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Abstra
t

Intuitionisti
 linear logi
 regains the expressive power of intuitionisti
 logi
 through

the ! (`of 
ourse') modality. Benton, Bierman, Hyland and de Paiva have given a term

assignment system for ILL and an asso
iated notion of 
ategori
al model in whi
h the

! modality is modelled by a 
omonad satisfying 
ertain extra 
onditions. Ordinary

intuitionisti
 logi
 is then modelled in a 
artesian 
losed 
ategory whi
h arises as a

full sub
ategory of the 
ategory of 
oalgebras for the 
omonad.

This paper attempts to explain the 
onne
tion between ILL and IL more dire
tly

and symmetri
ally by giving a logi
, term 
al
ulus and 
ategori
al model for a system

in whi
h the linear and non-linear worlds exist on an equal footing, with operations

allowing one to pass in both dire
tions. We start from the 
ategori
al model of ILL

given by Benton, Bierman, Hyland and de Paiva and show that this is equivalent

to having a symmetri
 monoidal adjun
tion between a symmetri
 monoidal 
losed


ategory and a 
artesian 
losed 
ategory. We then derive both a sequent 
al
ulus

and a natural dedu
tion presentation of the logi
 
orresponding to the new notion of

model.

1 Introdu
tion

This paper 
on
erns a variant of the intuitionisti
 fragment of Girard's linear logi
 [7℄.

Linear logi
 does not 
ontain the stru
tural rules of weakening and 
ontra
tion, but these

are reintrodu
ed in a 
ontrolled way via a unary operator !. The rules for ! allow ordinary

intuitionisti
 logi
 to be interpreted within intuitionisiti
 linear logi
.

In [5, 4℄, Benton, Bierman, Hyland and de Paiva formulated a natural dedu
tion pre-

sentation of the multipli
ative/exponential fragment of ILL, together with a term 
al
ulus

(extending the propositions as types analogy to linear logi
) and a 
ategori
al model (a lin-

ear 
ategory). In that work, the multipli
ative (i.e. 
,�Æ) part of the logi
 is modelled in a

symmetri
 monoidal 
losed 
ategory (SMCC). That mu
h is standard and well-understood.

The ! modality is then modelled by a monoidal 
omonad on the SMCC whi
h is required

to satisfy 
ertain extra (and non-trivial) 
onditions. These extra 
onditions are suÆ
ient

�
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to ensure that the 
ategory of 
oalgebras for the 
omonad 
ontains a full sub
ategory

whi
h is 
artesian 
losed and thus models the interpretation of IL in ILL.

Whilst the view that linear logi
 is primary and that ordinary logi
 is merely a part of

linear logi
 is appealing , it is not ne
essarily always the best way of seeing the situation.

This paper tries to present a more symmetri
 view of the relationship between IL and ILL

and it seems worth trying to give some motivation for why this might be worth doing.

From a pra
ti
al point of view, there are a number of reasons why the standard linear

term 
al
ulus (LTC) of [5℄ might be 
onsidered unsuitable as the basis of a linear fun
tional

programming language. Firstly, linear fun
tional programming is verbose and unnatural {

whilst the LTC might well be a useful intermediate language for a 
ompiler, it is not very

appropriate as a language for everyday programming. If linearity is to be made visible

to the programmer at all, it appears preferable to have some extension of a traditional

non-linear language in whi
h one 
ould write the o

asional linear fun
tion in order to

deal with I/O, in-pla
e update or whatever.

A more fundamental, problem is that, despite 
onsiderable resear
h e�ort, the pre
ise

way in whi
h a linear language 
an help with what we have deliberately referred to rather

vaguely as `I/O, in-pla
e update or whatever' is still not 
lear. Most published proposals

for using linear types to 
ontrol or des
ribe intensional features of fun
tional programs

are either un
onvin
ing or use type systems whi
h are only loosely inspired by linear

logi
. Systems in the last 
ategory 
an, pragmati
ally, be extremely su

essful; the most

obvious example being the language CLEAN. The type system of CLEAN [1℄ in
orporates

a `uniqueness' operator for (roughly) making non-linear types linear. This is in some

sense dual to the ! of linear logi
, whi
h allows linear types to be treated non-linearly.

Unique types in CLEAN are used to add destru
tive updates and I/O to the language in

a referentially transparent way.

One (somewhat spe
ulative) aim of the work des
ribed here is to provide a sound

mathemati
al and logi
al basis for a type system like that of CLEAN. We are en
our-

aged not only by the similarities between CLEAN and the 
al
ulus to be presented here

(the LNL term 
al
ulus), but also by the fa
t that other resear
hers looking at pra
ti
al

implementations of linear languages have 
ome up with systems whi
h in
lude aspe
ts

of the LNL term 
al
ulus. For example, Lin
oln and Mit
hell's linear variant [10℄ of the

`three instru
tion ma
hine' divides memory into two spa
es 
orresponding to linear and

non-linear obje
ts. Similarly, Wadler's `a
tive and passive' type system [14℄ separates lin-

ear from non-linear types. Ja
obs [9℄ has also des
ribed how a sequent 
al
ulus inspired

by CLEAN's uniqueness types may be interpreted using the linear 
ategories of [4℄ under

some extra simplifying assumptions.

