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Abstrat

Intuitionisti linear logi regains the expressive power of intuitionisti logi through

the ! (`of ourse') modality. Benton, Bierman, Hyland and de Paiva have given a term

assignment system for ILL and an assoiated notion of ategorial model in whih the

! modality is modelled by a omonad satisfying ertain extra onditions. Ordinary

intuitionisti logi is then modelled in a artesian losed ategory whih arises as a

full subategory of the ategory of oalgebras for the omonad.

This paper attempts to explain the onnetion between ILL and IL more diretly

and symmetrially by giving a logi, term alulus and ategorial model for a system

in whih the linear and non-linear worlds exist on an equal footing, with operations

allowing one to pass in both diretions. We start from the ategorial model of ILL

given by Benton, Bierman, Hyland and de Paiva and show that this is equivalent

to having a symmetri monoidal adjuntion between a symmetri monoidal losed

ategory and a artesian losed ategory. We then derive both a sequent alulus

and a natural dedution presentation of the logi orresponding to the new notion of

model.

1 Introdution

This paper onerns a variant of the intuitionisti fragment of Girard's linear logi [7℄.

Linear logi does not ontain the strutural rules of weakening and ontration, but these

are reintrodued in a ontrolled way via a unary operator !. The rules for ! allow ordinary

intuitionisti logi to be interpreted within intuitionisiti linear logi.

In [5, 4℄, Benton, Bierman, Hyland and de Paiva formulated a natural dedution pre-

sentation of the multipliative/exponential fragment of ILL, together with a term alulus

(extending the propositions as types analogy to linear logi) and a ategorial model (a lin-

ear ategory). In that work, the multipliative (i.e. 
,�Æ) part of the logi is modelled in a

symmetri monoidal losed ategory (SMCC). That muh is standard and well-understood.

The ! modality is then modelled by a monoidal omonad on the SMCC whih is required

to satisfy ertain extra (and non-trivial) onditions. These extra onditions are suÆient
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to ensure that the ategory of oalgebras for the omonad ontains a full subategory

whih is artesian losed and thus models the interpretation of IL in ILL.

Whilst the view that linear logi is primary and that ordinary logi is merely a part of

linear logi is appealing , it is not neessarily always the best way of seeing the situation.

This paper tries to present a more symmetri view of the relationship between IL and ILL

and it seems worth trying to give some motivation for why this might be worth doing.

From a pratial point of view, there are a number of reasons why the standard linear

term alulus (LTC) of [5℄ might be onsidered unsuitable as the basis of a linear funtional

programming language. Firstly, linear funtional programming is verbose and unnatural {

whilst the LTC might well be a useful intermediate language for a ompiler, it is not very

appropriate as a language for everyday programming. If linearity is to be made visible

to the programmer at all, it appears preferable to have some extension of a traditional

non-linear language in whih one ould write the oasional linear funtion in order to

deal with I/O, in-plae update or whatever.

A more fundamental, problem is that, despite onsiderable researh e�ort, the preise

way in whih a linear language an help with what we have deliberately referred to rather

vaguely as `I/O, in-plae update or whatever' is still not lear. Most published proposals

for using linear types to ontrol or desribe intensional features of funtional programs

are either unonvining or use type systems whih are only loosely inspired by linear

logi. Systems in the last ategory an, pragmatially, be extremely suessful; the most

obvious example being the language CLEAN. The type system of CLEAN [1℄ inorporates

a `uniqueness' operator for (roughly) making non-linear types linear. This is in some

sense dual to the ! of linear logi, whih allows linear types to be treated non-linearly.

Unique types in CLEAN are used to add destrutive updates and I/O to the language in

a referentially transparent way.

One (somewhat speulative) aim of the work desribed here is to provide a sound

mathematial and logial basis for a type system like that of CLEAN. We are enour-

aged not only by the similarities between CLEAN and the alulus to be presented here

(the LNL term alulus), but also by the fat that other researhers looking at pratial

implementations of linear languages have ome up with systems whih inlude aspets

of the LNL term alulus. For example, Linoln and Mithell's linear variant [10℄ of the

`three instrution mahine' divides memory into two spaes orresponding to linear and

non-linear objets. Similarly, Wadler's `ative and passive' type system [14℄ separates lin-

ear from non-linear types. Jaobs [9℄ has also desribed how a sequent alulus inspired

by CLEAN's uniqueness types may be interpreted using the linear ategories of [4℄ under

some extra simplifying assumptions.

