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Abstrat

From the points of view of programming pragmatis, rewriting and operational semantis,

the syntati onstrut used for exeption handling in ML-like programming languages,

and in muh theoretial work on exeptions, has subtly undesirable features. We propose

and disuss a more well-behaved onstrut.

Capsule Review

The propositions-as-types priniple has often been ited as an inuene on the design of

funtional programming languages. Often the inuene is seen only indiretly. In this short

note the authors draw lessons from the proof theory of disjuntion to suggest hanges to

the syntax of exeption onstruts that not only improve their utility in programming,

but also admit simpler expression of ommon program transformations.

1 Introdution

Many programming languages (from Mesa and PL/I to SML, Java and C#) inlude

exeptions to provide a strutured, but non-loal, way of signalling and reovering

from error onditions. Programmers often also use exeptions as onvenient, and

sometimes more eÆient, way of varying ontrol ow in ode whih has nothing to

do with what most people would onsider error-handling (for example, the parser

ombinators in (Paulson, 1991)).

The basi idea of exeptions is simple and familiar: the evaluation of an expression

may, instead of ompleting normally by returning a value or diverging, terminate

abnormally by raising a named exeption. The evaluation of any expression may

be wrapped in an exeption handler, whih provides an alternative expression to

be evaluated in the ase that the wrapped expression raises a partiular exeption.

The way in whih a raised exeption unwinds the evaluation stak until the losest

mathing handler is found is syntatially impliit, so the handler may be dynam-

ially far from the point at whih the exeption is raised without the intervening

alls having expliitly to test for, and propagate, an error value.

There are many di�erenes between exeption mehanisms in di�erent program-

ming languages, but for the purposes of this paper we shall take a simpli�ed version

of the onstruts provided in Standard ML (Milner et al., 1997) as paradigmati

of those used in modern expression-based languages. To the usual simply-typed
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lambda alulus we add a set E of exeption names, a new base type exn, and new

onstruts with the typing rules

� ` E : exn

E 2 E

� `M : exn

� ` raiseM : A

� `M : A f� ` N

i

: Ag

i=1:::n

� `M handleE

1

) N

1

j � � � j E

n

) N

n

: A

fE

i

g

i=1:::n

� E

where, in the last rule, the E

i

are required to be distint. We take as basi a form of

handle in whih multiple handlers may over the evaluation of a single expression,

as this is stritly more expressive than the simpler form in whih only one named

exeption may be aught at one. We will sometimes use an abbreviated notation,

using H to range over �nite sets fE

i

) N

i

g of handlers, and writing E 2 H for

9N: (E)N) 2 H and H(E) for the (unique) N suh that (E)N) 2 H if that

exists. We write � ` H : A for H = fE

i

) N

i

g and 8i: � ` N

i

: A.

One way of explaining the intended behavior of these onstruts is to give a big-

step operational semantis in whih there are two (mutually indutive) forms of

judgement: M + V means that the losed expression M evaluates to the value V ,

whereas M " E means that the expression M raises the exeption E. The rules for

deriving these judgements omprise the usual evaluation rules for a all by value

lambda alulus

1

together with at least the following:

E + E

E 2 E

M + E

(raiseM) " E

M + V

(M handleH) + V

M " E

(M handleH) " E

E 62 H

M " E N + V

(M handleH) + V

H(E) = N

M " E N " E

0

(M handleH) " E

0

H(E) = N

M " E

(M N) " E

M + �x: M

0

N " E

(M N) " E

There will be further rules, similar to the last two above, whih express the way in

whih thrown exeptions propagate through whatever other onstruts we hoose

to add to our language.

We beame aware of essentially the same shortoming of the handle onstrut

in three di�erent ways whilst working on our Standard ML ompiler, MLj (Benton

et al., 1998a). Firstly, when oding in SML to implement both the ompiler itself

and its libraries, we oasionally ame aross situations in whih exeption-handling

behaviour ould only be expressed lumsily. Seondly, when performing rewriting

on the ompiler intermediate language, we found that some rewrites were inexpress-

ible if the intermediate language ontained the usual exeption handling onstrut.