From a more logi
al point of view, there has re
ently been mu
h interest in Girard's

system LU [8℄ and related systems in whi
h the (multi)sets of formulae o

uring in sequents

are split into di�erent zones. Formulae in some zones are treated 
lassi
ally, whilst those

in other zones are treated linearly. Intuitionisti
 logi
s inspired by LU have been proposed

by Plotkin [12℄ and by Wadler [15℄. It is desirable to study the proof and model theory

of su
h systems dire
tly, rather than treating them as synta
ti
 sugar for, for example,

ordinary linear logi
 (if only to verify that it is possible to treat them as su
h synta
ti


sugar). The logi
 of this paper should turn out to be equivalent to a subsystem of LU,

though there are some super�
ial di�eren
es of presentation.

From the 
ategori
al perspe
tive, it seems natural to explore the more symmetri


situation where one starts from an SMCC and a CCC with (adjoint) fun
tors between

them, rather than an SMCC with suÆ
ient extra stru
ture to ensure the existen
e of su
h



a CCC. This is parti
ularly true in the light of the fa
t that the de�nition of a linear


ategory in [4℄ was arrived at mostly from the proof theory of linear logi
, but also (and

this was something of a `hidden agenda') from a desire to have enough stru
ture to be able

to derive an appropriate CCC from the model.

1

It is also fair to say that the de�nition

of a linear 
ategory is surprisingly 
ompli
ated, so looking for simpler models, or simpler

presentations of the same models, is a good idea.

The initial motivation for the present work 
omes from the 
ategori
al pi
ture sket
hed

in the previous paragraph. On
e the de�nition has been made a little more pre
ise, we

shall show that su
h a situation leads to a 
omonad on the linear part of the model whi
h

automati
ally satis�es all the extra 
onditions required of a linear 
ategory, and thus

gives a sound model of ILL in
luding the ! operator. Furthermore, the 
onverse holds {

every linear 
ategory gives rise to su
h a pair of 
ategories. Thus we have an alternative,

simpler, de�nition of what 
onstitutes a model for ILL. This 
an be seen as giving a purely


ategory-theoreti
 re
onstru
tion of !, in that a linear 
ategory (a model for ILL with !) is

exa
tly what one obtains if one attempts dire
tly to model an interpretation of IL in ILL

without the !.

Another interesting feature of the model is that it gives rise to a strong monad on the

CCC part. Thus one obtains a model not just of the lambda 
al
ulus, but of Moggi's


omputational lambda 
al
ulus [11℄.

Se
tion 3 then looks at the logi
 and term 
al
ulus whi
h are asso
iated with our

new notion of model. We formulate a sequent 
al
ulus presentation whi
h satis�es 
ut

elimination and then give an equivalent natural dedu
tion system. This then gives, by

the Curry-Howard 
orresponden
e, an interesting term 
al
ulus whi
h 
ombines the usual

simply-typed lambda 
al
ulus with a linear lambda 
al
ulus. We also 
onsider translations

in both dire
tions between this new term 
al
ulus and the linear 
al
ulus of [5℄.

2 The Categori
al Pi
ture

Our aim is to present a logi
/terms/
ategories 
orresponden
e, similar to that between

intuitionisti
 logi
, simply-typed lambda 
al
ulus and 
artesian 
losed 
ategories, in whi
h

the 
ategori
al vertex of the triangle 
onsists of (essentially) a 
artesian 
losed 
ategory C,

a symmetri
 monoidal 
losed 
ategory L and a pair of fun
tors G : L ! C and F : C ! L

between them with F a G. Intuitively, the requirement that the two fun
tors be adjoint

should be understood as saying that there is an interpretation of IL (the CCC) into ILL

(the SMCC).

We will, however, need our 
ategori
al model to satisfy some extra 
onditions before

we 
an have any hope of it modelling a logi
 or term 
al
ulus. It is ne
essary for the

two fun
tors and the unit and 
ounit of the adjun
tion to behave well with respe
t to the

monoidal stru
tures of the two 
ategories as this is used to represent the multi
ategori
al

stru
ture implied by 
ommas in 
ontexts. We do not have the spa
e to give full de�nitions

of all the 
ategori
al 
on
epts we shall need, but we 
an at least re
all the broad outlines

of the most important ones. The longer version of this paper [2℄ in
ludes the details.

Given monoidal 
ategories (M;
; I) and (M

0

;


0

; I

0

), a monoidal fun
tor F : M !

M

0

is a fun
tor from M to M

0

equipped with a map m

I

: I

0

! F (I) in M

0

and a

1

This is not to say that there is anything in the model whi
h is not justi�able in terms of the proof

theory (given a proper proof-theoreti
 a

ount of �-rules), but merely that, given that a translation of IL

proofs into ILL proofs exists, any 
orre
t model for ILL must be able to re
e
t the translation semanti
ally.



natural transformation m

X;Y

: F (X)


0

F (Y )! F (X 
 Y ) whi
h satisfy some 
oheren
e


onditions. IfM andM

0

are symmetri
 monoidal, then F is a symmetri
 monoidal fun
tor

if it is monoidal and in addition respe
ts the twist maps � and �

0

.