From a more logial point of view, there has reently been muh interest in Girard's

system LU [8℄ and related systems in whih the (multi)sets of formulae ouring in sequents

are split into di�erent zones. Formulae in some zones are treated lassially, whilst those

in other zones are treated linearly. Intuitionisti logis inspired by LU have been proposed

by Plotkin [12℄ and by Wadler [15℄. It is desirable to study the proof and model theory

of suh systems diretly, rather than treating them as syntati sugar for, for example,

ordinary linear logi (if only to verify that it is possible to treat them as suh syntati

sugar). The logi of this paper should turn out to be equivalent to a subsystem of LU,

though there are some super�ial di�erenes of presentation.

From the ategorial perspetive, it seems natural to explore the more symmetri

situation where one starts from an SMCC and a CCC with (adjoint) funtors between

them, rather than an SMCC with suÆient extra struture to ensure the existene of suh



a CCC. This is partiularly true in the light of the fat that the de�nition of a linear

ategory in [4℄ was arrived at mostly from the proof theory of linear logi, but also (and

this was something of a `hidden agenda') from a desire to have enough struture to be able

to derive an appropriate CCC from the model.

1

It is also fair to say that the de�nition

of a linear ategory is surprisingly ompliated, so looking for simpler models, or simpler

presentations of the same models, is a good idea.

The initial motivation for the present work omes from the ategorial piture skethed

in the previous paragraph. One the de�nition has been made a little more preise, we

shall show that suh a situation leads to a omonad on the linear part of the model whih

automatially satis�es all the extra onditions required of a linear ategory, and thus

gives a sound model of ILL inluding the ! operator. Furthermore, the onverse holds {

every linear ategory gives rise to suh a pair of ategories. Thus we have an alternative,

simpler, de�nition of what onstitutes a model for ILL. This an be seen as giving a purely

ategory-theoreti reonstrution of !, in that a linear ategory (a model for ILL with !) is

exatly what one obtains if one attempts diretly to model an interpretation of IL in ILL

without the !.

Another interesting feature of the model is that it gives rise to a strong monad on the

CCC part. Thus one obtains a model not just of the lambda alulus, but of Moggi's

omputational lambda alulus [11℄.

Setion 3 then looks at the logi and term alulus whih are assoiated with our

new notion of model. We formulate a sequent alulus presentation whih satis�es ut

elimination and then give an equivalent natural dedution system. This then gives, by

the Curry-Howard orrespondene, an interesting term alulus whih ombines the usual

simply-typed lambda alulus with a linear lambda alulus. We also onsider translations

in both diretions between this new term alulus and the linear alulus of [5℄.

2 The Categorial Piture

Our aim is to present a logi/terms/ategories orrespondene, similar to that between

intuitionisti logi, simply-typed lambda alulus and artesian losed ategories, in whih

the ategorial vertex of the triangle onsists of (essentially) a artesian losed ategory C,

a symmetri monoidal losed ategory L and a pair of funtors G : L ! C and F : C ! L

between them with F a G. Intuitively, the requirement that the two funtors be adjoint

should be understood as saying that there is an interpretation of IL (the CCC) into ILL

(the SMCC).

We will, however, need our ategorial model to satisfy some extra onditions before

we an have any hope of it modelling a logi or term alulus. It is neessary for the

two funtors and the unit and ounit of the adjuntion to behave well with respet to the

monoidal strutures of the two ategories as this is used to represent the multiategorial

struture implied by ommas in ontexts. We do not have the spae to give full de�nitions

of all the ategorial onepts we shall need, but we an at least reall the broad outlines

of the most important ones. The longer version of this paper [2℄ inludes the details.

Given monoidal ategories (M;
; I) and (M

0

;


0

; I

0

), a monoidal funtor F : M !

M

0

is a funtor from M to M

0

equipped with a map m

I

: I

0

! F (I) in M

0

and a

1

This is not to say that there is anything in the model whih is not justi�able in terms of the proof

theory (given a proper proof-theoreti aount of �-rules), but merely that, given that a translation of IL

proofs into ILL proofs exists, any orret model for ILL must be able to reet the translation semantially.



natural transformation m

X;Y

: F (X)


0

F (Y )! F (X 
 Y ) whih satisfy some oherene

onditions. IfM andM

0

are symmetri monoidal, then F is a symmetri monoidal funtor

if it is monoidal and in addition respets the twist maps � and �

0

.

If (F;m) and (G;n) are monoidal funtors from an MC M to an MC M

0

, then a

monoidal natural transformation from (F;m) to (G;n) is a natural transformation f

X

from F to G whih is ompatible with the omparison maps in an obvious way.

