
High-Level Separation Logic for Low-Level Code

Jonas B. Jensen
IT University of Copenhagen

jobr@itu.dk

Nick Benton Andrew Kennedy
Microsoft Research Cambridge
{nick,akenn}@microsoft.com

Abstract
Separation logic is a powerful tool for reasoning about structured,
imperative programs that manipulate pointers. However, its appli-
cation to unstructured, lower-level languages such as assembly lan-
guage or machine code remains challenging. In this paper we de-
scribe a separation logic tailored for this purpose that we have ap-
plied to x86 machine-code programs.

The logic is built from an assertion logic on machine states over
which we construct a specification logic that encapsulates uses of
frames and step indexing. The traditional notion of Hoare triple is
not applicable directly to unstructured machine code, where code
and data are mixed together and programs do not in general run
to completion, so instead we adopt a continuation-passing style
of specification with preconditions alone. Nevertheless, the range
of primitives provided by the specification logic, which include
a higher-order frame connective, a novel read-only frame connec-
tive, and a ‘later’ modality, support the definition of derived forms
to support structured-programming-style reasoning for common
cases, in which standard rules for Hoare triples are derived as lem-
mas. Furthermore, our encoding of scoped assembly-language la-
bels lets us give definitions and proof rules for powerful assembly-
language ‘macros’ such as while loops, conditionals and proce-
dures.

We have applied the framework to a model of sequential x86
machine code built entirely within the Coq proof assistant, includ-
ing tactic support based on computational reflection.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ings of programs]: Specifying and Verifying and Reasoning about
Programs—Assertions, Invariants, Logics of programs, Mechani-
cal verification, Pre- and post-conditions, Specification techniques;
D.3.2 [Programming Languages]: Language Classifications—
Macro and assembly languages; D.2.4 [Software Engineering]:
Software / Program Verification—Correctness proofs, formal meth-
ods

General Terms Languages, theory, verification

Keywords Separation logic, machine code, proof assistants

1. Introduction
Formal verification is one of the most important techniques for
building reliable computer systems. Research in software verifica-
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tion typically, and quite reasonably, concerns reasoning about the
high-level programming languages with which most programmers
work. But to build genuinely trustworthy systems, one really needs
to verify the machine code that actually runs, whether it be hand-
crafted or the output of a compiler. This is particularly important
for establishing security properties, since failures of abstraction be-
tween the high and low-level models often lead to vulnerabilities
(and because hand-crafted machine code is often found in security-
critical places, such as kernels). A further motivation for verifying
low-level code is that real systems are composed of components
written in many different languages; machine code is the only truly
universal lingua franca by which we can reason about properties
of such compositions. Finally, experience shows that hand-written
low-level programs are simply much harder to get right than higher-
level ones, increasing the credibility gap between formal and infor-
mal verifications.

Verifying low-level, unstructured programs [18, 39], and com-
pilers that produce them [24], both have a long history. And since
such verifications are, like low-level programs themselves, ex-
tremely lengthy and error-prone, some form of mechanical assis-
tance is absolutely crucial. This assistance often takes the form
of automated decision procedures for first-order logic and vari-
ous more specialized theories, combined by an SMT solver [21].
Here, however, our focus is on deductive Hoare-style verification
of machine-code programs using an interactive proof assistant, in
our case Coq. This requires more manual effort on the part of the
user, but allows one to work with much richer mathematical mod-
els and specifications, which are particularly important for mod-
ularity. Both approaches to mechanization also have considerable
history, with much pioneering work applying interactive provers
to low-level code having been done with the Boyer-Moore prover
in the 1980s [25, 41]. Recently, however, an exciting confluence
of advances in foundational theory, program logics (most notably
separation logic [35]) and the technology of proof assistants, to-
gether with increased interest in formal certification, have led to an
explosion of work on mechanized verification of real (or at least,
realistic) software, including compilers and operating systems. Al-
though many of these formalizations do involve reasoning about
machine code or assembly language programs, program logics for
low-level code are generally much less satisfactory, and more ad
hoc, than those for high-level languages.

The design of a high-level program logic tends to follow closely
the structure and abstractions provided by the language. Commands
in a while-language, for example, may be modelled as partial func-
tions from stores to stores, which are only combined in certain very
restricted ways. The classical Hoare triple, relating a predicate on
inputs to a predicate on outputs, is a natural (indeed, inevitable)
and generally satisfactory form of specification for such functions.
Furthermore, the structured form of programs leads to particularly
elegant, syntax-directed program logic rules for composing verifi-
cations. Machine code, by contrast, has almost nothing in the way
of inherent structure or abstractions to guide one, supports chal-



lenging patterns of programming and also involves a host of messy
complexities.

The messy complexities include large instruction sets with
variable-length encodings, the need to work with bit-level oper-
ations and arithmetic mod 232, alignment, a plethora of flags, reg-
isters, addressing modes, and so on. These inevitably cause some
pain, but are just the sort of thing proof assistants are good at check-
ing precisely and, with a well-engineered formalization, removing
some of the drudgery from.1 There is, of course, complexity of a
quite different order associated (at both high- and low-level) with
concurrency – especially relaxed memory models on multiproces-
sors – which we do not address at all in this paper. Even in the
sequential case, however, the lack of inherent structure in low-level
code is a fundamental problem.

