
Under
onsideration for publi
ation in J. Fun
tional Programming 1

Ex
eptional Syntax

NICK BENTON and ANDREW KENNEDY

Mi
rosoft Resear
h, St. George House, 1 Guildhall Street, Cambridge CB2 3NH, UK

(e-mail: fni
k,akenng�mi
rosoft.
om)

Abstra
t

From the points of view of programming pragmati
s, rewriting and operational semanti
s,

the synta
ti

onstru
t used for ex
eption handling in ML-like programming languages,

and in mu
h theoreti
al work on ex
eptions, has subtly undesirable features. We propose

and dis
uss a more well-behaved
onstru
t.

Capsule Review

The propositions-as-types prin
iple has often been
ited as an in
uen
e on the design of

fun
tional programming languages. Often the in
uen
e is seen only indire
tly. In this short

note the authors draw lessons from the proof theory of disjun
tion to suggest
hanges to

the syntax of ex
eption
onstru
ts that not only improve their utility in programming,

but also admit simpler expression of
ommon program transformations.

1 Introdu
tion

Many programming languages (from Mesa and PL/I to SML, Java and C#) in
lude

ex
eptions to provide a stru
tured, but non-lo
al, way of signalling and re
overing

from error
onditions. Programmers often also use ex
eptions as
onvenient, and

sometimes more eÆ
ient, way of varying
ontrol
ow in
ode whi
h has nothing to

do with what most people would
onsider error-handling (for example, the parser

ombinators in (Paulson, 1991)).

The basi
 idea of ex
eptions is simple and familiar: the evaluation of an expression

may, instead of
ompleting normally by returning a value or diverging, terminate

abnormally by raising a named ex
eption. The evaluation of any expression may

be wrapped in an ex
eption handler, whi
h provides an alternative expression to

be evaluated in the
ase that the wrapped expression raises a parti
ular ex
eption.

The way in whi
h a raised ex
eption unwinds the evaluation sta
k until the
losest

mat
hing handler is found is synta
ti
ally impli
it, so the handler may be dynam-

i
ally far from the point at whi
h the ex
eption is raised without the intervening

alls having expli
itly to test for, and propagate, an error value.

There are many di�eren
es between ex
eption me
hanisms in di�erent program-

ming languages, but for the purposes of this paper we shall take a simpli�ed version

of the
onstru
ts provided in Standard ML (Milner et al., 1997) as paradigmati

of those used in modern expression-based languages. To the usual simply-typed

2 Ni
k Benton and Andrew Kennedy

lambda
al
ulus we add a set E of ex
eption names, a new base type exn, and new

onstru
ts with the typing rules

� ` E : exn

E 2 E

� `M : exn

� ` raiseM : A

� `M : A f� ` N

i

: Ag

i=1:::n

� `M handleE

1

) N

1

j � � � j E

n

) N

n

: A

fE

i

g

i=1:::n

� E

where, in the last rule, the E

i

are required to be distin
t. We take as basi
 a form of

handle in whi
h multiple handlers may
over the evaluation of a single expression,

as this is stri
tly more expressive than the simpler form in whi
h only one named

ex
eption may be
aught at on
e. We will sometimes use an abbreviated notation,

using H to range over �nite sets fE

i

) N

i

g of handlers, and writing E 2 H for

9N: (E)N) 2 H and H(E) for the (unique) N su
h that (E)N) 2 H if that

exists. We write � ` H : A for H = fE

i

) N

i

g and 8i: � ` N

i

: A.

One way of explaining the intended behavior of these
onstru
ts is to give a big-

step operational semanti
s in whi
h there are two (mutually indu
tive) forms of

judgement: M + V means that the
losed expression M evaluates to the value V ,

whereas M " E means that the expression M raises the ex
eption E. The rules for

deriving these judgements
omprise the usual evaluation rules for a
all by value

lambda
al
ulus

1

together with at least the following:

E + E

E 2 E

M + E

(raiseM) " E

M + V

(M handleH) + V

M " E

(M handleH) " E

E 62 H

M " E N + V

(M handleH) + V

H(E) = N

M " E N " E

0

(M handleH) " E

0

H(E) = N

M " E

(M N) " E

M + �x: M

0

N " E

(M N) " E

There will be further rules, similar to the last two above, whi
h express the way in

whi
h thrown ex
eptions propagate through whatever other
onstru
ts we
hoose

to add to our language.

We be
ame aware of essentially the same short
oming of the handle
onstru
t

in three di�erent ways whilst working on our Standard ML
ompiler, MLj (Benton

et al., 1998a). Firstly, when
oding in SML to implement both the
ompiler itself

and its libraries, we o

asionally
ame a
ross situations in whi
h ex
eption-handling

behaviour
ould only be expressed
lumsily. Se
ondly, when performing rewriting

on the
ompiler intermediate language, we found that some rewrites were inexpress-

ible if the intermediate language
ontained the usual ex
eption handling
onstru
t.