If (F;m) and (G;n) are monoidal fun
tors from an MC M to an MC M

0

, then a

monoidal natural transformation from (F;m) to (G;n) is a natural transformation f

X

from F to G whi
h is 
ompatible with the 
omparison maps in an obvious way.

If M and M

0

are (symmetri
) monoidal 
ategories then a (symmetri
) monoidal ad-

jun
tion between them is an ordinary adjun
tion in whi
h both of the fun
tors are (sym-

metri
) monoidal fun
tors and both the unit and the 
ounit of the adjun
tion are monoidal

natural transformations.

De�nition 1 A linear/non-linear model (LNL model) 
onsists of

1. a 
artesian 
losed 
ategory (C; 1;�;!);

2. a symmetri
 monoidal 
losed 
ategory (L; I;
;�Æ) and

3. a pair of symmetri
 monoidal fun
tors (G;n) : L ! C and (F;m) : C ! L between

them whi
h form a symmetri
 monoidal adjun
tion with F a G.

We shall usually use A;B;C to range over obje
ts of L and X;Y;Z for obje
ts of C. We

write � and " for, respe
tively, the unit and 
ounit of the adjun
tion.

An important 
onsequen
e of the de�nition of an LNL model is that as well as the

natural transformations

m

X;Y

: FX 
 FY ! F (X � Y )

n

A;B

: GA�GB ! G(A
B)

and their nullary versions, the maps m : I ! F1 and n : 1 ! GI, we have a family of

maps

p

X;Y

: F (X � Y )! FX 
 FY

given by the transpose of n

FX;FY

Æ �

X

� �

Y

:

F (X � Y )

F (���)

����!F (GFX �GFY )

F (n)

��!FG(FX 
 FY )

"

�!FX 
 FY

and a map p : F1! I given by F1

Fn

�!FGI

"

I

�!I.

Proposition 1 In an LNL model (in fa
t for any monoidal adjun
tion), the maps m

X;Y

are the 
omponents of a natural isomorphism with inverses p

X;Y

and, furthermore, the

map m is an isomorphism with inverse p:

F (X)
 F (Y )

�

=

F (X � Y )

I

�

=

F (1)

2

So F preserves the monoidal stru
ture up to an isomorphism rather than merely up

to a 
omparison. That is to say, F is a strong fun
tor. There is, of 
ourse, a lot more

interesting stru
ture in an LNL model. To begin with, the adjun
tion indu
es a 
omonad

on L and a monad on C. We dis
uss ea
h of these below.



2.1 The Comonad and Comparison with Linear Categories

The 
omonad on L is (FG; " : FG ! 1; Æ : FG ! FGFG) where " is the 
ounit of the

adjun
tion and Æ has 
omponents Æ

A

= F (�

G(A)

). We write ! for FG.

Lemma 2 The 
omonad (!; "; Æ) is symmetri
 monoidal, i.e. there is a natural transfor-

mation q with 
omponents q

A;B

:!A
!B !!(A
B) and a map q : I !!I su
h that (!; q) is

a symmetri
 monoidal fun
tor and " and Æ are monoidal natural transformations. 2

In [4℄, we de�ned a model of the multipli
ative/exponential fragment of intuitionisti


linear logi
 as follows:

De�nition 2 A linear 
ategory is spe
i�ed by the following data:

1. A symmetri
 monoidal 
losed 
ategory (L;
; I;�Æ).

2. A symmetri
 monoidal 
omonad (!; "; Æ; q) on L.

3. Monoidal natural transformations with 
omponents e

A

:!A! I and d

A

:!A!!A
!A

su
h that

(a) ea
h (!A; e

A

; d

A

) is a 
ommutative 
omonoid,

(b) e

A

and d

A

are 
oalgebra maps, and

(
) all 
oalgebra maps between free 
oalgebras preserve the 
omonoid stru
ture.

2.1.1 Linear Categories and LNL Models are Equivalent

Any LNL model in
ludes, by de�nition, part 1 of De�nition 2, and we have just seen

(Lemma 2) that it also satis�es part 2. Furthermore, there are plausible 
andidates for e

A

and d

A

:

e

A

def

=p Æ F (�

GA

)

where �

GA

is the unique map from GA to the terminal obje
t 1 of C, and

d

A

def

=p

GA;GA

Æ F (�

GA

)

where �

GA

is the diagonal map from GA to GA�GA in C.

Theorem 3 For any LNL model, e and d as de�ned above satisfy all the 
onditions given

in part 3 of De�nition 2. In other words, any LNL model is a linear 
ategory.

Proof. This involves 
he
king that a fairly large 
olle
tion of diagrams all 
ommute.

Although this is a lot of work, none of them are very diÆ
ult. Proposition 1 plays an

important role in several of them. Further details may be found in [2℄. 2

We now sket
h the proof of the 
onverse to Theorem 3. Whilst this is largely a matter

of re
alling results whi
h were proved in [4℄, by doing this 
arefully we obtain a slightly

better understanding of the situation.

Assume that L is a linear 
ategory as in De�nition 2. We need to show that this gives

rise to a CCC C and a symmetri
 monoidal adjun
tion between L and C as in De�nition 1.