Machine code features unstructured control flow. A contiguous
block of instructions potentially has many entry points and many
exits, with the added complication that the same bytes may decode
differently according to the entry point. Machine code is almost
entirely untyped and higher-order, with no runtime tagging: any
word in memory or a register may be treated as a scalar value, a
pointer or a code pointer, and common coding patterns do make
use of this flexibility: stealing bits in pointers, storing metadata at
offsets from code pointers, computing branches, and so on. Finally,
code and data live in the same heap, allowing code generation, self-
modifying code and code examination, for example for interpreting
instructions. The most basic abstractions, such as memory alloca-
tion or function calling, are not built in, but are conventions that
must be specified, followed and verified at appropriate points. Fur-
thermore, code that implements even the simplest of these abstrac-
tions, such as first-order function calls, uses features of machine
code whose high-level analogues (higher-order, dynamically allo-
cated local state) are challenging to reason about – and a subject of
active research – even in very high-level languages such as ML.

Some logics, type systems and analyses for machine code deal
with these complexities by imposing structure and restrictions on
the code they deal with. For example, one can enforce a tradi-
tional basic block structure, hard-code memory allocation as a spe-
cial pseudo-instruction or treat calling and a call-stack specially
[5, 27, 31, 40]. Such techniques can work well for verifying code
that looks like it came from a C compiler, but we would like some-
thing more generally applicable, able to verify smoothly higher-
order code, systems code such as schedulers and allocators, and
code that uses clever bit-level representation tricks. In previous
work, for example on compiling a functional language to a rather
idealized assembly language [7], one of us has proved useful re-
sults in Coq using a shallow embedding of step-indexed, separated
predicates and relations, a notion of biorthogonality (‘perping’) for
code pointers, explicit second-order quantification for framing, and
a more-or-less ad hoc collection of lemmas for instructions, quan-
tifier manipulation and entailment. Given sufficient effort, such an
approach can undeniably be pushed through, but the proofs and
specifications are very clumsy; although some of the connectives
have respectable properties, there is certainly no sense that one is
working in a well-structured program logic, with a well-behaved
proof theory. Applying such a naive approach in the context of
real machine code, with the above-mentioned messy complexities
and in which we would clearly need to build numerous higher-level
proof abstractions, seemed unlikely to work well.

Separation logics for higher-level languages, by contrast, do
have a good proof theory. In particular, work on higher-order frame
rules allows local reasoning about higher-order programs, allowing
invariants to be framed onto commands in context by distributing

1 Logics for high-level languages often ignore fixed-length arithmetic, even
when that is what is provided by real implementations.

them through the specifications of parameters [9]. A major goal
of the work described here is to bring the power and concision
of higher-order frame rules to reasoning about machine-code pro-
grams. At first sight, it may seem unclear how to incorporate even
the first-order frame rule

{P} C {Q}
{P ∗R} C {Q ∗R}

into a system for reasoning about machine code. Firstly, the frame
rule is typically justified using a global property of commands with
respect to a semantics defined over partial heaps: if a command
executes without faulting in some heap, then it does so in any
extension of that heap and moreover, if it terminates it preserves the
extension. Partial heaps in the semantics model a built-in allocator,
but, as in our previous work in low-level code [6, 7], we do not
wish to define the ground semantics (with respect to which we
interpret specifications) using partial heaps: whatever memory is
in the machine is there all the time, and the allocator is just another
piece of code to be specified and verified in our framework.

Secondly, the postcondition of a triple corresponds to the single
exit point of a first-order command. Machine code fragments do not
have single exits, or even a natural, local notion of terminating exe-
cution. We are ultimately concerned with the observable behaviour
of whole programs, and do not wish to restrict ourselves to a form
of specification that relies on the non-observable, intensional prop-
erty of reaching a particular intermediate program counter value.
We thus take our basic form of safety specifications to be one that
only involves a precondition: execution from a given address in a
state satisfying the precondition is safe. As Chlipala [16] observes,
it is not obvious how to attach a frame soundly to such a specifi-
cation. We address these problems by going beyond a shallow em-
bedding of specifications of individual program points, to an em-
bedding of a fully-fledged specification logic [23, 34], making the
context within which code fragments are proved explicit, and with
a semantics that captures (but a surface notation which hides) the
way in which frames are preserved.

The specification logic allows one to work with subtle patterns
of invariant preservation, but does not impose particular forms of
specification. Rather, it provides building blocks from which more
complex patterns, including Hoare triples, may be built. The rich,
well-behaved theory of the core logic allows derived rules for new
forms of specification to be expressed and proved concisely.

We have formalized our specification logic in the Coq proof
assistant, and instantiated it for the particular case of a model for
sequential x86 machine code. Our formalization also includes a
range of reflective tactics for solving separation entailments and
performing specification logic proofs at a high level of abstraction.
This paper mainly discusses the logic in a machine-independent
way, but we use the x86 instantiation for examples and motivation.

In summary, the contributions of this work include:

1. A separation logic for unstructured machine code that supports
both first- and higher-order frame rules.

2. Accounts of specification-level connectives including framing,
a ‘read-only’ frame, a ‘later’ modality and a full range of intu-
itionistic connectives, all with good logical properties.

3. Examples of higher-level patterns, such as Hoare triples, and
associated proof rules being defined smoothly within the logic.

4. An certified assembler, supporting convenient macro definitions
with internal label generation and natural derived proof rules,
with examples including while-program constructs and proce-
dure calling.



5. A semantics involving no instrumention or other modifications
to the underlying machine model. Memory can be total, and
step-counting and auxiliary variables happen only in the logic.

6. All this is formalized in Coq, with an instantiation for x86
machine code and tactic support for high-level proving. The
formalization is available via the authors’ web pages.