1

We restri
t attention to
all by value, as the na��ve addition of ex
eptions to a language with

all by name semanti
s wre
ks the equational theory to the extent that the resulting language is

essentially unusable. The ingenious addition of impre
ise ex
eptions to Haskell does, however,

sidestep some of the problems; see (Peyton Jones et al., 1999) for details.

Ex
eptional Syntax 3

� `M : A �; x : A ` P : B f� ` N

i

: Bg

i=1:::n�0

� ` try x(M in P unless E

1

) N

1

j � � � j E

n

) N

n

: B

fE

i

g

i=1:::n

� E

M + V P [V=x℄ + V

0

try x(M in P unlessH + V

0

M " E N + V

try x(M in P unlessH + V

H(E) = N

M + V P [V=x℄ " E

try x(M in P unlessH " E

M " E N " E

0

try x(M in P unlessH " E

0

H(E) = N

M " E

try x(M in P unlessH " E

E 62 H

Fig. 1. Typing rule and natural semanti
s for try

Thirdly, when formalising the intermediate language in order to prove some theo-

rems about the validity of optimising transformations (Benton & Kennedy, 1999),

we found that the alternative syntax we had
hosen (for the previous reason) al-

lowed a neat and tra
table presentation of the operational semanti
s in terms of a

stru
turally indu
tive termination predi
ate, whi
h would not otherwise have been

possible.

2 The New Constru
t

Sin
e the �x for the problems we observed is a
tually rather simple, and to avoid

building unne
essary suspense in the reader, we will reverse the usual order of

presentation by giving our solution straight away and then going into the more

te
hni
al explanations of the problems it solves.

We repla
e the ML-style handle
onstru
t with a new one, whi
h builds in a

ontinuation to be applied only in the
ase that no ex
eption is raised:

try x(M in P unlessE

1

) N

1

j � � � j E

n

) N

n

This �rst evaluates M and, if it returns a value, binds that to x and evaluates P .

If M raises the ex
eption E

i

, however, N

i

is evaluated instead (x is bound in P

but not in any of the N

i

). If M raises an ex
eption distin
t from all the E

i

, then

so does the whole expression.

More formally, Figure 1 presents a typing rule

2

for try along with its natural

semanti
s rules. Note that we �nd it
onvenient to allow empty handlers in this

onstru
t and that the type of the expressions N

i

in a handler is the same as that

of the
ontinuation P , not the same as that of the expression M being
overed, as

is the
ase with the traditional handle.

2

The typing rule for try in our intermediate language is a
tually a little more
omplex sin
e it

involves
omputation types (Benton & Kennedy, 1999).

4 Ni
k Benton and Andrew Kennedy

3 So What Was Wrong With handle?

We now des
ribe the problem with the traditional handle
onstru
t in ea
h of the

three
ontexts in whi
h we observed it. To avoid dragging in too mu
h extraneous

material
on
erning, for example, our
ompiler intermediate language, we will of-

ten gloss over the non-ex
eptional details of the various languages mentioned: this

should not (we hope!) obs
ure our main point.

3.1 The Programming Problem

Suppose one has a library of ML fun
tions to open, read and
lose �les, all of

whi
h raise the Io ex
eption if something goes wrong. The problem is to write a

fun
tion whi
h runs down a list of �lenames,
on
atenating the results of applying

some string-valued fun
tion to ea
h �le whilst skipping those �les whi
h
annot be

opened su

essfully. One's �rst thought might be that the following will suÆ
e:

fun
atpartial [℄ = ""

|
atpartial (n::ns) =

let val s = readIt (openIn n)

handle Io => ""

in s ^
atpartial ns

end

However, this doesn't quite do what we want, as the fun
tion readIt might also

raise the Io ex
eption: when that happens then we want the ex
eption to be passed

up to the
aller of
atpartial, but the above
ode will handle the ex
eption and

move on to the next name in the list irrespe
tive of whether the error o

ured in

openIn or readIt.

There are, of
ourse, various straightforward ways of programming around this

problem. For example, we might use the option datatype:

fun
atpartial1 [℄ = ""

|
atpartial1 (n::ns) =

ase SOME(openIn n) handle Io => NONE

of NONE =>
atpartial1 ns

| SOME f => readIt f ^
atpartial1 ns

Or use abstra
tion to delay the
all to readIt so that the handler doesn't
over it:

fun
atpartial2 [℄ = ""

|
atpartial2 (n::ns) =

(let val f = openIn n

in fn () => readIt f ^
atpartial2 ns

end handle Io => fn () =>
atpartial2 ns

) ()

Or use another ex
eption:

Ex
eptional Syntax 5

ex
eption OpenFailed

fun
atpartial3 [℄ = ""

|
atpartial3 (n::ns) =

let val f = openIn n handle Io => raise OpenFailed

in readIt f ^
atpartial3 ns

end handle OpenFailed =>
atpartial3 ns

But none of these seems entirely satisfa
tory as they all introdu
e a new value (sum,

losure or ex
eption) only to eliminate it straight away { it's just there to express

some
ontrol
ow whi
h the handle
onstru
t is too weak to express dire
tly.