1

We restrit attention to all by value, as the na��ve addition of exeptions to a language with

all by name semantis wreks the equational theory to the extent that the resulting language is

essentially unusable. The ingenious addition of impreise exeptions to Haskell does, however,

sidestep some of the problems; see (Peyton Jones et al., 1999) for details.
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� `M : A �; x : A ` P : B f� ` N

i

: Bg

i=1:::n�0

� ` try x(M in P unless E

1

) N

1

j � � � j E

n

) N

n

: B

fE

i

g

i=1:::n

� E

M + V P [V=x℄ + V

0

try x(M in P unlessH + V

0

M " E N + V

try x(M in P unlessH + V

H(E) = N

M + V P [V=x℄ " E

try x(M in P unlessH " E

M " E N " E

0

try x(M in P unlessH " E

0

H(E) = N

M " E

try x(M in P unlessH " E

E 62 H

Fig. 1. Typing rule and natural semantis for try

Thirdly, when formalising the intermediate language in order to prove some theo-

rems about the validity of optimising transformations (Benton & Kennedy, 1999),

we found that the alternative syntax we had hosen (for the previous reason) al-

lowed a neat and tratable presentation of the operational semantis in terms of a

struturally indutive termination prediate, whih would not otherwise have been

possible.

2 The New Construt

Sine the �x for the problems we observed is atually rather simple, and to avoid

building unneessary suspense in the reader, we will reverse the usual order of

presentation by giving our solution straight away and then going into the more

tehnial explanations of the problems it solves.

We replae the ML-style handle onstrut with a new one, whih builds in a

ontinuation to be applied only in the ase that no exeption is raised:

try x(M in P unlessE

1

) N

1

j � � � j E

n

) N

n

This �rst evaluates M and, if it returns a value, binds that to x and evaluates P .

If M raises the exeption E

i

, however, N

i

is evaluated instead (x is bound in P

but not in any of the N

i

). If M raises an exeption distint from all the E

i

, then

so does the whole expression.

More formally, Figure 1 presents a typing rule

2

for try along with its natural

semantis rules. Note that we �nd it onvenient to allow empty handlers in this

onstrut and that the type of the expressions N

i

in a handler is the same as that

of the ontinuation P , not the same as that of the expression M being overed, as

is the ase with the traditional handle.

2

The typing rule for try in our intermediate language is atually a little more omplex sine it

involves omputation types (Benton & Kennedy, 1999).
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3 So What Was Wrong With handle?

We now desribe the problem with the traditional handle onstrut in eah of the

three ontexts in whih we observed it. To avoid dragging in too muh extraneous

material onerning, for example, our ompiler intermediate language, we will of-

ten gloss over the non-exeptional details of the various languages mentioned: this

should not (we hope!) obsure our main point.

3.1 The Programming Problem

Suppose one has a library of ML funtions to open, read and lose �les, all of

whih raise the Io exeption if something goes wrong. The problem is to write a

funtion whih runs down a list of �lenames, onatenating the results of applying

some string-valued funtion to eah �le whilst skipping those �les whih annot be

opened suessfully. One's �rst thought might be that the following will suÆe:

fun atpartial [℄ = ""

| atpartial (n::ns) =

let val s = readIt (openIn n)

handle Io => ""

in s ^ atpartial ns

end

However, this doesn't quite do what we want, as the funtion readIt might also

raise the Io exeption: when that happens then we want the exeption to be passed

up to the aller of atpartial, but the above ode will handle the exeption and

move on to the next name in the list irrespetive of whether the error oured in

openIn or readIt.