2. Machine model
Our separation logic is not tied to any particular machine architec-
ture, but in order to illustrate its application we will be presenting
examples from 32-bit x86, the architecture for which we have built
a model in Coq.2 In this section we present enough concrete detail
of this model to support subsequent sections.

We have modelled a subset of the 32-bit x86 instruction set,
considering sequential execution only, but treating memory, regis-
ters and flags in sufficient detail to obtain accurate specification of
its behaviour.

Machine words and arithmetic We model n-bit machine words
simply as n-nary tuples of boolean values, deploying an indexed
type in Coq for the purpose. The x86 architecture makes various
use of 8-bit (BYTE), 16-bit (WORD), 32-bit (DWORD) and 64-bit
(QWORD) values, and so nat-dependent types in Coq are a boon to
specification. Logical and arithmetic operations are defined directly
in terms of bits, although to prove useful properties of arithmetic it
proved handy to map words into arithmetic modulo 2n, making use
of the ssreflect library for algebraic identities [20].

Machine state The state of the machine is described by a triple
of registers, flags and memory state:

S = (reg→ DWORD)×
(flag→ {true, false, undef})×
(DWORD→ (BYTE ] {unmapped}))

Register state is a straightforward mapping from the x86’s nine
core registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP and
EIP) to 32-bit values. The EIP instruction pointer register is the
x86’s program counter and points to the next instruction to be de-
coded by the processor. Rather than model the special EFLAGS as
a monolithic register, we split it up into boolean-valued flags. The
undef value represents the undefined state in which many instruc-
tions leave flags. Any dependence of execution on an undefined
state, such as in a conditional branch instruction, is then treated as
unspecified behaviour. Memory is modelled straightforwardly as
32-bit-addressable bytes, with the possibility that any byte might
be missing or inaccessible. For now, we are not interested in finer
distinctions such as read-only or no-execute, though it would be a
simple matter to incorporate these notions. It is however important
to note that the ‘partiality’ of memory has nothing to do with the
partial states of separation logic; indeed we could choose to model
and fully specify the x86 support for fault handling, using the very
same logic.

Instructions Any machine model must of course include a
datatype of instructions. The x86 instruction set is notoriously
large and baroque but by careful subsetting and factoring our
datatype is made reasonably concise. Figure 1 presents the instruc-
tion datatype, with only some names changed for the purposes of
this paper.

Instruction decoding The x86 instruction format is also complex,
being variable in length and not canonical: a single instruction can
sometimes be encoded in many ways. We have implemented an

2 There is no particular reason for choosing x86 over x64 or ARM.

Typeof d = if d then DWORD else BYTE

Scale = S1 | S2 | S4 | S8

MemSpec = Reg × option (NonSPReg × Scale)× DWORD

RegMem = RegMemR (r:Reg) | RegMemM(ms:MemSpec)

RegImm d = RegImmI (c:Typeof d) | RegImmR (r:Reg)

Src = SrcI (c:DWORD) | SrcM (ms:MemSpec) | SrcR(r:Reg)

DstSrc d =
| RR (dst :Reg) (src:Reg)
| RM (dst :Reg) (src:MemSpec)
| MR (dst :MemSpec) (src:Reg)
| RI (dst :Reg) (src:Typeof d)
| MI (dst :MemSpec) (src:Typeof d)

BinOp = ADC | ADD | AND | CMP | OR | SBB | SUB | XOR

UnaryOp = INC | DEC | NOT | NEG | POP

BitOp = BT | BTC | BTR | BTS

ShiftOp = ROL | ROR | RCL | RCR | SHL | SHR | SAL | SAR

Count = ShiftCL | ShiftImm (b:BYTE)

Condition = O | B | Z | BE | S | P | L | LE

Instr =
| UOP (d:bool) (op:UnaryOp) (dst :RegMem)
| BOP d (op:BinOp) (ds:DstSrc d)
| BITOP (op:BitOp) (dst :RegMem false)
| TEST d (dst :RegMem) (src:RegImm d)
| MOV d (ds:DstSrc d)
| SHIFTOP (d:bool) (op:ShiftOp) (dst :RegMem) (c:Count)
| MUL (src:RegMem)
| LEA (reg :Reg) (src:RegMem)
| JCC (cc:Condition) (dir :bool) (tgt :DWORD)
| PUSH (src:Src)
| POP (dst :RegMem)
| CALL (src:Src) | JMP (src:Src)
| RET (size:WORD)
| CLC | STC | CMC | HLT

Figure 1. Instruction datatype

instruction decoder as a partial function

decode : DWORD× (DWORD→ (BYTE ] {unmapped}))
⇀ DWORD× Instr

such that if decode(i,m) = (j, ι) then memory m from address
i up to but not including address j is defined and decodes to in-
struction ι. The decoder reads memory incrementally, returning an
undefined value if memory is inaccessible or out of range, or if the
contents do not describe an instruction in our chosen subset. (There
is no need to specify explicitly a maximum instruction length.) Lift-
ing decode to machine states, and threading the updating of the EIP
register through, yields a partial function in S⇀ S× Instr.

Instruction execution Instruction execution is given by a partial
function on states S × Instr ⇀ S, which when composed with
instruction decoding gives rise to a small-step transition function
on machine states step : S ⇀ S. When this function is undefined,
it means that either a fault occurred (such as the decoding of an
illegal instruction or an access to unmapped memory), or behaviour
is simply unspecified (such as branching on an undefined flag).