Re
all that the 
omonad on L gives rise to two 
ategories of algebras:



� The Eilenberg-Moore 
ategory L

!

. This has as obje
ts all the !-
oalgebras (A; h

A

:

A!!A) and as morphisms all the 
oalgebra morphisms.

� The (
o-)Kleisli 
ategory L

!

. This is the full sub
ategory of L

!

whi
h has as obje
ts

all the free !-
oalgebras (!A; Æ

A

:!A!!!A).

Ea
h of these 
ategories 
omes with a pair of adjoint fun
tors F a G where G : A 7!

(!A; Æ

A

) and F : (A; h

A

) 7! A.

Lemma 4 If L is a linear 
ategory then L

!

has �nite produ
ts, with the terminal obje
t

given by (I; q : I !!I) and the produ
t of (A; h

A

) and (B; h

B

) by (A
B; q

A;B

Æ(h

A


h

B

)).

2

In general, there is no reason why the Eilenberg-Moore 
ategory should be 
artesian


losed, sin
e there is no reason why it should have an internal hom for arbitrary pairs

of 
oalgebras. We 
an, however, �nd a full sub
ategory of the Eilenberg-Moore 
ategory

whi
h is 
artesian 
losed.

Lemma 5 In L

!

, all the free 
oalgebras are exponentiable. That is, there is an inter-

nal hom into any free 
oalgebra (!B; Æ

B

). Furthermore, the internal hom is itself a free


oalgebra. 2

Now, noti
e that in any 
artesian 
ategory, if an obje
t X is exponentiable then so is

[Y;X℄ for any Y , sin
e we 
an take [Z; [Y;X℄℄ to be [Z � Y;X℄. Furthermore, the produ
t

of two exponentiable obje
ts X and Y is exponentiable sin
e we 
an take [Z;X � Y ℄ to

be [Z;X℄ � [Z; Y ℄. Taking this together with the previous lemma, we have:

Lemma 6 The full sub
ategory Exp(L

!

) of the Eilenberg-Moore 
ategory having as obje
ts

the exponentiable 
oalgebras is 
artesian 
losed and 
ontains the Kleisli 
ategory L

!

. 2

Note that the Kleisli 
ategory is not, in general, itself 
artesian 
losed, sin
e the produ
t

of two free 
oalgebras is not ne
essarily free. We shall 
onsider a 
ase in whi
h this does

happen in Se
tion 2.1.2. In the general 
ase, we do have the following, however:

Lemma 7 The full sub
ategory L

�

!

of Exp(L

!

) 
onsisting of �nite produ
ts of free 
oalge-

bras is 
artesian 
losed. 2

Theorem 8 If L is a linear 
ategory then by taking C to be either L

�

!

or Exp(L

!

) and F

and G to be the appropriate forgetful and free fun
tors one obtains an LNL model.

Proof. We have already seen that both the 
hoi
es for C are 
artesian 
losed so it just

remains to 
he
k that F and G form a symmetri
 monoidal adjun
tion, whi
h is straight-

forward. 2

2.1.2 Additives and the Seely Isomorphisms

We now 
onsider brie
y what happens when an LNL model also has the extra stru
ture

required to model the additive linear 
onne
tives &;� and the non-linear sum +. The

simplest 
ase is when the SMCC part L of an LNLmodel also has �nite produ
ts, modelling



the additive 
onne
tive `with' (&). The fun
tor G preserves limits be
ause it is a right

adjoint, and in parti
ular

G(A&B)

�

=

GA�GB and G1

�

=

1

Taking this together with Proposition 1, we obtain the following natural isomorphisms:

!A
!B

�

=

!(A&B) and I

�

=

!1

These isomorphisms were 
entral to Seely's proposed model of ILL [13℄, whi
h also pro-

posed interpreting IL in the Kleisli 
ategory. See [6℄ for a 
ritique of Seely's semanti
s;

here we merely note the following:

Proposition 9 If a linear 
ategory has produ
ts then the Kleisli 
ategory L

!

is 
artesian


losed.

Proof. One shows that L having produ
ts implies that the produ
t of two free !-
oalgebras

is a free 
oalgebra. This means that L

!


oin
ides with L

�

!

, whi
h is 
artesian 
losed by

Lemma 7. 2

The 
orresponden
e between linear 
ategories and LNL models extends trivially to

one between linear 
ategories with �nite produ
ts and LNL models with produ
ts on the

SMCC part. Coprodu
ts are slightly more problemati
. Whilst the appropriate extension

of an LNL model seems obvious (just require both L and C to have �nite 
oprodu
ts),

this does not 
orrespond quite as simply as one might hope to linear 
ategories with


oprodu
ts.

The diÆ
ulty is that, whilst an LNL model with 
oprodu
ts 
ertainly gives rise to

a linear 
ategory with 
oprodu
ts, the 
onverse does not appear ne
essarily to be true.

Assume L is a linear 
ategory with �nite 
oprodu
ts, then L

!

also has �nite 
oprodu
ts as

we 
an de�ne the 
oprodu
t of (A; h

A

) and (B; h

B

) to be

(A+B; [!inl Æ h

A

; !inr Æ h

B

℄)

and this is easily 
he
ked to satisfy the appropriate 
onditions. There seems no general

reason, however, why either of the two CCCs whi
h we have already identi�ed as arising

from L should be 
losed under this 
oprodu
t.