There are, of ourse, various straightforward ways of programming around this

problem. For example, we might use the option datatype:

fun atpartial1 [℄ = ""

| atpartial1 (n::ns) =

ase SOME(openIn n) handle Io => NONE

of NONE => atpartial1 ns

| SOME f => readIt f ^ atpartial1 ns

Or use abstration to delay the all to readIt so that the handler doesn't over it:

fun atpartial2 [℄ = ""

| atpartial2 (n::ns) =

(let val f = openIn n

in fn () => readIt f ^ atpartial2 ns

end handle Io => fn () => atpartial2 ns

) ()

Or use another exeption:
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exeption OpenFailed

fun atpartial3 [℄ = ""

| atpartial3 (n::ns) =

let val f = openIn n handle Io => raise OpenFailed

in readIt f ^ atpartial3 ns

end handle OpenFailed => atpartial3 ns

But none of these seems entirely satisfatory as they all introdue a new value (sum,

losure or exeption) only to eliminate it straight away { it's just there to express

some ontrol ow whih the handle onstrut is too weak to express diretly.

The �x: Programming with try

The try-in-unless syntax niely solves our programming problem:

fun atpartial [℄ = ""

| atpartial (n::ns) = try val f = openIn n

in readIt f ^ atpartial ns

unless Io => atpartial ns

end

and also generalises both let and handle:

let x(M in N = try x(M inN unless fg

M handleH = try x(M in x unlessH

3.2 The Transformation Problem

Like many ompilers for funtional languages, MLj performs fairly extensive rewrit-

ing in order to optimise programs. The design of MLj's intermediate language, MIL,

and its rewrites is motivated by a somewhat informal belief in `taking the proof

theory seriously'. One instane of this prejudie is that the ompiler transforms

programs into a `-normal form', in whih all of the ommuting onversions have

been applied.

In natural dedution presentations of logis (and hene, via the Curry-Howard

orrespondene, in typed lambda aluli), ommuting onversions our when logi-

al rules (usually eliminations) have what Girard (1989) alls a `parasiti formula',

a typial ase being that of the sum. The elimination rule for sums is

� `M : A+B �; x

1

: A ` N

1

: C �; x

2

: B ` N

2

: C

� ` aseM of in

1

x

1

:N

1

j in

2

x

2

:N

2

: C

in whih the formula/type C has no onnetion with that being eliminated. The

presene of suh rules introdues undesirable distintions between proofs and also,

for example, auses the subformula property of normal dedutions to fail. These

problems are addressed by adding ommuting onversions to the more familiar �
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and � rules. Commuting onversions typially have the general form

�

�

�

A

�

�

�

C � � �

�

�

�

C

E

1

C � � �

E

2

D

;

�

�

�

A

�

�

�

C � � �

E

2

D � � �

�

�

�

C � � �

E

2

D

E

1

D

where E

1

is the `bad' elimination rule for the top-level onnetive in A, with par-

asiti formula C (whih may our one or more times as a premiss, aording to

the onnetive being eliminated), and E

2

is the elimination rule for the top-level

onnetive in C. For example, if E

1

is _-elimination and E

2

is !-elimination, we

get the following ommuting onversion on terms:

3

(aseM of in

1

x

1

:N

1

j in

2

x

2

:N

2

) P

; aseM of in

1

x

1

:(N

1

P ) j in

2

x

2

:(N

2

P ):

(Here and elsewhere, we adopt the `variable onvention': suÆient �-onversion to

avoid unwanted variable apture is assumed. In the above, this implies that neither

x

1

nor x

2

is free in P .) Commuting onversions often enable further redutions

whih would otherwise be bloked, as in

(aseM of in

1

x

1

:�y: y + x

1

j in

2

x

2

:�y: y) 2

; aseM of in

1

x

1

:((�y: y + x

1

) 2) j in

2

x

2

:((�y: y) 2)

; aseM of in

1

x

1

:(2 + x

1

) j in

2

x

2

:2

and we also �nd generating ode from -normal forms onsiderably more straight-

forward than for arbitrary terms. Other ompilers perform similar rewrites (for

example, the ase-of-ase and let-oating transformations in (Peyton Jones & San-

tos, 1998)), though we are unusually dogmati in reognising them as instanes of

a ommon pattern and peforming all of them.