The �x: Programming with try

The try-in-unless syntax ni
ely solves our programming problem:

fun
atpartial [℄ = ""

|
atpartial (n::ns) = try val f = openIn n

in readIt f ^
atpartial ns

unless Io =>
atpartial ns

end

and also generalises both let and handle:

let x(M in N = try x(M inN unless fg

M handleH = try x(M in x unlessH

3.2 The Transformation Problem

Like many
ompilers for fun
tional languages, MLj performs fairly extensive rewrit-

ing in order to optimise programs. The design of MLj's intermediate language, MIL,

and its rewrites is motivated by a somewhat informal belief in `taking the proof

theory seriously'. One instan
e of this prejudi
e is that the
ompiler transforms

programs into a `

-normal form', in whi
h all of the
ommuting
onversions have

been applied.

In natural dedu
tion presentations of logi
s (and hen
e, via the Curry-Howard

orresponden
e, in typed lambda
al
uli),
ommuting
onversions o

ur when logi-

al rules (usually eliminations) have what Girard (1989)
alls a `parasiti
 formula',

a typi
al
ase being that of the sum. The elimination rule for sums is

� `M : A+B �; x

1

: A ` N

1

: C �; x

2

: B ` N

2

: C

� `
aseM of in

1

x

1

:N

1

j in

2

x

2

:N

2

: C

in whi
h the formula/type C has no
onne
tion with that being eliminated. The

presen
e of su
h rules introdu
es undesirable distin
tions between proofs and also,

for example,
auses the subformula property of normal dedu
tions to fail. These

problems are addressed by adding
ommuting
onversions to the more familiar �

6 Ni
k Benton and Andrew Kennedy

and � rules. Commuting
onversions typi
ally have the general form

�

�

�

A

�

�

�

C � � �

�

�

�

C

E

1

C � � �

E

2

D

;

�

�

�

A

�

�

�

C � � �

E

2

D � � �

�

�

�

C � � �

E

2

D

E

1

D

where E

1

is the `bad' elimination rule for the top-level
onne
tive in A, with par-

asiti
 formula C (whi
h may o

ur one or more times as a premiss, a

ording to

the
onne
tive being eliminated), and E

2

is the elimination rule for the top-level

onne
tive in C. For example, if E

1

is _-elimination and E

2

is !-elimination, we

get the following
ommuting
onversion on terms:

3

(
aseM of in

1

x

1

:N

1

j in

2

x

2

:N

2

) P

;
aseM of in

1

x

1

:(N

1

P) j in

2

x

2

:(N

2

P):

(Here and elsewhere, we adopt the `variable
onvention': suÆ
ient �-
onversion to

avoid unwanted variable
apture is assumed. In the above, this implies that neither

x

1

nor x

2

is free in P .) Commuting
onversions often enable further redu
tions

whi
h would otherwise be blo
ked, as in

(
aseM of in

1

x

1

:�y: y + x

1

j in

2

x

2

:�y: y) 2

;
aseM of in

1

x

1

:((�y: y + x

1

) 2) j in

2

x

2

:((�y: y) 2)

;
aseM of in

1

x

1

:(2 + x

1

) j in

2

x

2

:2

and we also �nd generating
ode from

-normal forms
onsiderably more straight-

forward than for arbitrary terms. Other
ompilers perform similar rewrites (for

example, the
ase-of-
ase and let-
oating transformations in (Peyton Jones & San-

tos, 1998)), though we are unusually dogmati
 in re
ognising them as instan
es of

a
ommon pattern and peforming all of them.

Interestingly,

-normal form for our intermediate language, whi
h is based on

Moggi's
omputational metalanguage (Moggi, 1991), turns out to be almost the

same thing as Sabry and Felleisen's A-normal form (Sabry & Felleisen, 1993; Flana-

gan et al., 1993), whi
h was derived from an analysis of CPS-based
ompilation. A

ni
e dis
ussion of the
onne
tion between CPS and Moggi's metalanguage may be

found in (Hat
li� & Danvy, 1994).

For most of the type
onstru
tors of our intermediate language, MIL, we have

well-behaved introdu
tion and elimination rules for whi
h it is
lear how to derive

the
ommuting
onversions. For the ex
eption-related
onstru
ts, the situation is

messier (sin
e part of the point of ex
eptions is that they are not expli
itly visible

in sour
e-language types) but it is nevertheless obvious that there are some

-like

rewrites whi
h we would like to perform. For example

(M handleE) N) P

3

Applied na��vely, of
ourse, the dupli
ation of terms in
onversions like this one
ould lead to

an una

eptable blowup in
ode size. MLj avoids this by sele
tive use of a spe
ial abstra
tion

onstru
t whi
h
ompiles to a blo
k of
ode a

essed by jumps.