Fortunately, something 
an be salvaged. There are weak �nite 
oprodu
ts � in the

Kleisli 
ategory, obtained by de�ning

(!A; Æ

A

)� (!B; Æ

B

)

def

=(!(!A+!B); Æ

!A+!B

)

with, for example, the left inje
tion given by !inl Æ Æ

A

.

2.2 The Monad and Comparison with Let-CCCs

The monad on C is (GF; � : 1 ! GF;� : GFGF ! GF ) where � is the unit of the

adjun
tion and � has 
omponents �

X

= G("

FX

). Writing T for GF , one 
an 
he
k that

(T; �; �) is a symmetri
 monoidal monad, i.e. T is a symmetri
 monoidal fun
tor and both

� and � are monoidal natural transformations.

Cartesian 
losed 
ategories with monoidal monads have re
ently been the fo
us of some

interest, as they are the models for Moggi's 
omputational lambda 
al
ulus [11℄. The



de�nition is usually given in terms of strong monads, where a monad T on a monoidal


ategory is said to be strong if it is equipped with a natural transformation � (
alled the

tensorial strength) with 
omponents

�

A;B

: A
 TB ! T (A
B)

satsifying some extra 
onditions. A strong monad on a symmetri
 monoidal 
ategory

is said to be 
ommutative if the tensorial strength behaves well with respe
t to the twist

maps �. It turns out that 
ommutative strong monads are the same as symmetri
 monoidal

monads (see the full paper for more details).

A model of the 
omputational lambda 
al
ulus (a let-CCC) is a 
artesian 
losed 
at-

egory with a strong monad. The above implies that an LNL model always has a strong

monad on the CCC part of the model and thus in
ludes a let-CCC. The monad is, how-

ever, always 
ommutative (be
ause T is a symmetri
 monoidal fun
tor). It is not the 
ase

that all strong monads on CCCs are 
ommutative; indeed, some very important monads

arising in 
omputer s
ien
e are non-
ommutative, for example the free monoid monad

(list; [�℄; f latten) on the 
ategory of sets. Thus it is 
ertainly the 
ase that not all, or

even all interesting, let-CCC's will arise from LNL models. Having said that, many of

the most important monads arising in semanti
s, su
h as lifting and various 
avours of

powerset/powerdomain, are 
ommutative, so the theory of 
ommutative strong monads

on CCCs is not without independent interest.

2.3 Examples

Let L be the 
ategory of pointed !
pos (!-
o
omplete partial orders with a least element)

and stri
t (bottom preserving) 
ontinuous maps. This is a symmetri
 monoidal 
losed


ategory with tensor produ
t given by the so-
alled smash produ
t, the identity for the

tensor by the one-point spa
e (whi
h is also a biterminator) and internal hom by the stri
t


ontinuous fun
tion spa
e. In fa
t, L also has binary produ
ts and 
oprodu
ts, given by


artesian produ
t and 
oales
ed sum respe
tively.

Given this 
hoi
e of L, there are a 
ouple of obvious 
hoi
es for the CCC C whi
h give

an LNL model. One is to take C to be the 
ategory of pointed !-
pos and 
ontinuous

(not ne
essarily stri
t) maps, G to be the in
lusion fun
tor and F to be the lifting fun
tor

F : X ! X

?

. The monoidal stru
ture m on F is given by the evident isomorphism

X

?


 Y

?

�

=

(X � Y )

?

. In this 
ase, C is (equivalent to) the Kleisli 
ategory of the lifting


omonad on L. Note that the 
artesian 
losure of the Kleisli 
ategory follows from the

fa
t that L has produ
ts. There are strong 
oprodu
ts in L but only weak ones in C.

An alternative 
hoi
e of C is the 
ategory of (not ne
essarily pointed) !-
pos (these

are sometimes 
alled predomains) and 
ontinuous maps, again with in
lusion and lifting

fun
tors. This is equivalent to the Eilenberg-Moore 
ategory of the lift 
omonad on L, so

it has produ
ts and 
oprodu
ts by our previous general arguments, but it also turns out

to be 
artesian 
losed.

A di�erent example arises from taking L be the 
ategory of Abelian groups and group

homomorphisms. This is symmetri
 monoidal 
losed with A
 B the Abelian group gen-

erated by the set of tokens fa
 b j a 2 A; b 2 Bg subje
t to the relations

(a

1

+ a

2

)
 b = a

1


 b+ a

2


 b

a
 (b

1

+ b

2

) = a
 b

1

+ a
 b

2



(More 
ategori
ally, A 
 B 
an be de�ned by a homomorphism A � B ! A 
 B whi
h

is universal amongst bilinear maps into Abelian groups.) The unit for 
 is the group of

integers under addition, Z, and the internal hom A�ÆB is the group of homomorphisms

from A to B with the multipli
ation inherited from B. In fa
t L also has biprodu
ts { the

dire
t sum A�B is both a produ
t and a 
oprodu
t and the trivial group is a biterminator.