Interestingly, -normal form for our intermediate language, whih is based on

Moggi's omputational metalanguage (Moggi, 1991), turns out to be almost the

same thing as Sabry and Felleisen's A-normal form (Sabry & Felleisen, 1993; Flana-

gan et al., 1993), whih was derived from an analysis of CPS-based ompilation. A

nie disussion of the onnetion between CPS and Moggi's metalanguage may be

found in (Hatli� & Danvy, 1994).

For most of the type onstrutors of our intermediate language, MIL, we have

well-behaved introdution and elimination rules for whih it is lear how to derive

the ommuting onversions. For the exeption-related onstruts, the situation is

messier (sine part of the point of exeptions is that they are not expliitly visible

in soure-language types) but it is nevertheless obvious that there are some -like

rewrites whih we would like to perform. For example

(M handleE ) N) P

3

Applied na��vely, of ourse, the dupliation of terms in onversions like this one ould lead to

an unaeptable blowup in ode size. MLj avoids this by seletive use of a speial abstration

onstrut whih ompiles to a blok of ode aessed by jumps.
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looks as though it should onvert to something like

(M P ) handle E ) (N P )

so that if, for example, N is a �-abstration, we get to perform a ompile-time

�-redution. But this transformation is not generally sound if either P or the appli-

ation of the value ofM to the value of P might raise the exeption E. Furthermore,

there isn't a orret transformation whih we an use instead. It should be remarked

at this point that the limited expressibility of an intermediate language based on

a �-alulus with handle is not shared by lower-level target languages. Using Java

byteodes, for example, a ode sequene orresponding to a orret version of the

above transformation is easily written:

L1: Code to evaluate M

L2: Code to evaluate P

invokevirtual <Method resultype apply(argtype)>

L3: Code for rest of omputation

L4: pop // throw away the atual exeption objet

Code to evaluate N

Code to evaluate P

invokevirtual <Method resultype apply(argtype)>

jmp L3

Exeption table:

from to target type

L1 L2 L4 <Class E>

and the same is true of target languages in whih exeption handlers are expliitly

pushed onto and popped from a stak.

In fat, beause of the separation of omputations from values in MIL, we would

have to express the �rst term above as

let f((M handleE ) N) in let v(P in (f v)

but the essential point remains unhanged: there's simply no orret way to write

the transformation whih we feel we should be able to perform.

Of ourse, one ould simply aept the inexpressibility of suh transformations

and generate slightly lower quality ode. Alternatively, one an observe that the

ommuting onversions are not in themselves generally optimisations; they are re-

organisations of the ode whih enable more omputationally signi�ant � redexes

to be exposed. Hene the same optimisations might well be obtained by using non-

loal rewrites whih look for larger patterns in the term. This would, however, sig-

ni�antly inrease the omplexity of the rewriting funtion and, we believe, would

make it less eÆient (despite the fat that the non-loal steps would ombine the

e�et of more than one loal rewrite).
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�

j

(try x(M in P unless fE

i

) N

i

g) proj-try

; try x(M in �

j

(P ) unless fE

i

) �

j

(N

i

)g

(try x(M in P unless fE

i

) N

i

g)Q app-try

; try x(M in (P Q) unless fE

i

) (N

i

Q)g

ase (try x(M in P unless fE

i

) N

i

g) of in

1

y

1

:Q

1

j in

2

y

2

:Q

2

ase-try

; try x(M in ase P of in

1

y

1

:Q

1

j in

2

y

2

:Q

2

unless fE

i

) aseN

i

of in

1

y

1

:Q

1

j in

2

y

2

:Q

2

g

try x( (aseM of in

1

y

1

:N

1

j in

2

y

2

:N

2

) inQ unless fE

i

) P

i

g try-ase

; try z (M in

ase z of in

1

y

1

:try x( N

1

inQ unless fE

i

) P

i

g j

in

2

y

2

:try x( N

2

inQ unless fE

i

) P

i

g unless fE

i

) P

i

g

try x( (try y (M in P unless fE

i

) N

i

g

i2I

) inQ unless fE

0

j

) N

0

j

g

j2J

try-try

; try y (M in

try x( P inQ

unless fE

0

j

) N

0

j

g

j2J

unless fE

i

) try x( N

i

inQ

unless fE

0

j

) N

0

j

g

j2J

g

i2I

[ fE

0

j

) N

0

j

g

E

0

j

62fE

i

g

i2I

Fig. 2. Conversions

The �x: Rewriting with try

The try-in-unless syntax omes with unsurprising �-like redutions, similar to those

for handle and let

try x( raiseE in P unlessH ; N (N = H(E))

try x( raiseE in P unlessH ; raiseE (N 62 H)

try x( V in P unlessH ; P [V=x℄ (V a value)

but, unlike handle, also has well-behaved ommuting onversions, whih allow us

to express useful ompiler transformations. We present in Figure 2 a general list of

onversions for try-in-unless against itself and the eliminations for sums, produts

and funtions. Although these look omplex, it should be noted that in a language

like MIL (whih separates values from omputations at both the type and term

levels) or that of (Pitts, 1997) (whih has term-level restritions on the plaes

where non-values may our), most of these ases either do not our or only our

in a simpli�ed form. In MIL, for example, only try-ase and try-try are well typed,

beause projetion, appliation and ase an only be applied to values, whereas a

try is always a omputation. Furthermore, the restrition that M in the try-ase
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rewrite be a value simpli�es it to

(try-ase'):

try x( (ase V of in

1

y

1

:N

1

j in

2

y

2

:N

2

) inQ unless fE

i

) P

i

g

; ase V of in

1

y

1

:try x( N

1

inQ unless fE

i

) P

i

g j

in

2

y

2

:try x( N

2

inQ unless fE

i

) P

i

g

The try-in-unless onstrut is the one whih we use in MIL, and the MLj ompiler

atually does perform the try-try and try-ase' rewrites.

As an interesting example of MIL rewriting, showing the try onstrut working

with our monadi e�et analysis (Benton & Kennedy, 1999), onsider the following

ML funtion for summing all the elements of an array:

fun sumarray a =

let fun s(n,sofar) = let val v = Array.sub(a,n)

in s(n+1, sofar+v)

end handle Subsript => sofar

in s(0,0)

end

Beause the SML soure language doesn't have try, the programmer has made the

handler over both the array aess and the reursive all to the inner funtion s.

But this would prevent a na��ve ompiler from reognising that all as tail-reursive.

In MLj, the intermediate ode for s looks like (in MLish, rather than MIL, syntax):

fun s(n,sofar) =

try val x = try val v = Array.sub(a,n)

in s(n+1, sofar+v)

unless {}

end

in x

unless Subsript => sofar

end

The try-try rewrite turns this into

fun s(n,sofar) = try val v = Array.sub(a,n)

in try val x = s(n+1, sofar+v)

in x

unless Subsript => sofar

end

unless Subsript => sofar

end

(The two idential handlers are atually abstrated as a shared loal blok.) The

e�et analysis detets that the reursive all to s annot, in fat, ever throw the

Subsript exeption, so the funtion is rewritten again to

fun s(n,sofar) = try val v = Array.sub(a,n)

in s(n+1, sofar+v)
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unless Subsript => sofar

end

whih is tail reursive, and so gets ompiled as a loop in the �nal ode for sumarray.