Ex
eptional Syntax 7

looks as though it should
onvert to something like

(M P) handle E) (N P)

so that if, for example, N is a �-abstra
tion, we get to perform a
ompile-time

�-redu
tion. But this transformation is not generally sound if either P or the appli-

ation of the value ofM to the value of P might raise the ex
eption E. Furthermore,

there isn't a
orre
t transformation whi
h we
an use instead. It should be remarked

at this point that the limited expressibility of an intermediate language based on

a �-
al
ulus with handle is not shared by lower-level target languages. Using Java

byte
odes, for example, a
ode sequen
e
orresponding to a
orre
t version of the

above transformation is easily written:

L1: Code to evaluate M

L2: Code to evaluate P

invokevirtual <Method resultype apply(argtype)>

L3: Code for rest of
omputation

L4: pop // throw away the a
tual ex
eption obje
t

Code to evaluate N

Code to evaluate P

invokevirtual <Method resultype apply(argtype)>

jmp L3

Ex
eption table:

from to target type

L1 L2 L4 <Class E>

and the same is true of target languages in whi
h ex
eption handlers are expli
itly

pushed onto and popped from a sta
k.

In fa
t, be
ause of the separation of
omputations from values in MIL, we would

have to express the �rst term above as

let f((M handleE) N) in let v(P in (f v)

but the essential point remains un
hanged: there's simply no
orre
t way to write

the transformation whi
h we feel we should be able to perform.

Of
ourse, one
ould simply a

ept the inexpressibility of su
h transformations

and generate slightly lower quality
ode. Alternatively, one
an observe that the

ommuting
onversions are not in themselves generally optimisations; they are re-

organisations of the
ode whi
h enable more
omputationally signi�
ant � redexes

to be exposed. Hen
e the same optimisations might well be obtained by using non-

lo
al rewrites whi
h look for larger patterns in the term. This would, however, sig-

ni�
antly in
rease the
omplexity of the rewriting fun
tion and, we believe, would

make it less eÆ
ient (despite the fa
t that the non-lo
al steps would
ombine the

e�e
t of more than one lo
al rewrite).

8 Ni
k Benton and Andrew Kennedy

�

j

(try x(M in P unless fE

i

) N

i

g) proj-try

; try x(M in �

j

(P) unless fE

i

) �

j

(N

i

)g

(try x(M in P unless fE

i

) N

i

g)Q app-try

; try x(M in (P Q) unless fE

i

) (N

i

Q)g

ase (try x(M in P unless fE

i

) N

i

g) of in

1

y

1

:Q

1

j in

2

y

2

:Q

2

ase-try

; try x(M in
ase P of in

1

y

1

:Q

1

j in

2

y

2

:Q

2

unless fE

i

)
aseN

i

of in

1

y

1

:Q

1

j in

2

y

2

:Q

2

g

try x((
aseM of in

1

y

1

:N

1

j in

2

y

2

:N

2

) inQ unless fE

i

) P

i

g try-
ase

; try z (M in

ase z of in

1

y

1

:try x(N

1

inQ unless fE

i

) P

i

g j

in

2

y

2

:try x(N

2

inQ unless fE

i

) P

i

g unless fE

i

) P

i

g

try x((try y (M in P unless fE

i

) N

i

g

i2I

) inQ unless fE

0

j

) N

0

j

g

j2J

try-try

; try y (M in

try x(P inQ

unless fE

0

j

) N

0

j

g

j2J

unless fE

i

) try x(N

i

inQ

unless fE

0

j

) N

0

j

g

j2J

g

i2I

[fE

0

j

) N

0

j

g

E

0

j

62fE

i

g

i2I

Fig. 2. Conversions

The �x: Rewriting with try

The try-in-unless syntax
omes with unsurprising �-like redu
tions, similar to those

for handle and let

try x(raiseE in P unlessH ; N (N = H(E))

try x(raiseE in P unlessH ; raiseE (N 62 H)

try x(V in P unlessH ; P [V=x℄ (V a value)

but, unlike handle, also has well-behaved
ommuting
onversions, whi
h allow us

to express useful
ompiler transformations. We present in Figure 2 a general list of

onversions for try-in-unless against itself and the eliminations for sums, produ
ts

and fun
tions. Although these look
omplex, it should be noted that in a language

like MIL (whi
h separates values from
omputations at both the type and term

levels) or that of (Pitts, 1997) (whi
h has term-level restri
tions on the pla
es

where non-values may o

ur), most of these
ases either do not o

ur or only o

ur

in a simpli�ed form. In MIL, for example, only try-
ase and try-try are well typed,

be
ause proje
tion, appli
ation and
ase
an only be applied to values, whereas a

try is always a
omputation. Furthermore, the restri
tion that M in the try-
ase

Ex
eptional Syntax 9

rewrite be a value simpli�es it to

(try-
ase'):

try x((
ase V of in

1

y

1

:N

1

j in

2

y

2

:N

2

) inQ unless fE

i

) P

i

g

;
ase V of in

1

y

1

:try x(N

1

inQ unless fE

i

) P

i

g j

in

2

y

2

:try x(N

2

inQ unless fE

i

) P

i

g

The try-in-unless
onstru
t is the one whi
h we use in MIL, and the MLj
ompiler

a
tually does perform the try-try and try-
ase' rewrites.