Now let C be Set, and F and G be the free and forgetful fun
tors. It is easy to 
he
k

that this does indeed give an LNL model. The 
omonad on L takes an Abelian group to

the free group on its underlying set. " is `evaluation' and � is the insertion of generators.

In this 
ase C is equivalent to the Kleisli 
ategory of the 
omonad on L.

3 LNL Logi


LNL-models are, of 
ourse, supposed to be models of a logi
al system. Theorem 3 says

that they are models for intuitionisti
 linear logi
 as de�ned by Girard, but the form of

the de�nition of LNL-model suggests an interesting alternative presentation of the logi
.

The idea is that one starts with two independent logi
s, 
orresponding to the 
ategories

L and C and then adds operators whi
h 
orrespond in some way to the adjun
tion.

In keeping with our earlier 
onventions for naming obje
ts of L and C, we will use

A;B;C to range over linear propositions and X;Y;Z for 
onventional ones. We shall use

� and � to range over linear 
ontexts (�nite multisets of linear propositions) and � and �

for non-linear ones. We also de
orate turnstiles with L or C to indi
ate whi
h subsystem

they belong to. Finally, if � is X

1

; : : : ;X

n

then F� means FX

1

; : : : ; FX

n

, and similarly

for G�. The two 
lasses of propositions with whi
h we shall be dealing are de�ned by the

following grammar:

A;B := A

0

j I j A
B j A�ÆB j FX

X;Y := X

0

j 1 j X � Y j X ! Y j GA

where A

0

(resp. X

0

) ranges over some unspe
i�ed set of atomi
 linear (resp. non-linear)

propositions.

3.1 Sequent Cal
ulus

The two logi
s with whi
h we start are very familiar viz. the exponential-free, multipli
a-

tive fragment of propositional intuitionisti
 linear logi
 and the �;! fragment of ordinary

intuitionisti
 logi
. These both have very well-behaved sequent presentations. How should

the systems be enri
hed and 
ombined to give LNL-logi
? There are (at least) two natural

answers, neither of whi
h satis�es 
ut elimination. Fortunately, there is a presentation

of the logi
 whi
h has a good proof theory. The tri
k is to allow 
onventional non-linear

formulae to appear in the assumptions of a linear sequent. A typi
al linear sequent looks,

therefore, like this:

X

1

; : : : ;X

m

; A

1

; : : : ; A

n

`

L

B

whi
h is interpreted as a morphism in L of the form

FX

1


 � � � 
 FX

m


A

1


 � � � 
A

n

�! B

Non-linear sequents are still 
onstrained to have purely non-linear ante
edents and are

interpreted as morphisms in C in the usual way. We abuse notation by writing linear



A `

L

A L-axiom X `

C

X C-axiom

�;X;X; � `

L

A

L-
ontra
tion

�;X; � `

L

A

�;X;X `

C

Y

C-
ontra
tion

�;X `

C

Y

�;� `

L

A

L-weakening

�;X; � `

L

A

� `

C

Y

C-weakening

�;X `

C

Y

� `

C

X X;�;� `

L

A

CL-
ut

�;�;� `

L

A

� `

C

X X;� `

C

Y

CC-
ut

�;� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-
ut

�;�;�;� `

L

B

�;X `

C

Z

C-�-left1

�;X � Y `

C

Z

�; Y `

C

Z

C-�-left2

�;X � Y `

C

Z

�;X; � `

L

A

L-�-left1

�;X � Y ; � `

L

A

�; Y ; � `

L

A

L-�-left2

�;X � Y ; � `

L

A

� `

C

X � `

C

Y

�-right

�;� `

C

X � Y

1-right

`

C

1

�; �; A;B `

L

C


-left

�;�; A
B `

L

C

�;� `

L

A �;� `

L

B


-right

�;�;�;� `

L

A
B

�;� `

L

A

I-left

�;�; I `

L

A

I-right

`

L

I

� `

C

X Y;� `

C

Z

C-!-left

�;X ! Y;� `

C

Z

� `

C

X Y;�;� `

L

A

L-!-left

�;X ! Y;�;� `

L

A

�;X `

C

Y

!-right

� `

C

X ! Y

�;�; A `

L

B

�Æ-right

�;� `

L

A�ÆB

�;� `

L

A �;�; B `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

� `

C

X

F -right

� `

L

FX

�;X; � `

L

A

F -left

�;FX;� `

L

A

�;B;� `

L

A

G-left

�; GB; � `

L

A

� `

L

A

G-right

� `

C

GA

Figure 1: Sequent 
al
ulus presentation of LNL logi




Y

1

� � � � � Y

n

e

�!X FX 
 F�
 �

f

�!A

CL-
ut

 

O

i

FY

i

!


 F�
 �

m
1
1

����!F

 

Y

i

Y

i

!


 F�
 �

Fe
1
1

����!FX 
 F�
 �

f

�!A

X

1

� � � � �X

n

e

�!X

F -right

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FX

F�
B 
 �

e

�!A

G-left

F�
 FGB 
 �

1
"
1

���!F�
B 
 �

e

�!A

FX

1


 � � � 
 FX

n

e

�!A

G-right

Y

i

X

i

�

�!GF

 

Y

i

X

i

!