3.3 The Semantis Problem

There are several di�erent styles in whih one an speify the operational semantis

of ML-like languages. We have already seen (in Setion 1) a big-step, natural se-

mantis presentation, but this is not always the most onvenient formulation with

whih to work when proving results about observational equivalenes. A popular

alternative is to use a small-step semantis presented using Felleisen's notion of

evaluation ontext (Felleisen & Hieb, 1992). In this style, one �rst de�nes axioms

for the primitive transitions R!M , saying that redex R redues to term M , and

then gives an indutive de�nition of evaluation ontexts as terms E[�℄ ontaining a

single `hole' in the plae where the next redution will take plae. A simple lemma

that every non-value is uniquely of the form E[R℄ then allows the one-step transi-

tion relation to be de�ned as E[R℄ ! E[M ℄ for every evaluation ontext E[�℄ and

primitive transition R ! M (and the evaluation relation to be de�ned in terms

of the reexive transitive losure of the transition relation). Wright and Felleisen

(1994) give an evaluation ontext semantis for ML with exeptions whih uses a

seond kind of ontext for propagating exeptions.

Pitts has argued (1997) that for reasoning about ontextual equivalenes it is

onvenient to reify the notion of evaluation ontext and give a small-step operational

semantis in whih a on�guration is a pair of a term and an expliit ontext

(ontinuation). The advantages of this approah inlude the fat that the right-

hand sides of transitions are all de�ned by strutural indution over the left-hand

side and that there is a Galois onnetion between relations on terms and relations

on ontexts whih has proved useful in reasoning about, for example, equivalene

of polymorphi funtions. This style of presentation is also partiularly natural if

the language inludes �rst-lass ontinuations, in the style of Sheme or SML/NJ

(see (Harper et al., 1993), for example).

Pitts formalises ontexts by introduing new syntati ategories for de�ning

ontinuation staks : a on�guration looks like

h(x

1

):N

1

Æ � � � Æ (x

n

):N

n

; Mi

where M is the term being evaluated (in a �-alulus with a strit let onstrut

and a restrition that only values and variables may our in eliminations) and

(x

1

):N

1

Æ� � �Æ(x

n

):N

n

is a sequene of (losed) abstrations representing the ontext

in whih the evaluation takes plae. The rules de�ning the transition relation inlude

hK Æ (x):N ; V i ! hK ; N [V=x℄i

hK ; let x(M inNi ! hK Æ (x):N ; Mi

hK ; (�x:M) V i ! hK ; M [V=x℄i
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whih, it should be apparent, amounts to de�ning a kind of abstrat mahine.

4

This style of semantis has been applied in (Pitts, 2000; Pitts & Stark, 1998; Bier-

man, 1998), and the relational operators it indues are further disussed in (Abadi,

2000). Coinidentally, the urrent implementation of MLj uses essentially the same

representation internally for eÆient rewriting of terms in ontext.

Pitts gives the relationship between the stak-based semantis and a natural

semantis using the following lemma: For all appropriately-typed, losed K,M and

V

hK ; Mi !

�

h� ; V i () K�M + V

where � is the empty ontinuation stak and the `unwinding' operator � is de�ned

by

��M = M

(K Æ (x):N)�M = K�(let x(M inN):

Note how the plae where the ation (redution) happens is at the root of the

syntax tree of a stak on�guration but buried deep in that of its unwinding, as

((x

1

):N

1

Æ � � � Æ (x

n

):N

n

) �M

=

let x

1

( (

let x

2

(

(: : : (let x

n

(M in N) : : :)

in N

2

)

in N

1

It is straightfoward to extend Pitts's semantis to a language with exeptions:

one simply allows (losed) handlers H (whih we previously introdued as an abbre-

viation for part of the syntax of the handle onstrut and are now making slightly

more �rst-lass) to appear as a new kind of element in ontinuation staks, with

the new transitions

hK ÆH ; V i ! hK ; V i

hK ÆH ; raiseEi ! hK ; Ni if H(E) = N

hK ÆH ; raiseEi ! hK ; raiseEi if E 62 H

hK Æ (x):N ; raiseEi ! hK ; raiseEi

hK ; M handleHi ! hK ÆH ; Mi

4

Atually, sine Pitts is interested in whih on�gurations lead to termination, for reasoning

about ontextual equivalene, the one-step transitions are impliit in inferene rules de�ning

the termination prediate & diretly, suh as

hK ; N [V=x℄i &

hK Æ (x):N ; V i &

:
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The onnetion with the natural semantis extends to

hK ; Mi !