If M and M

0

are (symmetri) monoidal ategories then a (symmetri) monoidal ad-

juntion between them is an ordinary adjuntion in whih both of the funtors are (sym-

metri) monoidal funtors and both the unit and the ounit of the adjuntion are monoidal

natural transformations.

De�nition 1 A linear/non-linear model (LNL model) onsists of

1. a artesian losed ategory (C; 1;�;!);

2. a symmetri monoidal losed ategory (L; I;
;�Æ) and

3. a pair of symmetri monoidal funtors (G;n) : L ! C and (F;m) : C ! L between

them whih form a symmetri monoidal adjuntion with F a G.

We shall usually use A;B;C to range over objets of L and X;Y;Z for objets of C. We

write � and " for, respetively, the unit and ounit of the adjuntion.

An important onsequene of the de�nition of an LNL model is that as well as the

natural transformations

m

X;Y

: FX 
 FY ! F (X � Y )

n

A;B

: GA�GB ! G(A
B)

and their nullary versions, the maps m : I ! F1 and n : 1 ! GI, we have a family of

maps

p

X;Y

: F (X � Y )! FX 
 FY

given by the transpose of n

FX;FY

Æ �

X

� �

Y

:

F (X � Y )

F (���)

����!F (GFX �GFY )

F (n)

��!FG(FX 
 FY )

"

�!FX 
 FY

and a map p : F1! I given by F1

Fn

�!FGI

"

I

�!I.

Proposition 1 In an LNL model (in fat for any monoidal adjuntion), the maps m

X;Y

are the omponents of a natural isomorphism with inverses p

X;Y

and, furthermore, the

map m is an isomorphism with inverse p:

F (X)
 F (Y )

�

=

F (X � Y )

I

�

=

F (1)

2

So F preserves the monoidal struture up to an isomorphism rather than merely up

to a omparison. That is to say, F is a strong funtor. There is, of ourse, a lot more

interesting struture in an LNL model. To begin with, the adjuntion indues a omonad

on L and a monad on C. We disuss eah of these below.



2.1 The Comonad and Comparison with Linear Categories

The omonad on L is (FG; " : FG ! 1; Æ : FG ! FGFG) where " is the ounit of the

adjuntion and Æ has omponents Æ

A

= F (�

G(A)

). We write ! for FG.

Lemma 2 The omonad (!; "; Æ) is symmetri monoidal, i.e. there is a natural transfor-

mation q with omponents q

A;B

:!A
!B !!(A
B) and a map q : I !!I suh that (!; q) is

a symmetri monoidal funtor and " and Æ are monoidal natural transformations. 2

In [4℄, we de�ned a model of the multipliative/exponential fragment of intuitionisti

linear logi as follows:

De�nition 2 A linear ategory is spei�ed by the following data:

1. A symmetri monoidal losed ategory (L;
; I;�Æ).

2. A symmetri monoidal omonad (!; "; Æ; q) on L.

3. Monoidal natural transformations with omponents e

A

:!A! I and d

A

:!A!!A
!A

suh that

(a) eah (!A; e

A

; d

A

) is a ommutative omonoid,

(b) e

A

and d

A

are oalgebra maps, and

() all oalgebra maps between free oalgebras preserve the omonoid struture.

2.1.1 Linear Categories and LNL Models are Equivalent

Any LNL model inludes, by de�nition, part 1 of De�nition 2, and we have just seen

(Lemma 2) that it also satis�es part 2. Furthermore, there are plausible andidates for e

A

and d

A

:

e

A

def

=p Æ F (�

GA

)

where �

GA

is the unique map from GA to the terminal objet 1 of C, and

d

A

def

=p

GA;GA

Æ F (�

GA

)

where �

GA

is the diagonal map from GA to GA�GA in C.

Theorem 3 For any LNL model, e and d as de�ned above satisfy all the onditions given

in part 3 of De�nition 2. In other words, any LNL model is a linear ategory.

Proof. This involves heking that a fairly large olletion of diagrams all ommute.

Although this is a lot of work, none of them are very diÆult. Proposition 1 plays an

important role in several of them. Further details may be found in [2℄. 2

We now sketh the proof of the onverse to Theorem 3. Whilst this is largely a matter

of realling results whih were proved in [4℄, by doing this arefully we obtain a slightly

better understanding of the situation.

Assume that L is a linear ategory as in De�nition 2. We need to show that this gives

rise to a CCC C and a symmetri monoidal adjuntion between L and C as in De�nition 1.

Reall that the omonad on L gives rise to two ategories of algebras:



� The Eilenberg-Moore ategory L

!

. This has as objets all the !-oalgebras (A; h

A

:

A!!A) and as morphisms all the oalgebra morphisms.