3. Assertion logic
3.1 Partial states
Assertions in separation logic describe a subset, or ‘footprint’, of
the machine state. For high-level imperative programs with dy-
namic allocation this footprint consists of a subset of the heap. In-
deed a common idiom is to prove that some code starts or finishes
with an ‘empty’ heap.

Here, there is no such thing: we have the whole machine at our
disposal, and we must carve out our own abstractions such as heaps
or stacks, so the footprint is simply that part of the state that we
care about right now. We also find it useful to use separation in
describing the manipulation of registers and flags, and so define
partial states as follows, noting the resemblance to the definition of
total states in Section 2.

Σ = (reg ⇀ DWORD)×
(flag ⇀ {true, false, undef})×
(DWORD ⇀ (BYTE ] {unmapped}))

There is a partial binary operation ] on elements of Σ, defined
when its operands have disjoint domains on all three tuple compo-
nents and yielding a tuple with the union of each of the maps. This
makes (Σ,]) a separation algebra [15]; i.e., a partial commutative
monoid.

3.2 Assertion logic
An assertion is a predicate on partial states:

asn , P(Σ)

Since (Σ,]) is a separation algebra, its powerset asn forms a
complete boolean BI algebra, i.e., a model of the assertion language
of classical separation logic, where the connectives are defined in
the standard way [15]:

∀x:T. P (x) ,
⋂

x:T P (x) ∃x:T. P (x) ,
⋃

x:T P (x)

P ⇒Q , {σ | σ ∈ P ⇒ σ ∈ Q} emp , {([], [], [])}
P ∗Q , {σ | ∃σ1, σ2. σ = σ1 ] σ2 ∧ σ1 ∈ P ∧ σ2 ∈ Q}
P −∗ Q , {σ2 | ∀σ1. ∀σ = σ1 ] σ2. σ1 ∈ P ⇒ σ ∈ Q}

The propositional connectives (∧,>) and (∨,⊥) are just binary
and nullary special cases of ∀ and ∃ respectively. As usual, entail-
ment is defined as P ` Q , P ⊆ Q, and we write ` P for > ` P
and P ≡ Q whenever P ` Q and Q ` P .

There is a notion of points-to [35] for registers and for flags:

r 7_ v , {([r 7→ v], [], [])} f 7_ b , {([], [f 7→ b], [])}

The meaning of the points-to assertion for memory, i..j 7→ v,
depends on the type of v; this is done using a type class [37] in
our Coq implementation. For BYTE and DWORD types, points-to
means that memory from address i to j contains that value. In these
cases, j is uniquely determined to be i + 1 or i + 4 respectively.
For syntactic assembly instructions ι, it means that the memory at
i..j decodes to ι. In other words, decode(i,m) = (j, ι) where m
is the memory component of the state. Instruction encoding is not
unique, so more than one byte sequence in memory may decode to
the same ι. We write i 7→ v to mean ∃j. i..j 7→ v.

Discussion. Another option would have been to let the registers
and flags behave like the ‘stack’ in traditional separation logic [35]
and not split them over ∗. This is the approach taken by Shao et
al. [14, 31] and Chlipala [16], but it leads to the side condition
on the frame rules that the program may not modify any registers
mentioned by the frame. In a setting where programs have multiple
entry and exit points and may be self-modifying, it is not even clear

what that side condition means or how to check it, so we instead
make registers and flags split across ∗, following Myreen et al. [29].

4. Specification logic
4.1 Safety
We extend the single-step partial function step : S ⇀ S to a
function run : N× S ⇀ S, where run(k, s) is the state that results
from successful execution of k instructions starting from state s.

Unlike the high-level languages typically modelled with Hoare
logics, a CPU has no natural notion of finishing a computation. It
will run forever until it either faults or loses power3. This means
that we cannot apply the standard Hoare-logic approach of describ-
ing a computation by a precondition and a postcondition since there
is no meaningful time to check the postcondition.

Instead, specifications revolve around safety. We characterise
the safe machine configurations as the set of pairs (k, P ) : N× asn
such that the machine will run for at least k steps without faulting
if started from a state in P :

safe , {(k, P ) | ∀σ ∈ P. ∀s w σ. ∃s′ : S. run(k, s) = s′}

The relation s w σ states that all the mappings in σ are also found
in s. This is how we connect the partial states found in assertions
to the total states executed by the machine.

Example 1. It is safe to sit in a tight loop forever. That is,

∀k, i. (k, (EIP 7_ i ∗ i 7→ jmp i)) ∈ safe

The EIP register is the instruction pointer, and jmp i is an uncon-
ditional jump to address i. The proof goes by induction on k. �

The number k plays the role of a step index [2]. We are ulti-
mately always interested in proving computations safe for an ar-
bitrary number of steps, but exposing an intermediate step index
gives us a value on which we can do induction.

As a running example, we will attempt to specify the uncondi-
tional jump instruction. We can show that for all i, a, k,R,

(k,Q ∗R) ∈ safe⇒ (k + 1, P ∗R) ∈ safe where
P = (EIP 7_ i ∗ i 7→ jmp a) and
Q = (EIP 7_ a ∗ i 7→ jmp a)

In words, if you need to show that P ∗ R is a safe configuration
for k + 1 steps, it suffices to show that Q ∗ R is safe for k steps.
When a specification follows this pattern, we can think of P as a
precondition, Q as a postcondition, and R as a frame.

The specification does not say thatQ∗R will ever hold. Rather,
it requires that if Q ∗ R does hold, then we are in a safe configu-
ration. This can be seen as a CPS version of Hoare logic, which is
appropriate for machine code since nothing ever returns or finishes
at this level [5, 31, 38].