�

h� ; raiseEi () K�M " E

where the de�nition of � is extended by

(K ÆH)�M = K�(M handleH)

and this is the formulation we initially used when working on the equational theory

of MIL. However, there is a ertain amount of lutter involved in using staks

(extra syntax, type rules, et.), and we notied that if one's syntax is suÆiently

well-behaved then it is possible to obtain an equally tratable presentation of the

transition relation just using terms of the original language. For Pitts's language

without exeptions, the idea is to axiomatise diretly transitions between terms of

the form let x(M inN by using ommuting onversion transitions to `bubble up'

the next redex in M until it is at the top (and its surrounding ontext within M

has been pushed into N). For example:

let x(V inN ! let y(N [V=x℄ in y (N 6= x)

let x((let y(M inN) in P ! let y(M in let x(N in P

let x((�y:M) V inN ! let x(M [V=y℄ inN

Using this style of presentation, the relationship between the big-step and small-step

semantis beomes

(let x(M in x) !

�

(let x(V in x) () M + V:

Intuitively, the stak-free transition relation is de�ned diretly on a variant of Pitts's

`unwound' terms, in whih the lets assoiate the other way around from the original

de�nition:

(K Æ (x):N)�M = let x(M in (K�N):

The equivalene of the two de�nitions of � depends on the validity of the assoiativ-

ity of let (whih, as disussed in (Benton et al., 1998b), is a ommuting onversion

in the logi orresponding to Moggi's omputational metalanguage).

However, if we add exeptions and the handle onstrut, the de�nition of the

stak-free transition relation fails to extend. One again, the problem is the lak

of ommuting onversions whih would allow an exeption handler to be pushed

into a surrounding ontext so that the evaluation of the expression onvered by

the handler `bubbles' to the top. More onretely, onsider the following putative

transition:

let x((M handleE ) N) in P ! ?

We'd like to put something on the right-hand side in whih the evaluation of M is

at the top of the syntax tree, but there's no rewrite to anything of the form letx(

M in : : :. Nor an we extend the olletion of top-level forms to inlude handle as

well as let onstruts: there's no rewrite to something of the formM handleE ) : : :

either.
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try x( V in P unlessH ! try y ( P [V=x℄ in y unless fg (P 6= x)

try x( raise E in P unlessH ! try y ( H(E) in y unless fg

try x( (�y:M) V in P unlessH ! try x(M [V=y℄ in P unlessH

try x( (try y(M in P unlessH) inQ unlessH

0

! try y(M in (try x( P inQ unlessH

0

) unless (H ath H

0

in x:Q)

fE

i

) N

i

g ath fE

0

j

) N

0

j

g in x:Q

def

= fE

i

) try x( N

i

inQ unless fE

0

j

) N

0

j

gg

[fE

0

j

) N

0

j

j6 9i:E

i

= E

0

j

g

Fig. 3. Transition semantis

The �x: Operational semantis with try

If our language inludes try-in-unless, then there is no diÆulty in giving a stak-

free presentation of a struturally indutive transition semantis. Figure 3 presents

transitions between terms of the form try x(M in P unlessH (reall that try-in-

unless generalises let). The syntax (H ath H

0

in x:Q) is an abbreviation for the

overing of one handler by the other handler and ontinuation used in the try-try

onversion (as in Figure 2).

The onnetion between the transition semantis and the big-step semantis is

then expressed by

M + V () try x(M in x unless fg

!

�

try x( V in x unlessH

M " E () try x(M in x unless fg

!

�

try x( raiseE in P unlessH (E 62 H)

This formulation of the transition semantis is the one whih we have used when

reasoning about observational ongruene for MIL in order to validate e�et-based

transformations (Benton & Kennedy, 1999).