� The (o-)Kleisli ategory L

!

. This is the full subategory of L

!

whih has as objets

all the free !-oalgebras (!A; Æ

A

:!A!!!A).

Eah of these ategories omes with a pair of adjoint funtors F a G where G : A 7!

(!A; Æ

A

) and F : (A; h

A

) 7! A.

Lemma 4 If L is a linear ategory then L

!

has �nite produts, with the terminal objet

given by (I; q : I !!I) and the produt of (A; h

A

) and (B; h

B

) by (A
B; q

A;B

Æ(h

A


h

B

)).

2

In general, there is no reason why the Eilenberg-Moore ategory should be artesian

losed, sine there is no reason why it should have an internal hom for arbitrary pairs

of oalgebras. We an, however, �nd a full subategory of the Eilenberg-Moore ategory

whih is artesian losed.

Lemma 5 In L

!

, all the free oalgebras are exponentiable. That is, there is an inter-

nal hom into any free oalgebra (!B; Æ

B

). Furthermore, the internal hom is itself a free

oalgebra. 2

Now, notie that in any artesian ategory, if an objet X is exponentiable then so is

[Y;X℄ for any Y , sine we an take [Z; [Y;X℄℄ to be [Z � Y;X℄. Furthermore, the produt

of two exponentiable objets X and Y is exponentiable sine we an take [Z;X � Y ℄ to

be [Z;X℄ � [Z; Y ℄. Taking this together with the previous lemma, we have:

Lemma 6 The full subategory Exp(L

!

) of the Eilenberg-Moore ategory having as objets

the exponentiable oalgebras is artesian losed and ontains the Kleisli ategory L

!

. 2

Note that the Kleisli ategory is not, in general, itself artesian losed, sine the produt

of two free oalgebras is not neessarily free. We shall onsider a ase in whih this does

happen in Setion 2.1.2. In the general ase, we do have the following, however:

Lemma 7 The full subategory L

�

!

of Exp(L

!

) onsisting of �nite produts of free oalge-

bras is artesian losed. 2

Theorem 8 If L is a linear ategory then by taking C to be either L

�

!

or Exp(L

!

) and F

and G to be the appropriate forgetful and free funtors one obtains an LNL model.

Proof. We have already seen that both the hoies for C are artesian losed so it just

remains to hek that F and G form a symmetri monoidal adjuntion, whih is straight-

forward. 2

2.1.2 Additives and the Seely Isomorphisms

We now onsider briey what happens when an LNL model also has the extra struture

required to model the additive linear onnetives &;� and the non-linear sum +. The

simplest ase is when the SMCC part L of an LNLmodel also has �nite produts, modelling



the additive onnetive `with' (&). The funtor G preserves limits beause it is a right

adjoint, and in partiular

G(A&B)

�

=

GA�GB and G1

�

=

1

Taking this together with Proposition 1, we obtain the following natural isomorphisms:

!A
!B

�

=

!(A&B) and I

�

=

!1

These isomorphisms were entral to Seely's proposed model of ILL [13℄, whih also pro-

posed interpreting IL in the Kleisli ategory. See [6℄ for a ritique of Seely's semantis;

here we merely note the following:

Proposition 9 If a linear ategory has produts then the Kleisli ategory L

!

is artesian

losed.

Proof. One shows that L having produts implies that the produt of two free !-oalgebras

is a free oalgebra. This means that L

!

oinides with L

�

!

, whih is artesian losed by

Lemma 7. 2

The orrespondene between linear ategories and LNL models extends trivially to

one between linear ategories with �nite produts and LNL models with produts on the

SMCC part. Coproduts are slightly more problemati. Whilst the appropriate extension

of an LNL model seems obvious (just require both L and C to have �nite oproduts),

this does not orrespond quite as simply as one might hope to linear ategories with

oproduts.

The diÆulty is that, whilst an LNL model with oproduts ertainly gives rise to

a linear ategory with oproduts, the onverse does not appear neessarily to be true.

Assume L is a linear ategory with �nite oproduts, then L

!

also has �nite oproduts as

we an de�ne the oprodut of (A; h

A

) and (B; h

B

) to be

(A+B; [!inl Æ h

A

; !inr Æ h

B

℄)

and this is easily heked to satisfy the appropriate onditions. There seems no general

reason, however, why either of the two CCCs whih we have already identi�ed as arising

from L should be losed under this oprodut.

Fortunately, something an be salvaged. There are weak �nite oproduts � in the

Kleisli ategory, obtained by de�ning

(!A; Æ

A

)� (!B; Æ

B

)

def

=(!(!A+!B); Æ

!A+!B

)

with, for example, the left injetion given by !inl Æ Æ

A

.