Gm

�1

���!G

 

O

i

FX

i

!

Ge

�!GA

Figure 2: Categori
al interpretation of LNL logi
 (sket
h)

sequents in the form �;� `

L

A, even though there is no need for the `;' sin
e linear and

non-linear formulae 
an never be 
onfused. Figure 1 shows the sequent rules for LNL logi
.

The interpretation of LNL logi
 in an LNL model is fairly straightforward. We omit the

interpretation of the standard logi
al 
onne
tives and just give details of the interpretation

of one 
ut rule and some of the rules for F and G in Figure 2.

Theorem 10 (Cut Elimination) There is an algorithm whi
h, given a proof � of a

sequent � `

C

X or �;� `

L

A, yields a 
ut-free proof �

0

of the same sequent.

Proof. This follows the broad outline of most 
ut elimination proofs, showing that proofs

may be simpli�ed by a (non-deterministi
) su

ession of lo
al rewrites whi
h per
olate the


uts upwards. Again, see the full version of the paper for details. 2

Theorem 11 The 
ut elimination pro
edure for LNL logi
 is modelled soundly in any

LNL model.

Proof. One shows that whenever one proof is simpli�ed to another then the interpreta-

tions of those two proofs are equal morphisms in the model. 2

There are many possible variations on the sequent rules for LNL logi
. One of the most

natural is to treat the non-linear parts of ante
edents as additive rather than multipli
ative.

This yields an equivalent logi
 
ontaining rules su
h as

�; � `

L

A �;� `

L

B


-right

�;�;� `

L

A
B

One 
an also present the purely multipli
ative version of the logi
 in a 
on
ise way by

using some new metavariables: let P;Q range over either linear or non-linear propositions



�; a:A `

L

a:A �; x:X `

C

x:X

� `

C

s:X � `

C

t:Y

� `

C

(s; t):X � Y

� `

C

(): 1

� `

C

s:X � Y

� `

C

fst(s):X

� `

C

s:X � Y

� `

C

snd(s):Y

�;� `

L

e:A �;� `

L

f :B

�;�;� `

L

e
 f :A
B

�;� `

L

e:A 
B �;�; a:A; b:B `

L

f :C

�;�;� `

L

let a
 b = e in f :C

� `

L

�: I

�;� `

L

e: I �;� `

L

f :A

�;�;� `

L

let � = e in f :A

�; x:X `

C

s:Y

� `

C

(�x:X:s):X ! Y

� `

C

s:X ! Y � `

C

t:X

� `

C

s t:Y

�;�; a:A `

L

e:B

�;� `

L

(�a:A:e):A �ÆB

�;� `

L

e:A�ÆB �;� `

L

f :A

�;�;� `

L

e f :B

� `

C

s:X

� `

L

F(s):FX

�;� `

L

e:FX �; x:X;� `

L

f :A

�;�;� `

L

let F(x) = e in f :A

� `

L

e:A

� `

C

G(e):GA

� `

C

s:GA

� `

L

dereli
t(s):A

Figure 3: LNL term assignment system

and � over mixed 
ontexts. Then we 
an, for example, 
apture both !-left rules in the

one rule

� ` X Y;� ` P

!-left

�;X ! Y;� ` P

This gives a set of rules whi
h are essentially the same as those given by Ja
obs in [9℄

(whi
h also 
ontains a good a

ount of some 
on
rete 
ategori
al models). Ja
obs gives a

rather di�erent a

ount of the semanti
s and there are also some subtle di�eren
es in the

proof rules.

3.2 Natural Dedu
tion and LNL Terms

There is a natural dedu
tion formulation of LNL logi
 and an asso
iated normalisation

pro
edure. This gives, by the Curry-Howard 
orresponden
e, a term assignment system

and a set of redu
tion rules, i.e. a mixed linear/non-linear lambda 
al
ulus. The natural

dedu
tion system we present 
orresponds to the additive 
ontext variant of the sequent


al
ulus and is given in `sequent style', 
omplete with the term annotations, in Figure 3.



fst(s; t) !

�

s

snd(s; t) !

�

t

let a
 b = e
 f in g !

�

g[e=a; f=b℄

let � = � in e !

�

e

(�x:X:s) t !

�

s[t=x℄

(�a:A:e) f !

�

e[f=a℄

let F(x) = F(s) in e !

�

e[s=x℄

dereli
t(G(e)) !

�

e

Figure 4: Term 
al
ulus �-redu
tions

It is easy to 
he
k that terms 
ode derivations uniquely and that the natural dedu
tion

system is equivalent to the sequent 
al
ulus. The proof of the equivalen
e uses the impor-

tant lemmas that substitution and weakening are admissible rules in the natural dedu
tion

system. Linear variables a,b in the 
ontext o

ur free exa
tly on
e in a well-typed term,

whereas non-linear variables x,y may o

ur any number of times, in
luding 0. Note also

that there is no expli
it syntax for weakening or 
ontra
tion. We omit the details of the

interpretation of natural dedu
tions in LNL models.