As an interesting example of MIL rewriting, showing the try
onstru
t working

with our monadi
 e�e
t analysis (Benton & Kennedy, 1999),
onsider the following

ML fun
tion for summing all the elements of an array:

fun sumarray a =

let fun s(n,sofar) = let val v = Array.sub(a,n)

in s(n+1, sofar+v)

end handle Subs
ript => sofar

in s(0,0)

end

Be
ause the SML sour
e language doesn't have try, the programmer has made the

handler
over both the array a

ess and the re
ursive
all to the inner fun
tion s.

But this would prevent a na��ve
ompiler from re
ognising that
all as tail-re
ursive.

In MLj, the intermediate
ode for s looks like (in MLish, rather than MIL, syntax):

fun s(n,sofar) =

try val x = try val v = Array.sub(a,n)

in s(n+1, sofar+v)

unless {}

end

in x

unless Subs
ript => sofar

end

The try-try rewrite turns this into

fun s(n,sofar) = try val v = Array.sub(a,n)

in try val x = s(n+1, sofar+v)

in x

unless Subs
ript => sofar

end

unless Subs
ript => sofar

end

(The two identi
al handlers are a
tually abstra
ted as a shared lo
al blo
k.) The

e�e
t analysis dete
ts that the re
ursive
all to s
annot, in fa
t, ever throw the

Subs
ript ex
eption, so the fun
tion is rewritten again to

fun s(n,sofar) = try val v = Array.sub(a,n)

in s(n+1, sofar+v)

10 Ni
k Benton and Andrew Kennedy

unless Subs
ript => sofar

end

whi
h is tail re
ursive, and so gets
ompiled as a loop in the �nal
ode for sumarray.

3.3 The Semanti
s Problem

There are several di�erent styles in whi
h one
an spe
ify the operational semanti
s

of ML-like languages. We have already seen (in Se
tion 1) a big-step, natural se-

manti
s presentation, but this is not always the most
onvenient formulation with

whi
h to work when proving results about observational equivalen
es. A popular

alternative is to use a small-step semanti
s presented using Felleisen's notion of

evaluation
ontext (Felleisen & Hieb, 1992). In this style, one �rst de�nes axioms

for the primitive transitions R!M , saying that redex R redu
es to term M , and

then gives an indu
tive de�nition of evaluation
ontexts as terms E[�℄
ontaining a

single `hole' in the pla
e where the next redu
tion will take pla
e. A simple lemma

that every non-value is uniquely of the form E[R℄ then allows the one-step transi-

tion relation to be de�ned as E[R℄ ! E[M ℄ for every evaluation
ontext E[�℄ and

primitive transition R ! M (and the evaluation relation to be de�ned in terms

of the re
exive transitive
losure of the transition relation). Wright and Felleisen

(1994) give an evaluation
ontext semanti
s for ML with ex
eptions whi
h uses a

se
ond kind of
ontext for propagating ex
eptions.

Pitts has argued (1997) that for reasoning about
ontextual equivalen
es it is

onvenient to reify the notion of evaluation
ontext and give a small-step operational

semanti
s in whi
h a
on�guration is a pair of a term and an expli
it
ontext

(
ontinuation). The advantages of this approa
h in
lude the fa
t that the right-

hand sides of transitions are all de�ned by stru
tural indu
tion over the left-hand

side and that there is a Galois
onne
tion between relations on terms and relations

on
ontexts whi
h has proved useful in reasoning about, for example, equivalen
e

of polymorphi
 fun
tions. This style of presentation is also parti
ularly natural if

the language in
ludes �rst-
lass
ontinuations, in the style of S
heme or SML/NJ

(see (Harper et al., 1993), for example).

Pitts formalises
ontexts by introdu
ing new synta
ti

ategories for de�ning

ontinuation sta
ks : a
on�guration looks like

h(x

1

):N

1

Æ � � � Æ (x

n

):N

n

; Mi

where M is the term being evaluated (in a �-
al
ulus with a stri
t let
onstru
t

and a restri
tion that only values and variables may o

ur in eliminations) and

(x

1

):N

1

Æ� � �Æ(x

n

):N

n

is a sequen
e of (
losed) abstra
tions representing the
ontext

in whi
h the evaluation takes pla
e. The rules de�ning the transition relation in
lude

hK Æ (x):N ; V i ! hK ; N [V=x℄i

hK ; let x(M inNi ! hK Æ (x):N ; Mi

hK ; (�x:M) V i ! hK ; M [V=x℄i

Ex
eptional Syntax 11

whi
h, it should be apparent, amounts to de�ning a kind of abstra
t ma
hine.

4

This style of semanti
s has been applied in (Pitts, 2000; Pitts & Stark, 1998; Bier-

man, 1998), and the relational operators it indu
es are further dis
ussed in (Abadi,

2000). Coin
identally, the
urrent implementation of MLj uses essentially the same

representation internally for eÆ
ient rewriting of terms in
ontext.

Pitts gives the relationship between the sta
k-based semanti
s and a natural

semanti
s using the following lemma: For all appropriately-typed,
losed K,M and

V

hK ; Mi !