2.2 The Monad and Comparison with Let-CCCs

The monad on C is (GF; � : 1 ! GF;� : GFGF ! GF ) where � is the unit of the

adjuntion and � has omponents �

X

= G("

FX

). Writing T for GF , one an hek that

(T; �; �) is a symmetri monoidal monad, i.e. T is a symmetri monoidal funtor and both

� and � are monoidal natural transformations.

Cartesian losed ategories with monoidal monads have reently been the fous of some

interest, as they are the models for Moggi's omputational lambda alulus [11℄. The



de�nition is usually given in terms of strong monads, where a monad T on a monoidal

ategory is said to be strong if it is equipped with a natural transformation � (alled the

tensorial strength) with omponents

�

A;B

: A
 TB ! T (A
B)

satsifying some extra onditions. A strong monad on a symmetri monoidal ategory

is said to be ommutative if the tensorial strength behaves well with respet to the twist

maps �. It turns out that ommutative strong monads are the same as symmetri monoidal

monads (see the full paper for more details).

A model of the omputational lambda alulus (a let-CCC) is a artesian losed at-

egory with a strong monad. The above implies that an LNL model always has a strong

monad on the CCC part of the model and thus inludes a let-CCC. The monad is, how-

ever, always ommutative (beause T is a symmetri monoidal funtor). It is not the ase

that all strong monads on CCCs are ommutative; indeed, some very important monads

arising in omputer siene are non-ommutative, for example the free monoid monad

(list; [�℄; f latten) on the ategory of sets. Thus it is ertainly the ase that not all, or

even all interesting, let-CCC's will arise from LNL models. Having said that, many of

the most important monads arising in semantis, suh as lifting and various avours of

powerset/powerdomain, are ommutative, so the theory of ommutative strong monads

on CCCs is not without independent interest.

2.3 Examples

Let L be the ategory of pointed !pos (!-oomplete partial orders with a least element)

and strit (bottom preserving) ontinuous maps. This is a symmetri monoidal losed

ategory with tensor produt given by the so-alled smash produt, the identity for the

tensor by the one-point spae (whih is also a biterminator) and internal hom by the strit

ontinuous funtion spae. In fat, L also has binary produts and oproduts, given by

artesian produt and oalesed sum respetively.

Given this hoie of L, there are a ouple of obvious hoies for the CCC C whih give

an LNL model. One is to take C to be the ategory of pointed !-pos and ontinuous

(not neessarily strit) maps, G to be the inlusion funtor and F to be the lifting funtor

F : X ! X

?

. The monoidal struture m on F is given by the evident isomorphism

X

?


 Y

?

�

=

(X � Y )

?

. In this ase, C is (equivalent to) the Kleisli ategory of the lifting

omonad on L. Note that the artesian losure of the Kleisli ategory follows from the

fat that L has produts. There are strong oproduts in L but only weak ones in C.

An alternative hoie of C is the ategory of (not neessarily pointed) !-pos (these

are sometimes alled predomains) and ontinuous maps, again with inlusion and lifting

funtors. This is equivalent to the Eilenberg-Moore ategory of the lift omonad on L, so

it has produts and oproduts by our previous general arguments, but it also turns out

to be artesian losed.

A di�erent example arises from taking L be the ategory of Abelian groups and group

homomorphisms. This is symmetri monoidal losed with A
 B the Abelian group gen-

erated by the set of tokens fa
 b j a 2 A; b 2 Bg subjet to the relations

(a

1

+ a

2

)
 b = a

1


 b+ a

2


 b

a
 (b

1

+ b

2

) = a
 b

1

+ a
 b

2



(More ategorially, A 
 B an be de�ned by a homomorphism A � B ! A 
 B whih

is universal amongst bilinear maps into Abelian groups.) The unit for 
 is the group of

integers under addition, Z, and the internal hom A�ÆB is the group of homomorphisms

from A to B with the multipliation inherited from B. In fat L also has biproduts { the

diret sum A�B is both a produt and a oprodut and the trivial group is a biterminator.

Now let C be Set, and F and G be the free and forgetful funtors. It is easy to hek

that this does indeed give an LNL model. The omonad on L takes an Abelian group to

the free group on its underlying set. " is `evaluation' and � is the insertion of generators.

In this ase C is equivalent to the Kleisli ategory of the omonad on L.

3 LNL Logi

LNL-models are, of ourse, supposed to be models of a logial system. Theorem 3 says

that they are models for intuitionisti linear logi as de�ned by Girard, but the form of

the de�nition of LNL-model suggests an interesting alternative presentation of the logi.