We will refine this specification in later examples as we develop
constructions at higher levels of abstraction.

4.2 Specification logic
Reasoning directly about membership of safe is awkward since the
step index and frame are explicit and visible even though their use
always follows the same pattern. The solution is to instead consider
safe as a formula in a specification logic. We define a specification
to be a set of of (k, P )-pairs that is closed under decreasing k and
under starring arbitrary assertions onto P :

spec , {S ⊆ N×asn | ∀(k, P ) ∈ S, k′ ≤ k,R. (k′, P ∗R) ∈ S}

3 Even when it faults, it will typically reboot and so keep running, but this
behaviour is outside of our model.



Intuitively, a specification S : spec describes how many steps the
machine has to execute before it no longer holds and what frames
the execution will preserve. This idea comes from the work of
Birkedal, Torp-Smith and Yang on higher-order frame rules [8, 10],
and spec is essentially a step-indexed version of Krishnaswami’s
specification logic model [23].

The definition of spec is such that safe ∈ spec. Furthermore,
spec is a complete Heyting algebra and thus a model of intuition-
istic logic. This gives us a notion of entailment (` , ⊆) and the
logical connectives (∀, ∃,∧,∨,>,⊥,⇒) with the expected rules.
The definitions of the connectives follow a standard Kripke model:

∀x:T. S(x) ,
⋂

x:T S(x) ∃x:T. S(x) ,
⋃

x:T S(x)

S⇒ S′ , {(k, P ) | ∀k′ ≤ k. ∀R.
(k′, P ∗R) ∈ S⇒ (k′, P ∗R) ∈ S′}

Again, the propositional connectives (∧,>) and (∨,⊥) are just
binary and nullary special cases of ∀ and ∃ respectively.

Notice how the semantics of⇒ requires arbitrary frames to be
preserved across the implication. This was not a choice we made –
it is the only definition that makes⇒ be the right adjoint of ∧, and
it falls out of giving standard Kripke semantics.

We also get two new connectives: the later connective . and the
frame connective ⊗. We will define and discuss these in the next
two subsections. They will enable us to state the specification of
the jmp instruction from Section 4.1 more succinctly:

. safe⊗(EIP 7_a∗i 7→jmp a) ` safe⊗(EIP 7_i∗i 7→jmp a) (1)

We can even factor out the duplicated part of the assertion and
just write

` (. safe⊗ (EIP 7_ a)⇒ safe⊗ (EIP 7_ i))⊗ i 7→ jmp a

or, informally, reading from right to left: ‘given that i points to
instruction jmp a, it is safe to execute with the instruction pointer
set to i if it is later safe to execute with the instruction pointer set
to a’.

4.3 Frame connective
Following the literature on higher-order frame rules [8, 10, 23], we
define the frame connective ⊗ : spec× asn→ spec as

S ⊗R , {(k, P ) | (k, P ∗R) ∈ S}
This is also known as the invariant extension connective [8] because
an intuitive reading of S⊗R is that the computation described by S
is allowed to additionally depend on and maintain the invariant R.
Note that, by unpacking the definitions,

` safe⊗ P iff ∀k,R. (k, P ∗R) ∈ safe

relating judgements in the specification logic with the safety of
executions. Since we defined spec such that any S can be extended
by any invariant, we can immediately prove the higher-order frame
rule:

FRAME
S ` S ⊗R

The frame connective distributes over all other connectives,
including . and itself. That means, for example, that

⊗-⇒
(S⇒ S′)⊗R ≡ S ⊗R⇒ S′ ⊗R

It also interacts with emp and ∗ as follows.
⊗-EMP

S ⊗ emp ≡ S

⊗-∗
S ⊗R1 ⊗R2 ≡ S ⊗ (R1 ∗R2)

Example 2. We can now start to see why FRAME should be
thought of as a frame rule. Assume we have proved for some P

and Q that
` safe⊗Q⇒ safe⊗ P.

Then by FRAME, ⊗-⇒ and ⊗-∗, we can derive

` safe⊗ (Q ∗R)⇒ safe⊗ (P ∗R).

Visually this looks like the standard frame rule, and it performs
the same function: to extend both pre- and post-condition by an
invariant. �

The formula S⊗R is covariant in S with respect to entailment,
meaning that

S ` S′ ⊗-`
S ⊗R ` S′ ⊗R

The variance in R is more complicated and will be discussed in
Section 7.1.

Example 3. To illustrate informally how FRAME generalises the
standard first-order frame rule, consider a program in a high-level
functional programming language f1 : (unit → unit) → unit,
whose specification is, for some particular P , Q and R,

∀g. {P ∗R} g () {Q ∗R}⇒ {P ∗R} f1(g) {Q ∗R}
That is, f1 forwards the specification of g. Most likely, f1 simply
applies its argument to the unit value, but assume that it has been
verified separately and we should not see its implementation.

If we have g1 with specification {P} g1 () {Q}, we cannot
immediately apply f1(g1) since the specification does not match
what f1 requires. However, we can apply the ordinary frame rule to
deduce that g1 also has the specification {P ∗ R} g1 () {Q ∗ R},
and then we can call f1(g1) if we are in a state satisfying P ∗R.