�

h� ; V i () K�M + V

where � is the empty
ontinuation sta
k and the `unwinding' operator � is de�ned

by

��M = M

(K Æ (x):N)�M = K�(let x(M inN):

Note how the pla
e where the a
tion (redu
tion) happens is at the root of the

syntax tree of a sta
k
on�guration but buried deep in that of its unwinding, as

((x

1

):N

1

Æ � � � Æ (x

n

):N

n

) �M

=

let x

1

((

let x

2

(

(: : : (let x

n

(M in N) : : :)

in N

2

)

in N

1

It is straightfoward to extend Pitts's semanti
s to a language with ex
eptions:

one simply allows (
losed) handlers H (whi
h we previously introdu
ed as an abbre-

viation for part of the syntax of the handle
onstru
t and are now making slightly

more �rst-
lass) to appear as a new kind of element in
ontinuation sta
ks, with

the new transitions

hK ÆH ; V i ! hK ; V i

hK ÆH ; raiseEi ! hK ; Ni if H(E) = N

hK ÆH ; raiseEi ! hK ; raiseEi if E 62 H

hK Æ (x):N ; raiseEi ! hK ; raiseEi

hK ; M handleHi ! hK ÆH ; Mi

4

A
tually, sin
e Pitts is interested in whi
h
on�gurations lead to termination, for reasoning

about
ontextual equivalen
e, the one-step transitions are impli
it in inferen
e rules de�ning

the termination predi
ate & dire
tly, su
h as

hK ; N [V=x℄i &

hK Æ (x):N ; V i &

:

12 Ni
k Benton and Andrew Kennedy

The
onne
tion with the natural semanti
s extends to

hK ; Mi !

�

h� ; raiseEi () K�M " E

where the de�nition of � is extended by

(K ÆH)�M = K�(M handleH)

and this is the formulation we initially used when working on the equational theory

of MIL. However, there is a
ertain amount of
lutter involved in using sta
ks

(extra syntax, type rules, et
.), and we noti
ed that if one's syntax is suÆ
iently

well-behaved then it is possible to obtain an equally tra
table presentation of the

transition relation just using terms of the original language. For Pitts's language

without ex
eptions, the idea is to axiomatise dire
tly transitions between terms of

the form let x(M inN by using
ommuting
onversion transitions to `bubble up'

the next redex in M until it is at the top (and its surrounding
ontext within M

has been pushed into N). For example:

let x(V inN ! let y(N [V=x℄ in y (N 6= x)

let x((let y(M inN) in P ! let y(M in let x(N in P

let x((�y:M) V inN ! let x(M [V=y℄ inN

Using this style of presentation, the relationship between the big-step and small-step

semanti
s be
omes

(let x(M in x) !

�

(let x(V in x) () M + V:

Intuitively, the sta
k-free transition relation is de�ned dire
tly on a variant of Pitts's

`unwound' terms, in whi
h the lets asso
iate the other way around from the original

de�nition:

(K Æ (x):N)�M = let x(M in (K�N):

The equivalen
e of the two de�nitions of � depends on the validity of the asso
iativ-

ity of let (whi
h, as dis
ussed in (Benton et al., 1998b), is a
ommuting
onversion

in the logi

orresponding to Moggi's
omputational metalanguage).

However, if we add ex
eptions and the handle
onstru
t, the de�nition of the

sta
k-free transition relation fails to extend. On
e again, the problem is the la
k

of
ommuting
onversions whi
h would allow an ex
eption handler to be pushed

into a surrounding
ontext so that the evaluation of the expression
onvered by

the handler `bubbles' to the top. More
on
retely,
onsider the following putative

transition:

let x((M handleE) N) in P ! ?

We'd like to put something on the right-hand side in whi
h the evaluation of M is

at the top of the syntax tree, but there's no rewrite to anything of the form letx(

M in : : :. Nor
an we extend the
olle
tion of top-level forms to in
lude handle as

well as let
onstru
ts: there's no rewrite to something of the formM handleE) : : :

either.

Ex
eptional Syntax 13

try x(V in P unlessH ! try y (P [V=x℄ in y unless fg (P 6= x)

try x(raise E in P unlessH ! try y (H(E) in y unless fg

try x((�y:M) V in P unlessH ! try x(M [V=y℄ in P unlessH

try x((try y(M in P unlessH) inQ unlessH

0

! try y(M in (try x(P inQ unlessH

0

) unless (H
at
h H

0

in x:Q)

fE

i

) N

i

g
at
h fE

0

j

) N

0

j

g in x:Q

def

= fE

i

) try x(N

i

inQ unless fE

0

j

) N

0

j

gg

[fE

0

j

) N

0

j

j6 9i:E

i

= E

0

j

g

Fig. 3. Transition semanti
s

The �x: Operational semanti
s with try

If our language in
ludes try-in-unless, then there is no diÆ
ulty in giving a sta
k-

free presentation of a stru
turally indu
tive transition semanti
s. Figure 3 presents

transitions between terms of the form try x(M in P unlessH (re
all that try-in-

unless generalises let). The syntax (H
at
h H

0

in x:Q) is an abbreviation for the

overing of one handler by the other handler and
ontinuation used in the try-try

onversion (as in Figure 2).