The idea is that one starts with two independent logis, orresponding to the ategories

L and C and then adds operators whih orrespond in some way to the adjuntion.

In keeping with our earlier onventions for naming objets of L and C, we will use

A;B;C to range over linear propositions and X;Y;Z for onventional ones. We shall use

� and � to range over linear ontexts (�nite multisets of linear propositions) and � and �

for non-linear ones. We also deorate turnstiles with L or C to indiate whih subsystem

they belong to. Finally, if � is X

1

; : : : ;X

n

then F� means FX

1

; : : : ; FX

n

, and similarly

for G�. The two lasses of propositions with whih we shall be dealing are de�ned by the

following grammar:

A;B := A

0

j I j A
B j A�ÆB j FX

X;Y := X

0

j 1 j X � Y j X ! Y j GA

where A

0

(resp. X

0

) ranges over some unspei�ed set of atomi linear (resp. non-linear)

propositions.

3.1 Sequent Calulus

The two logis with whih we start are very familiar viz. the exponential-free, multiplia-

tive fragment of propositional intuitionisti linear logi and the �;! fragment of ordinary

intuitionisti logi. These both have very well-behaved sequent presentations. How should

the systems be enrihed and ombined to give LNL-logi? There are (at least) two natural

answers, neither of whih satis�es ut elimination. Fortunately, there is a presentation

of the logi whih has a good proof theory. The trik is to allow onventional non-linear

formulae to appear in the assumptions of a linear sequent. A typial linear sequent looks,

therefore, like this:

X

1

; : : : ;X

m

; A

1

; : : : ; A

n

`

L

B

whih is interpreted as a morphism in L of the form

FX

1


 � � � 
 FX

m


A

1


 � � � 
A

n

�! B

Non-linear sequents are still onstrained to have purely non-linear anteedents and are

interpreted as morphisms in C in the usual way. We abuse notation by writing linear



A `

L

A L-axiom X `

C

X C-axiom

�;X;X; � `

L

A

L-ontration

�;X; � `

L

A

�;X;X `

C

Y

C-ontration

�;X `

C

Y

�;� `

L

A

L-weakening

�;X; � `

L

A

� `

C

Y

C-weakening

�;X `

C

Y

� `

C

X X;�;� `

L

A

CL-ut

�;�;� `

L

A

� `

C

X X;� `

C

Y

CC-ut

�;� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-ut

�;�;�;� `

L

B

�;X `

C

Z

C-�-left1

�;X � Y `

C

Z

�; Y `

C

Z

C-�-left2

�;X � Y `

C

Z

�;X; � `

L

A

L-�-left1

�;X � Y ; � `

L

A

�; Y ; � `

L

A

L-�-left2

�;X � Y ; � `

L

A

� `

C

X � `

C

Y

�-right

�;� `

C

X � Y

1-right

`

C

1

�; �; A;B `

L

C


-left

�;�; A
B `

L

C

�;� `

L

A �;� `

L

B


-right

�;�;�;� `

L

A
B

�;� `

L

A

I-left

�;�; I `

L

A

I-right

`

L

I

� `

C

X Y;� `

C

Z

C-!-left

�;X ! Y;� `

C

Z

� `

C

X Y;�;� `

L

A

L-!-left

�;X ! Y;�;� `

L

A

�;X `

C

Y

!-right

� `

C

X ! Y

�;�; A `

L

B

�Æ-right

�;� `

L

A�ÆB

�;� `

L

A �;�; B `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

� `

C

X

F -right

� `

L

FX

�;X; � `

L

A

F -left

�;FX;� `

L

A

�;B;� `

L

A

G-left

�; GB; � `

L

A

� `

L

A

G-right

� `

C

GA

Figure 1: Sequent alulus presentation of LNL logi



Y

1

� � � � � Y

n

e

�!X FX 
 F�
 �

f

�!A

CL-ut

 

O

i

FY

i

!


 F�
 �

m
1
1

����!F

 

Y

i

Y

i

!


 F�
 �

Fe
1
1

����!FX 
 F�
 �

f

�!A

X

1

� � � � �X

n

e

�!X

F -right

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FX

F�
B 
 �

e

�!A

G-left

F�
 FGB 
 �

1
"
1

���!F�
B 
 �

e

�!A

FX

1


 � � � 
 FX

n

e

�!A

G-right

Y

i

X

i

�

�!GF

 

Y

i

X

i

!

Gm

�1

���!G

 

O

i

FX

i

!

