying rewrites on a simple imper-
ative language which interfaces to a theorem prover for checking
the supplied justification. This system also uses a (rather restricted)
language of temporal logic formulae for specifying optimizations
over flow graphs.

Kozen and Patron [18] describe an algebraic approach to proving
some traditional optimizations correct. There is no mention of rela-
tions in their work, and they abstract rather severely from the actual
language (there are no assignments, just unspecified atomic pro-
grams including one which makes a variable ‘undefined’), but the
connections between their work and ours seem worth further study.

The work that is most closely related to that presented here has been
done in the contexts ofcredible compilation[24, 25] andtranslation
validation [21, 36]. These both take the view that formal verifica-
tion of complete optimizing compilers is impractical, but that one
might realistically produce a correctness proof relating the input
and output of particular compilations. Translation validation tries to
do this without modifying the compiler, using an independent tool
that tries to infer that the output is a correct translation of the input.
Credible compilation envisages an instrumented compiler produc-
ing a putative proof that the transformations it performed in each
particular case were safe; these proofs can then be examined by a
comparatively simple proof-checker. The basic technical ideas used
in credible and validated compilation are very close indeed to the
ones presented here (developed quite independently). The main dif-
ference is that we use the language of types, denotational semantics
and PERs instead of that of control-flow graphs, operational seman-
tics and simulation relations. Inspired by Rinard’s work, Yang [35]
has recently used a version of relational Hoare logic in reasoning
about the correctness of the Schorr-Waite graph marking algorithm.

The idea of directly axiomatising a logic of PERs [3] and more
general relations was inspired by the work of Abadi et al on a formal
logic for parametric polymorphism [2].

We have already mentioned some of the large amount of recent
work using PERs (and domain-theoretic projections) to give se-
mantics to analyses for non-interference, slicing, secure informa-
tion flow, binding time analysis. An elegant general calculus, DCC,
for such dependency-based analyses has been defined by Abadi et
al. [1]. DCC seems comparable to a higher-order version of our
DDCC, though it is not explicitly presented as an equational cal-
culus and is more directly in the style of type systems for secure
information flow.

The work of Hughes on type specialization [14] seems to have in-
teresting connections with (a higher-order version of) the work pre-
sented here. Hughes has formulated a type-based analysis which
essentially uses a form of singleton type, and proved the correct-
ness of an associated transformation system which changes types.
Singleton types and their PER semantics have also been studied in
some depth by Aspinall [6].



` X ∼ X : Θ⇒ int [A-V] ` n∼ n : Θ⇒ int [A-N] ` b∼ b : Θ⇒ bool [A-B]

` X ∼ E : Θ∪{X = E}⇒ int [A-Red] ` skip ∼ skip : Θ⇒Θ [A-Skp]

` E ∼ E′ : Θ⇒ int ` F ∼ F ′ : Θ⇒ int
[A-iop] (+ similar bopandlop)

` E iop F ∼ E′ iop F ′ : Θ⇒ int

`C1 ∼C′1 : Θ⇒ Θ′ `C2 ∼C′2 : Θ′⇒Θ′′
[A-Seq]

` (C1; C2)∼ (C′1; C′2) : Θ⇒ Θ′′

` B∼ B′ : Θ⇒ bool `C∼C′ : Θ⇒ Θ
[A-Whl]

` (while B do C)∼ (while B′ do C′) : Θ⇒Θ

` E ∼ E′ : Θ⇒ int
[A-Ass]

` X:= E ∼ X:= E′ : Θ⇒ (kill(Θ,X)∪gen(X,E)∪gen(X,E′))

` B∼ B′ : Θ⇒ bool `C1 ∼C′1 : Θ⇒ Θ′ `C2 ∼C′2 : Θ⇒ Θ′
[A-If]

` (if B then C1 else C2)∼ (if B′ then C′1 else C′2) : Θ⇒ Θ′
`C∼C′ : Θ⇒ Θ′

[A-CSym]
`C′ ∼C : Θ⇒Θ′

`C∼C′ : Θ1 ⇒Θ2 Θ′1 ≤Θ1 Θ2 ≤Θ′2
[A-CSub]

`C∼C′ : Θ′1 ⇒ Θ′2

` Eτ ∼ E′τ : Θ⇒ τ Θ′ ≤Θ
[A-ESub]

` Eτ ∼ E′τ : Θ′⇒ τ

` Fτ ∼ F ′τ : Θ⇒ τ
[A-ESym]

` F ′τ ∼ Fτ : Θ⇒ τ

`C∼C′ : Θ⇒Θ′ `C′ ∼C′′ : Θ⇒Θ′
[A-CTr]

`C∼C′′ : Θ⇒Θ′

` Fτ ∼ F ′τ : Θ⇒ τ ` F ′τ ∼ F ′′τ : Θ⇒ τ
[A-ETr]

` Fτ ∼ F ′′τ : Θ⇒ τ

Figure 6. AERC: Available Expressions and Redundant Computation

6 Conclusions and Further Work

We have shown how some very elementary techniques can be used
to prove the combined correctness of analyses and transformations
for simple imperative programs. From a purely semantic perspec-
tive, there is nothing very surprising here. But that is as it should be:
we have finally shown that something that appears simple actually
is simple.

One obvious shortcoming of the present work is that it says nothing
about concrete inference or transformation algorithms. Although
there are benefits in factoring a correctness proof into the sound-
ness of a declarative set of inference rules and the correctness of
an inference algorithm, one does ultimately have to provide both
parts. Although there seems no reason why the approach taken here
should not carry over to the control-flow graphs more commonly
used in optimizing compilers for imperative languages, proving di-
rectly that analyses as they are actually implemented in real com-
pilers imply our extensional properties seems likely to be somewhat
messy. Combining our extensional relational approach to correct-
ness with a more algorithmic, but still declarative, framework for
specifying transformations (such as that of Lacey et al.) seems a
more reasonable next step.

Relational Hoare logic is a promising formalism which certainly
merits further study. A limitation of the system presented here
is that it cannot justify any transformations which remove loops,
except in the special case that they can be completely unrolled
at compile-time. This naturally suggests investigating a total-
correctness variant of the logic, but one might also consider a ver-
sion which allows termination-improving transformations. A fur-
ther possibility is to axiomatise the version of relational lifting
which mapsΦ to {(d,d′) ∈ S⊥× S⊥ | (d = dse ∧ d′ = ds′e) =⇒
(s,s′) ∈Φ}. This is inappropriate for optimizations, but seems use-
ful in reasoning about termination-insensitive information flow [7].

There are many natural ways to develop the ideas here, both in
terms of the language features and analyses addressed (higher-
types, higher-typed store, dynamic allocation) and in terms of the
features of the logics (e.g. quantification, conjunctive and disjunc-
tive types). Doing some of these would require working with rela-
tions on recursively-defined domains, for which we expect to use
the techniques described by Pitts [23]. If the technique extends to
imperative programs with higher-typed store, a promising idea is to
look at optimizations on low level code that are justified by rela-
tional invariants passed down from a high-level compiler.

Acknowledgements. Thanks to Tony Hoare, Andrew Kennedy,
David Naumann, Matthew Parkinson, Claudio Russo and the ref-
erees for useful discussions, feedback and pointers to related work.
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