The
onne
tion between the transition semanti
s and the big-step semanti
s is

then expressed by

M + V () try x(M in x unless fg

!

�

try x(V in x unlessH

M " E () try x(M in x unless fg

!

�

try x(raiseE in P unlessH (E 62 H)

This formulation of the transition semanti
s is the one whi
h we have used when

reasoning about observational
ongruen
e for MIL in order to validate e�e
t-based

transformations (Benton & Kennedy, 1999).

5

4 Remarks on Con
rete Syntax

Using try-in-unless in theoreti
al work or in a
ompiler intermediate language is

straightforward. But adding the
onstru
t to a programming language requires a

human-friendly
on
rete syntax to be
hosen and, annoyingly, there doesn't seem

to be an obviously `right'
hoi
e here. The main problem is
hoosing whether the

handlers or the
ontinuation expression should
ome �rst, i.e. between

try x = M try x = M

in N unless E=>P

unless E=>P and in N

end end

5

Though, embarassingly, the HOOTS paper gives an in
orre
t shorthand for one handler
overing

another in the operational semanti
s.

14 Ni
k Benton and Andrew Kennedy

Neither of these is entirely satisfa
tory. In the �rst
ase the fa
t that the handler

only
overs M and not N is obs
ured; this is parti
ularly bad if N is large. In the

se
ond, that x is bound in N but not in P is
ertainly not what one would expe
t.

Our own preferen
e for SML is �rstly to retain the handle
onstru
t in the sour
e

syntax, sin
e it is simpler and suÆ
es for most situations, and then either to add

the �rst alternative above or (more radi
ally) to allow both of them. Sin
e try-in-

unless generalises let, it also seems sensible to do without the try keyword and just

allow unless to be an optional part of let-expressions. We have tweaked MLj so

that it will a

ept syntax like the following:

fun f ((n1,n2)::rest) =

let val s1 = openIn n1

val s2 = openIn n2

in
ombine(s1,s2)

unless Io => f rest

end

Note that SML allows multiple sequential de
larations in a single let expression.

None of the variables in the left-hand sides are bound in the handler, whi
h is

evaluated if any of the right-hand sides raise a mat
hing ex
eption.

5 Remarks on Try-Finally

Some imperative languages have a try statement whi
h allows exe
ution of a
om-

mand to be
overed not only by a set of handlers, but also by an optional �nally

lause. This spe
i�es a
ommand whi
h is to be exe
uted on
e
ontrol has left the

overed
ommand (and any of the handlers), irrespe
tive of whether the exit was

normal or by raising an ex
eption. The try-(
at
h)-�nally
onstru
t is typi
ally

used for imperative `
leanup'
ode whi
h needs to be exe
uted whether or not an

error o

urs, the usual example being
losing open �les.

One way to extend ML with a similar feature would be by new syntax M finally

N, the typing rule for whi
h requires N to be of type unit, and whose behaviour

may be spe
i�ed by the translation:

let val x = M handle e => (N ; raise e)

M finally N = in N ; x

end

where x is not free in N. In the absen
e of spe
ial syntax, one has to program dire
tly

in terms of the translation, whi
h involves the unpleasant dupli
ation of N. This

dupli
ation may be minimised by abstra
ting (thunking) N, and by doing the same

to M one
an write a higher-order fun
tion finally of type (unit -> 'a) * (unit

-> unit) -> 'a. One might (and the referees did) wonder whether our alternative

syntax for ex
eption handling allows the behaviour of finally to be obtained in a

more
onvenient �rst-order way. Unfortunately, the answer is no. The translation

of M finally N in our syntax is

Ex
eptional Syntax 15

let val x = M

in N ; x

unless e => N ; raise e

end

whi
h, although it arguably makes the
ontrol
ow a little
learer, is not really any

better than the translation in terms of handle { it still dupli
ates N.

6

6 Con
lusions

Although the point is undeniably a small one, we hope we have
onvin
ed the

reader that the try-in-unless syntax for ex
eption handling really is more well-

behaved than the traditional handle
onstru
t. It is also probably worth noting

that if one translates a language with ex
eptions into one without them, by using

sums to en
ode the ex
eptions monad (if the set of ex
eptions is in�nite then this

requires either in�nite syntax or defaults in pattern mat
hing), then the derived

elimination
onstru
t for
omputations is essentially try-in-unless. (The di�eren
e

is that all ex
eptions are always
aught, though all but a �nite number are then

rethrown.)

As far as we know, MIL is the �rst language to use try-in-unless, though we

are not the only people to have spotted that it might be a useful programming

onstru
t { whilst we were writing this Judi
ael Courant suggested the essentially

same thing on the CAML mailing list (1999).

From a methodologi
al perspe
tive, we feel that this is another small pie
e of

eviden
e for the bene�ts of taking insights from proof-theory seriously when do-

ing language design. Although the solution seems obvious in retrospe
t, and other

people might have rea
hed it by a di�erent route, we personally would not have

re
ognised that there was an identi�able problem in the �rst pla
e (as opposed to

some ugly bits of
ode and slightly messy proofs) had we not been thinking in terms

of proof-theoreti
 normal forms.