Ge

�!GA

Figure 2: Categorial interpretation of LNL logi (sketh)

sequents in the form �;� `

L

A, even though there is no need for the `;' sine linear and

non-linear formulae an never be onfused. Figure 1 shows the sequent rules for LNL logi.

The interpretation of LNL logi in an LNL model is fairly straightforward. We omit the

interpretation of the standard logial onnetives and just give details of the interpretation

of one ut rule and some of the rules for F and G in Figure 2.

Theorem 10 (Cut Elimination) There is an algorithm whih, given a proof � of a

sequent � `

C

X or �;� `

L

A, yields a ut-free proof �

0

of the same sequent.

Proof. This follows the broad outline of most ut elimination proofs, showing that proofs

may be simpli�ed by a (non-deterministi) suession of loal rewrites whih perolate the

uts upwards. Again, see the full version of the paper for details. 2

Theorem 11 The ut elimination proedure for LNL logi is modelled soundly in any

LNL model.

Proof. One shows that whenever one proof is simpli�ed to another then the interpreta-

tions of those two proofs are equal morphisms in the model. 2

There are many possible variations on the sequent rules for LNL logi. One of the most

natural is to treat the non-linear parts of anteedents as additive rather than multipliative.

This yields an equivalent logi ontaining rules suh as

�; � `

L

A �;� `

L

B


-right

�;�;� `

L

A
B

One an also present the purely multipliative version of the logi in a onise way by

using some new metavariables: let P;Q range over either linear or non-linear propositions



�; a:A `

L

a:A �; x:X `

C

x:X

� `

C

s:X � `

C

t:Y

� `

C

(s; t):X � Y

� `

C

(): 1

� `

C

s:X � Y

� `

C

fst(s):X

� `

C

s:X � Y

� `

C

snd(s):Y

�;� `

L

e:A �;� `

L

f :B

�;�;� `

L

e
 f :A
B

�;� `

L

e:A 
B �;�; a:A; b:B `

L

f :C

�;�;� `

L

let a
 b = e in f :C

� `

L

�: I

�;� `

L

e: I �;� `

L

f :A

�;�;� `

L

let � = e in f :A

�; x:X `

C

s:Y

� `

C

(�x:X:s):X ! Y

� `

C

s:X ! Y � `

C

t:X

� `

C

s t:Y

�;�; a:A `

L

e:B

�;� `

L

(�a:A:e):A �ÆB

�;� `

L

e:A�ÆB �;� `

L

f :A

�;�;� `

L

e f :B

� `

C

s:X

� `

L

F(s):FX

�;� `

L

e:FX �; x:X;� `

L

f :A

�;�;� `

L

let F(x) = e in f :A

� `

L

e:A

� `

C

G(e):GA

� `

C

s:GA

� `

L

derelit(s):A

Figure 3: LNL term assignment system

and � over mixed ontexts. Then we an, for example, apture both !-left rules in the

one rule

� ` X Y;� ` P

!-left

�;X ! Y;� ` P

This gives a set of rules whih are essentially the same as those given by Jaobs in [9℄

(whih also ontains a good aount of some onrete ategorial models). Jaobs gives a

rather di�erent aount of the semantis and there are also some subtle di�erenes in the

proof rules.

3.2 Natural Dedution and LNL Terms

There is a natural dedution formulation of LNL logi and an assoiated normalisation

proedure. This gives, by the Curry-Howard orrespondene, a term assignment system

and a set of redution rules, i.e. a mixed linear/non-linear lambda alulus. The natural

dedution system we present orresponds to the additive ontext variant of the sequent

alulus and is given in `sequent style', omplete with the term annotations, in Figure 3.



fst(s; t) !

�

s

snd(s; t) !

�

t

let a
 b = e
 f in g !

�

g[e=a; f=b℄

let � = � in e !

�

e

(�x:X:s) t !

�

s[t=x℄

(�a:A:e) f !

�

e[f=a℄

let F(x) = F(s) in e !

�

e[s=x℄

derelit(G(e)) !

�

e

Figure 4: Term alulus �-redutions

It is easy to hek that terms ode derivations uniquely and that the natural dedution

system is equivalent to the sequent alulus. The proof of the equivalene uses the impor-

tant lemmas that substitution and weakening are admissible rules in the natural dedution

system. Linear variables a,b in the ontext our free exatly one in a well-typed term,

whereas non-linear variables x,y may our any number of times, inluding 0. Note also

that there is no expliit syntax for weakening or ontration. We omit the details of the

interpretation of natural dedutions in LNL models.