Now instead consider an f2 with the specification

∀g. {P} g () {Q}⇒ {P} f2(g) {Q}
and a g2 with specification {P ∗R} g2 () {Q∗R}. It is impossible
with just the standard frame rule to call f2(g2) since the specifica-
tion of g2 cannot be refined to match what is assumed by f2. But
with the higher-order frame rule, we can instead refine the specifi-
cation of f2 to be

∀g. ({P} g () {Q}⇒ {P} f2(g) {Q})⊗R ≡
∀g. {P} g () {Q} ⊗R⇒{P} f2(g) {Q} ⊗R ≡

∀g. {P ∗R} g () {Q ∗R}⇒ {P ∗R} f2(g) {Q ∗R}
It is now compatible with our g2.

Without the higher-order frame rule, we would have had to
either re-verify the implementation of f2 or generalise the original
specification of f2 to explicitly quantify over all possible frames
that may be threaded through. The latter option is essentially what
the definition of spec does, but this is invisible and implicit. �

Using ⊗ to give concise and modular specifications to higher-
order functions is as important here as in any other separation logic,
but that is not our main reason for including ⊗. We do it because it
allows our logic to have a frame rule despite the program being un-
structured and low-level. Chlipala [16] uses explicit second-order
quantification in place of a frame rule, whilst Shao et al. [14, 31]
have a frame rule that only applies to judgements in a very restric-
tive specification logic; in particular, it does not apply directly to
specifications of function pointers.

4.4 Later connective
Just as we hide the explicit frames using ⊗, we hide the step
indexes using the later connective, .. This is a trick pioneered by
Nakano [30] that exploits the fact that we are never interested in the
absolute number of steps but only that they are the same or differ



by exactly one between two specification formulas. We define

.S , {(k, P ) | ∀k′ < k. (k′, P ) ∈ S}

Because any S : spec is closed under decreasing steps, an
equivalent definition is that (0, P ) ∈ .S for all P , and (k+1, P ) ∈
.S iff (k, P ) ∈ S. The closure under decreasing steps is expressed
logically as the rule

.-WEAKEN
S ` .S

As mentioned in Section 4.1, the purpose of step indexes is
to serve as a handle for induction. We can phrase the induction
principle on natural numbers using the following rule [3, 30], which
is named for its similarity to a corresponding rule in Gödel-Löb
logic [3].

.S ` S LÖB` S
The Löb rule is a reformulation of the strong induction principle

for natural numbers: if (∀k′ < k. P (k′)) ⇒ P (k) for all k,
then P (n) holds for any n. It is a powerful rule in that it almost
allows assuming the formula one wants to prove, except that the
assumption may only be used after taking one step of computation.

Example 4. Recall the specification of a tight loop from Exam-
ple 1. We can now express and prove that inside the specification
logic in just two steps:

(1)
. safe⊗ (EIP 7_ i ∗ i 7→ jmp i)
` safe⊗ (EIP 7_ i ∗ i 7→ jmp i)

LÖB` safe⊗ (EIP 7_ i ∗ i 7→ jmp i) �

The . connective distributes over every other connective we
have mentioned except for ⊥ and existential quantification over
empty types.

Discussion. Like we saw in the rule for jmp (Equation (1)),
every step of computation allows us to relax our remaining proof
obligation by adding a .. For example, we could prove that

` (..safe⊗(EIP 7_j)⇒safe⊗(EIP 7_i))⊗i..j 7→(nop; nop) (2)

where nop is the no-operation instruction. There are two .’s on the
‘postcondition’ of (2) because it takes two steps of computation
to get there. It turns out, however, that it is never useful to have
more than one . applied to a specification since the purpose of step
indexes is to do induction, and induction will always give us the
necessary assumptions on the immediate predecessor of the number
of interest.

Furthermore, we have found that . is not necessary in code that
only moves forward. Löb induction only makes sense when veri-
fying loops, and a loop requires some form of backward jump un-
less we consider highly-contrived self-modifying code. Therefore,
in practice, we would state (2) without any .-connective at all.

4.5 Read-only frame
The instruction rules we have discussed so far are too weak for
some purposes. Recall the rule for jmp:

` (. safe⊗ (EIP 7_ a)⇒ safe⊗ (EIP 7_ i))⊗ i 7→ jmp a

Because the meaning of i 7→ jmp a is only that the memory starting
at i decodes to jmp a, the rule would be satisfied in a semantics
where the jmp instruction not only performed the jump but also
replaced its own machine code in memory with a different byte
sequence that also decoded to jmp a. This would be a problem for
programs whose code needs to stay unmodified; e.g., to verify that
the checksum of the code remains the same.

Our solution is to make this specification more precise by em-
ploying the read-only frame connective, defined as

S �R , ∀σ ∈ R. S ⊗ {σ}.
A more precise specification for jmp is then

` (. safe⊗ (EIP 7_ a)⇒ safe⊗ (EIP 7_ i))� i 7→ jmp a

Intuitively, S�R requires S not only to preserve the truth of R
but to leave unmodified the underlying state fragment that made
R true. The state may be changed temporarily, just as R might
be broken, as long as it is restored at the end of the computation
described by S.

Like for ⊗, there is a frame rule:
FRAME-RO

S ` S �R
The � connective does not distribute over every other connec-

tive like⊗ does, but it does distribute over ∀,∧,>,⊗,�, .. It only
distributes in one direction over ∃ and⇒:

(∃a. S(a)�R) ` (∃a. S(a))�R

(S⇒ S′)�R ` S �R⇒ S′ �R
The formula S�R is covariant in S and contravariant inR with

respect to entailment, meaning that

S ` S′ R′ ` R �-`
S �R ` S′ �R′

Another convenient property is that existential quantifiers can
be moved in and out of the frame:

S � (∃x. R(x)) ≡ ∀x. S �R(x)

These last two properties of � about variance and commuting
with existentials do not generally hold for ⊗. The cases where
they hold are discussed in Sections 7.1 and 7.2. We explore further
properties of � in Section 7.3.