5

4 Remarks on Conrete Syntax

Using try-in-unless in theoretial work or in a ompiler intermediate language is

straightforward. But adding the onstrut to a programming language requires a

human-friendly onrete syntax to be hosen and, annoyingly, there doesn't seem

to be an obviously `right' hoie here. The main problem is hoosing whether the

handlers or the ontinuation expression should ome �rst, i.e. between

try x = M try x = M

in N unless E=>P

unless E=>P and in N

end end

5

Though, embarassingly, the HOOTS paper gives an inorret shorthand for one handler overing

another in the operational semantis.
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Neither of these is entirely satisfatory. In the �rst ase the fat that the handler

only overs M and not N is obsured; this is partiularly bad if N is large. In the

seond, that x is bound in N but not in P is ertainly not what one would expet.

Our own preferene for SML is �rstly to retain the handle onstrut in the soure

syntax, sine it is simpler and suÆes for most situations, and then either to add

the �rst alternative above or (more radially) to allow both of them. Sine try-in-

unless generalises let, it also seems sensible to do without the try keyword and just

allow unless to be an optional part of let-expressions. We have tweaked MLj so

that it will aept syntax like the following:

fun f ((n1,n2)::rest) =

let val s1 = openIn n1

val s2 = openIn n2

in ombine(s1,s2)

unless Io => f rest

end

Note that SML allows multiple sequential delarations in a single let expression.

None of the variables in the left-hand sides are bound in the handler, whih is

evaluated if any of the right-hand sides raise a mathing exeption.

5 Remarks on Try-Finally

Some imperative languages have a try statement whih allows exeution of a om-

mand to be overed not only by a set of handlers, but also by an optional �nally

lause. This spei�es a ommand whih is to be exeuted one ontrol has left the

overed ommand (and any of the handlers), irrespetive of whether the exit was

normal or by raising an exeption. The try-(ath)-�nally onstrut is typially

used for imperative `leanup' ode whih needs to be exeuted whether or not an

error ours, the usual example being losing open �les.

One way to extend ML with a similar feature would be by new syntax M finally

N, the typing rule for whih requires N to be of type unit, and whose behaviour

may be spei�ed by the translation:

let val x = M handle e => (N ; raise e)

M finally N = in N ; x

end

where x is not free in N. In the absene of speial syntax, one has to program diretly

in terms of the translation, whih involves the unpleasant dupliation of N. This

dupliation may be minimised by abstrating (thunking) N, and by doing the same

to M one an write a higher-order funtion finally of type (unit -> 'a) * (unit

-> unit) -> 'a. One might (and the referees did) wonder whether our alternative

syntax for exeption handling allows the behaviour of finally to be obtained in a

more onvenient �rst-order way. Unfortunately, the answer is no. The translation

of M finally N in our syntax is
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let val x = M

in N ; x

unless e => N ; raise e

end

whih, although it arguably makes the ontrol ow a little learer, is not really any

better than the translation in terms of handle { it still dupliates N.

6

6 Conlusions

Although the point is undeniably a small one, we hope we have onvined the

reader that the try-in-unless syntax for exeption handling really is more well-

behaved than the traditional handle onstrut. It is also probably worth noting

that if one translates a language with exeptions into one without them, by using

sums to enode the exeptions monad (if the set of exeptions is in�nite then this

requires either in�nite syntax or defaults in pattern mathing), then the derived

elimination onstrut for omputations is essentially try-in-unless. (The di�erene

is that all exeptions are always aught, though all but a �nite number are then

rethrown.)

As far as we know, MIL is the �rst language to use try-in-unless, though we

are not the only people to have spotted that it might be a useful programming

onstrut { whilst we were writing this Judiael Courant suggested the essentially

same thing on the CAML mailing list (1999).

From a methodologial perspetive, we feel that this is another small piee of

evidene for the bene�ts of taking insights from proof-theory seriously when do-

ing language design. Although the solution seems obvious in retrospet, and other

people might have reahed it by a di�erent route, we personally would not have

reognised that there was an identi�able problem in the �rst plae (as opposed to

some ugly bits of ode and slightly messy proofs) had we not been thinking in terms

of proof-theoreti normal forms.
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