The fundamental kind of normalisation step on natural dedutions is the removal of a

`detour' in the dedution, whih onsists of an introdution rule immediately followed by

the orresponding elimination. For reasons of spae, we omit the details of the redutions

on proofs but merely list the indued �-redutions on terms in Figure 4.

There is also a seondary lass of redutions { the ommuting onversions, of whih

there are 12 in total. The following is a typial term redution indued by a ommuting

onversion:

let a
 b = (let � = e in f) in g !



let � = e in (let a
 b = f in g)

The redution relation !

�;

, whih is the preongruene losure of the union of !

�

and

!



, is easily heked to preserve types. We also have (f. Theorem 11):

Theorem 12 Both the �-redutions and the ommuting onversions are soundly modelled

by the interpretation of the natural dedution system in any LNL model.

� If �;� `

L

e:A and e!

�;

e

0

then [[�; � `

L

e:A℄℄ = [[�; � `

L

e

0

:A℄℄

� If � `

C

s:X and s!

�;

s

0

then [[� `

C

s:X℄℄ = [[� `

C

s

0

:X℄℄

2

We an de�ne translations in both diretions between LNL logi and ILL. If A is an

ILL proposition, de�ne the linear LNL proposition A

Æ

indutively as follows:

A

Æ

0

= A

0

(A

0

atomi) (A
B)

Æ

= A

Æ


B

Æ

(A�ÆB)

Æ

= A

Æ

�ÆB

Æ

I

Æ

= I

(!A)

Æ

= FG(A

Æ

)



Theorem 13 If � ` e:A in ILL, then there is an e

Æ

suh that �

Æ

`

L

e

Æ

:A

Æ

. 2

In the other diretion, one translates the linear part of LNL logi essentially unhanged

and the non-linear part using a variant of the Girard translation. E.g.:

(A
B)

�

= A

�


B

�

(A�ÆB)

�

= A

�

�ÆB

�

(FX)

�

= !(X

�

) (X � Y )

�

= !(X

�

)
!(Y

�

)

(X ! Y )

�

= !(X

�

)�ÆY

�

(GA)

�

= A

�

Theorem 14

1. If � `

C

s:X in LNL logi, there is an LTC term s

�

s.t. !�

�

` s

�

:X

�

2. If �;� `

L

e:A in LNL logi, there is an LTC term e

�

s.t. !�

�

;�

�

` e

�

:A

�

2

It is easy to see that for any ILL judgement � ` A, �

Æ

�

` A

Æ

�

is equal to the original

judgement. Thus � ` A is provable in ILL i� �

Æ

`

L

A

Æ

is provable in LNL logi. This

extends to proofs in the following way:

Theorem 15 If � ` e:A in LTC, then not only is � ` e

Æ

�

:A provable, but e � e

Æ

�

where

� is the ategorial equality relation on LTC terms given in [4℄. 2

4 Conlusions and Further Work

We have given a new and intuitively appealing haraterisation of ategorial models of

intuitionisti linear logi. We then used this presentation of the models as the basis for

de�ning a new logi whih uni�es ordinary intuitionisti logi with intuitionisti linear

logi. The natural dedution presentation of the new logi then led to a mixed linear

and non-linear lambda alulus. LNL logi has a natural lass of ategorial models and a

well-behaved proof theory in both its sequent alulus and natural dedution formulations.

Given this, and the links with other researh whih were mentioned in the introdution,

LNL logi ertainly seems to merit further study.

On the theoretial side, muh remains to be done. We have not proved a ompleteness

theorem, nor have we proved that the LNL term alulus is strong normalising. The

strong normalisation proof should be relatively easy to do via a translation argument like

that whih we have previously used for the linear term alulus [3℄ and the omputational

lambda alulus. It would be nie to have better (that is, less degenerate) examples of

onrete models and one might well �nd suh examples by looking at some of the ategories

arising in game semantis.

We should investigate further how to treat the additives. Beyond that, one ould

onsider adding indutive or oindutive datatypes or seond-order quanti�ation to the

logi. This seems partiularly worthwhile in the light of Plotkin's work on parametriity

and reursion in a logi rather like ours [12℄.

On the pratial side, we should investigate whether or not the LNL term alulus lends

itself more readily to eÆient implementation than does the linear term alulus. The hope

is that one an arrange an implementation with two memory spaes, orresponding to the

two subsystems of LNL logi. The non-linear spae would be garbage olleted in the

usual way, whereas the linear spae would ontain objets satisfying some useful memory

invariant (suh as having only one pointer to them at all times) whih ould be exploited

to redue the spae usage of programs. Previous experiene, however, shows that turning

suh intuitively plausible hopes into provably orret implementations is a non-trivial task.
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