Referen
es

Abadi, M. (2000). >>-
losed relations and admissibility. Mathemati
al Stru
tures in

Computer S
ien
e, 10(3), 313{320.

Benton, N., & Kennedy, A. (1999). Monads, e�e
ts and transformations. Third Inter-

national Workshop on Higher Order Operational Te
hniques in Semanti
s (HOOTS),

Paris. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, vol. 26. Elsevier.

Benton, N., Kennedy, A., & Russell, G. 1998a (September). Compiling Standard ML to

Java byte
odes. 3rd ACM SIGPLAN Conferen
e on Fun
tional Programming.

Benton, P. N., Bierman, G. M., & de Paiva, V. C. V. (1998b). Computational types

6

This dupli
ation di�ers from those introdu
ed by
ommuting
onversions in that the
ontinu-

ations of the two
opies of N are di�erent, so the sharing
annot be
aptured by MIL's spe
ial

`lo
al blo
k' abstra
tions. This problem with finally is the reason that the JVM in
ludes a

very restri
ted and ad ho
 form of subroutine.

16 Ni
k Benton and Andrew Kennedy

from a logi
al perspe
tive. Journal of Fun
tional Programming, 8(2), 177{193. Pre-

liminary version appeared as Te
hni
al Report 365, University of Cambridge Computer

Laboratory, May 1995.

Bierman, G.M. (1998). A
omputational interpretation of the ��-
al
ulus. Pages 336{

345 of: Brim, L., Gruska, J., & Zlatu�ska, J. (eds), Pro
eedings of the Symposium on

Mathemati
al Foundations of Computer S
ien
e. Le
ture Notes in Computer S
ien
e,

vol. 1450.

Courant, J. (1999). A
ommon use of try...with. Message to the CAML mailing list, 16

De
ember. http://pauilla
.inria.fr/
aml/
aml-list/2121.html.

Felleisen, M., & Hieb, R. (1992). The revised report on the synta
ti
 theories of sequential

ontrol and state. Theoreti
al Computer S
ien
e, 103, 235{271.

Flanagan, C., Sabry, A., Duba, B. F., & Felleisen, M. (1993). The essen
e of
ompiling with

ontinuations. Pro
eedings of the 1993 Conferen
e on Programming Language Design

and Implementation. ACM.

Girard, J.-Y., Lafont, Y., & Taylor, P. (1989). Proofs and Types. Cambridge Tra
ts in

Theoreti
al Computer S
ien
e, no. 7. Cambridge University Press.

Harper, R., Duba, B., & Ma
Queen, D. (1993). Typing �rst-
lass
ontinuations in ML.

Journal of Fun
tional Programming, 4(3), 465{484.

Hat
li�, J., & Danvy, O. (1994). A generi
 a

ount of
ontinuation-passing styles. Pro
eed-

ings of the 21st Annual Symposium on Prin
iples of Programming Languages. ACM.

Milner, R., Tofte, M., Harper, R., & Ma
Queen, D. (1997). The De�nition of Standard

ML (revised). The MIT Press.

Moggi, E. (1991). Notions of
omputation and monads. Information and Computation,

93, 55{92.

Paulson, L. C. (1991). ML for the Working Programmer. Cambridge University Press.

Peyton Jones, S., & Santos, A. (1998). A transformation-based optimiser for Haskell.

S
ien
e of Computer Programming, 32(1-3), 3{47.

Peyton Jones, S., Reid, A., Hoare, T., Marlow, S., & Henderson, F. (1999). A semanti
s

for impre
ise ex
eptions. Pro
eedings of the 1999 Conferen
e on Programming Language

Design and Implementation. ACM.

Pitts, A. M. (1997). Operational Semanti
s for Program Equivalen
e. Invited talk at

MFPS XIII, CMU, Pittsburgh. See http://www.
l.
am.a
.uk/users/amp12/talks/.

Pitts, A. M. (2000). Parametri
 polymorphism and operational equivalen
e. Mathemati
al

Stru
tures in Computer S
ien
e, 10, 1{39. A preliminary version appeared in Pro
eed-

ings, Se
ond Workshop on Higher Order Operational Te
hniques in Semanti
s (HOOTS

II), Stanford CA, De
ember 1997, Ele
troni
 Notes in Theoreti
al Computer S
ien
e 10,

1998.

Pitts, A. M., & Stark, I. D. B. (1998). Operational reasoning for fun
tions with lo
al

state. Pages 227{273 of: Gordon, A. D., & Pitts, A. M. (eds), Higher Order Operational

Te
hniques in Semanti
s. Publi
ations of the Newton Institute. Cambridge University

Press.

Sabry, A., & Felleisen, M. (1993). Reasoning about programs in
ontinuation-passing style.

Lisp and Symboli
 Computation, 6(3/4), 289{360.

Wright, A. K., & Felleisen, M. (1994). A synta
ti
 approa
h to type soundness. Information

and Computation, 115(1), 38{94.