The fundamental kind of normalisation step on natural dedu
tions is the removal of a

`detour' in the dedu
tion, whi
h 
onsists of an introdu
tion rule immediately followed by

the 
orresponding elimination. For reasons of spa
e, we omit the details of the redu
tions

on proofs but merely list the indu
ed �-redu
tions on terms in Figure 4.

There is also a se
ondary 
lass of redu
tions { the 
ommuting 
onversions, of whi
h

there are 12 in total. The following is a typi
al term redu
tion indu
ed by a 
ommuting


onversion:

let a
 b = (let � = e in f) in g !




let � = e in (let a
 b = f in g)

The redu
tion relation !

�;


, whi
h is the pre
ongruen
e 
losure of the union of !

�

and

!




, is easily 
he
ked to preserve types. We also have (
f. Theorem 11):

Theorem 12 Both the �-redu
tions and the 
ommuting 
onversions are soundly modelled

by the interpretation of the natural dedu
tion system in any LNL model.

� If �;� `

L

e:A and e!

�;


e

0

then [[�; � `

L

e:A℄℄ = [[�; � `

L

e

0

:A℄℄

� If � `

C

s:X and s!

�;


s

0

then [[� `

C

s:X℄℄ = [[� `

C

s

0

:X℄℄

2

We 
an de�ne translations in both dire
tions between LNL logi
 and ILL. If A is an

ILL proposition, de�ne the linear LNL proposition A

Æ

indu
tively as follows:

A

Æ

0

= A

0

(A

0

atomi
) (A
B)

Æ

= A

Æ


B

Æ

(A�ÆB)

Æ

= A

Æ

�ÆB

Æ

I

Æ

= I

(!A)

Æ

= FG(A

Æ

)



Theorem 13 If � ` e:A in ILL, then there is an e

Æ

su
h that �

Æ

`

L

e

Æ

:A

Æ

. 2

In the other dire
tion, one translates the linear part of LNL logi
 essentially un
hanged

and the non-linear part using a variant of the Girard translation. E.g.:

(A
B)

�

= A

�


B

�

(A�ÆB)

�

= A

�

�ÆB

�

(FX)

�

= !(X

�

) (X � Y )

�

= !(X

�

)
!(Y

�

)

(X ! Y )

�

= !(X

�

)�ÆY

�

(GA)

�

= A

�

Theorem 14

1. If � `

C

s:X in LNL logi
, there is an LTC term s

�

s.t. !�

�

` s

�

:X

�

2. If �;� `

L

e:A in LNL logi
, there is an LTC term e

�

s.t. !�

�

;�

�

` e

�

:A

�

2

It is easy to see that for any ILL judgement � ` A, �

Æ

�

` A

Æ

�

is equal to the original

judgement. Thus � ` A is provable in ILL i� �

Æ

`

L

A

Æ

is provable in LNL logi
. This

extends to proofs in the following way:

Theorem 15 If � ` e:A in LTC, then not only is � ` e

Æ

�

:A provable, but e � e

Æ

�

where

� is the 
ategori
al equality relation on LTC terms given in [4℄. 2

4 Con
lusions and Further Work

We have given a new and intuitively appealing 
hara
terisation of 
ategori
al models of

intuitionisti
 linear logi
. We then used this presentation of the models as the basis for

de�ning a new logi
 whi
h uni�es ordinary intuitionisti
 logi
 with intuitionisti
 linear

logi
. The natural dedu
tion presentation of the new logi
 then led to a mixed linear

and non-linear lambda 
al
ulus. LNL logi
 has a natural 
lass of 
ategori
al models and a

well-behaved proof theory in both its sequent 
al
ulus and natural dedu
tion formulations.

Given this, and the links with other resear
h whi
h were mentioned in the introdu
tion,

LNL logi
 
ertainly seems to merit further study.

On the theoreti
al side, mu
h remains to be done. We have not proved a 
ompleteness

theorem, nor have we proved that the LNL term 
al
ulus is strong normalising. The

strong normalisation proof should be relatively easy to do via a translation argument like

that whi
h we have previously used for the linear term 
al
ulus [3℄ and the 
omputational

lambda 
al
ulus. It would be ni
e to have better (that is, less degenerate) examples of


on
rete models and one might well �nd su
h examples by looking at some of the 
ategories

arising in game semanti
s.

We should investigate further how to treat the additives. Beyond that, one 
ould


onsider adding indu
tive or 
oindu
tive datatypes or se
ond-order quanti�
ation to the

logi
. This seems parti
ularly worthwhile in the light of Plotkin's work on parametri
ity

and re
ursion in a logi
 rather like ours [12℄.

On the pra
ti
al side, we should investigate whether or not the LNL term 
al
ulus lends

itself more readily to eÆ
ient implementation than does the linear term 
al
ulus. The hope

is that one 
an arrange an implementation with two memory spa
es, 
orresponding to the

two subsystems of LNL logi
. The non-linear spa
e would be garbage 
olle
ted in the

usual way, whereas the linear spa
e would 
ontain obje
ts satisfying some useful memory

invariant (su
h as having only one pointer to them at all times) whi
h 
ould be exploited

to redu
e the spa
e usage of programs. Previous experien
e, however, shows that turning

su
h intuitively plausible hopes into provably 
orre
t implementations is a non-trivial task.
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