Discussion. This connective is reminiscent of fractional permis-
sions [12] but more coarse-grained and light-weight. We mention
connections to other notions of weak ownership [22] in Section 9.

Our definition of � may not be the only good one, but we have
examined three other candidate definitions and found that the one
given above had the most convenient properties for our purposes.
The candidates relate to each other as follows.

∀R′ ` R ∗ >. S ⊗R′ `
∀R′ ` R. S ⊗R′ `

∀σ ∈ (R ∗ >). S ⊗ {σ} ≡
∀σ ∈ R. S ⊗ {σ}

5. High-level assembly code
5.1 Basic blocks
Using safe and the connectives discussed so far, we can specify
code with multiple entry points and exit points, jumps to code
pointers, self-modification, and so on. In practice, though, most
code is much simpler. For code that behaves like a basic block,
with control flow always coming in at the top and going out at the
bottom, we can describe its behaviour with a Hoare triple, defined
in the specification logic as:

{P} c {Q} , ∀i, j. (safe⊗ (EIP 7_ j ∗Q)⇒
safe⊗ (EIP 7_ i ∗ P ))� i..j 7→ c

Example 5. The instruction mov r, v (move literal v to register
r) can be specified as ` {r?} mov r, v {r 7_ v}, where r? is



shorthand for ∃v. r 7_ v. This is much more compact and readable
than writing the specification in terms of safe. �

This triple satisfies the structural rules we expect from a Hoare
triple in separation logic:

P ` P ′ S ` {P ′} c {Q′} Q′ ` Q
S ` {P} c {Q}

S ` ∀x. {P (x)} c {Q}
S ` {∃x. P (x)} c {Q}

S ` {P} c {Q}
S ` {P ∗R} c {Q ∗R}

The frame rule for the triple follows from FRAME and the fact
that ⊗ distributes into the triple:

⊗-TRIPLE
{P} c {Q} ⊗R ≡ {P ∗R} c {Q ∗R}

There is no rule of conjunction for the triple since this would be
unsound in the presence of FRAME [8].

Discussion. This kind of triple is certainly not the only useful
one. One could also adapt the position-indexed triples of Myreen
and Gordon [29] to this setting, allowing use of the triple metaphor
in specifying code with multiple entry and exit points. It would be
a matter of taste whether this seemed more convenient to work with
than reasoning directly in terms of safe.

The triple defined here can be thought of as encoding a very
simple calling convention: inlining; i.e., concatenation of code.
We envision defining triples for other conventions as needed and
proving similar properties about them. See Section 5.5 for another
example.

It is a valid question to ask why there is no . on the postcon-
dition part of the triple so it would read . safe ⊗ (EIP 7_ j ∗ Q).
It would give stronger specifications for single instructions like in
Example 5, but as discussed in Section 4.4, it would also be unnec-
essary since control flow always moves forward in a triple. We will
also see in Section 5.3 that there are useful values of c that take no
computation steps.

5.2 Rules for x86 instructions
With a variety of logical building blocks in place, we can give ap-
pealingly simple rules for x86 instructions. These split into instruc-
tions that do not touch the instruction pointer, for which we can use
the Hoare-triple form, and control flow instructions, for which we
describe their effect on the instruction pointer explicitly.

Example 6. The following rule for ‘add register indirect with off-
set’ is a typical instance. Here d is a literal DWORD offset, and
addition of two 32-bit values produces a pair (c, v) where v is the
32-bit (truncated) result, and c is the carry into bit 32.

` {r1 7_ v1 ∗ OF? ∗ SF? ∗ ZF? ∗ CF? ∗ PF?}
add r1, [r2 + d]
{r1 7_ v ∗ OF 7_ ¬(msb v1 ⊕msb v2)⊕msb v
∗ SF 7_ msb v ∗ ZF 7_ (v = 0) ∗ CF 7_ c ∗ PF 7_ lsb v}
⊗ (r2 7_ w ∗ w + d 7→ v2)
where v1 + v2 = (c, v)

The ¬ and ⊕ operators are boolean negation and xor respectively.
The instruction affects flags OF, SF, ZF, CF and PF whose values
initially are arbitrary (F? is shorthand for ∃f. F 7_f , where f may
be undef). Notice the framing of invariant registers and memory. �

Example 7. For the jump-if-zero instruction, we specify two ‘post-
conditions’, the first for when the branch is taken, and the second
for when it isn’t.

` (. safe⊗ (b ∧ EIP 7_ a ∗ ZF 7_ b) ∧
safe⊗ (¬b ∧ EIP 7_ j ∗ ZF 7_ b)
⇒ safe⊗ (EIP 7_ i ∗ ZF 7_ b))
� i..j 7→ jz a

Note the use of the later connective when the (possibly backwards)
branch is taken. �

Our approach is to give a very general specification to each
instruction and then on top of that provide convenience definitions
for common cases. In a sense, our rules are therefore just a logical
reformulation of the operational semantics, which may seem a bit
unimpressive but turns out to be a strong platform on which to build
higher-level layers of abstraction.

5.3 Instruction encoding and assembly language
We have implemented an encoder for syntactic instructions, and it
has the property that

i..j 7→ encode(i, ι) ` i..j 7→ ι

That is, if the memory at i..j contains the sequence of bytes
encode(i, ι), then that memory will decode to the instruction ι.
The instruction decoder referred to here is the same one that is part
of the operational semantics for the machine. The encode function
takes i as parameter because the encoding of x86 instructions is not
generally position-independent.

This encoder is the main ingredient in our assembler: a certified
and executable Coq function that takes a program as input and
produces a list of bytes as output. A program is a value in the
following inductive definition.

p ::= (ι) | skip | p; p | l: | LOCAL l; p

That is, a program is essentially a list of instructions with la-
bel markers ‘l:’ interspersed. A label l may be declared local to
program p with the LOCAL l; p construction. A label is simply a
memory address; i.e., a 32-bit word, and it can therefore be used
as an argument to jump instructions. The following is a closed pro-
gram that loops forever.

LOCAL l; l: jmp l

The LOCAL constructor in our Coq implementation has type
(DWORD → program) → program, so writing LOCAL l; p is
just syntactic sugar for LOCAL(λl. p(l)). The benefit of modelling
label scopes with function spaces is that Coq handles all aspects
of label naming transparently, including the necessary capture-
avoidance and α-conversion. The downside is that it is not viable to
statically rule out ill-formed programs, such as programs that place
the same label more than once.

The assembler function, assemble, is partial and maps an ad-
dress and a program to a sequence of bytes. It is undefined if the
program is ill-formed. Where defined, it has the correctness prop-
erty that

i..j 7→ assemble(i, p) ` i..j 7→ p
Here, i..j 7→ p is defined recursively as follows.

i..j 7→ (ι) , i..j 7→ ι

i..j 7→ skip , i = j ∧ emp
i..j 7→ p1; p2 , ∃i′. i..i′ 7→ p1 ∗ i′..j 7→ p2
i..j 7→ LOCAL l; p , ∃l. i..j 7→ p(l)

i..j 7→ l: , i = j = l ∧ emp

Recall that the definition of triples {P} c {Q} in Section 5.1
did not require c to have a particular type; the definition and its
rules are valid for any c that can occur on the right of a points-to.
Thus, we can put a program p in a triple, and it turns out that the
following rules hold.

` {P} skip {P}
S ` {P} p1 {Q} S ` {Q} p2 {R}

S ` {P} p1; p2 {R}

S ` {P} ι {Q}
S ` {P} (ι) {Q}

S ` ∀l. {P} p(l) {Q}
S ` {P} LOCAL l; p {Q}



There is no useful rule for the case of l: in a triple.

Example 8. We cannot specify jmp with a triple in any useful way,
but we can specify the special case of a tight loop shown above:

` {emp} LOCAL l; l: jmp l {⊥}

The proof is by first applying the triple rule for LOCAL, then
unfolding the definition of the triple and applying the result of
Example 4. �

5.4 Assembly macros
A useful assembly language has not only labels but also macros;
i.e., parameterised definitions that expand to instruction sequences
when invoked. We get macros almost for free since assembly pro-
grams are written and parsed inside Coq and can be intermixed with
all the features of its term language. This includes let-bindings,
fixpoint computations, custom syntax, coercions, overloading and
other features of a modern dependently-typed programming lan-
guage.

An example of a very useful macro is the following definition
of while(p1, t, b, p2), where p1 is a loop test, p2 is a loop body, t
encodes the combination of processor flags to be branched on, and b
is a boolean that indicates whether the test should be inverted.

while(p1, t, b, p2) , LOCAL l1, l2;
jmp l1;

l2: p2;
l1: p1;

jcc t, b, l2

The jcc instruction is the general conditional jump on x86. We
see here how LOCAL lets us declare labels that will be fresh for
every invocation of the while macro. Real-world macro assemblers
also have that functionality, although the scope is usually tied to
the nearest named macro or global label. Our Coq notations for
assembly syntax, including LOCAL, are chosen to be compatible
with MASM, the Microsoft assembler.

Macros such as while give us the usual convenience of not
having to write similar code many times. But even better, it lets
us avoid writing similar proofs many times. If the body and test can
be specified in terms of a triple, then the loop as a whole also has a
triple specification:

S ` {P} p1 {∃b′. I(b′) ∗ cond(t, b′)}
S ` {I(b) ∗ cond(t, b)} p2 {P}

WHILE
S ` {P} while(p1, t, b, p2) {I(¬b) ∗ cond(t,¬b)}

Here, cond(t, b) translates t, of type Condition from Figure 1, to
an assertion that tests the relevant flags. For example, cond(Z, b) =
ZF 7_ b, where ZF is the zero flag. There are two loop invariants, P
and I , representing the state before and after executing the test p1
since this may have side effects.

The proof of the WHILE rule involves .-operators and the LÖB
rule, but these technicalities do not leak out into the rule statement.

With if and while macros and the sequence operator on programs,
we have the building blocks to easily write and verify programs
with structured control flow. These constructs also facilitate using
our assembly language as the target of a verified compiler from
a structured language, which is something we hope to investigate
more in future work.

5.5 Procedure calls
The triple {P} c {Q} encodes and abstracts the often-occurring
programming pattern of structured control flow. Another crucial
pattern to capture is procedure calls. We will here show the theory
of a very simple calling convention [29]: store the return address in
register EDX and jump to the procedure entry point. The following

macro calls the procedure whose code is at address f .

call f , LOCAL iret;
mov EDX, iret;
jmp f ;

iret:

The calling convention does not specify how to pass arguments
or return values; this is instead part of individual procedure specifi-
cations. A more realistic calling convention would maintain a stack
of arguments and return addresses to allow deep call hierarchies
and reentrancy, but this would clutter our examples with arithmetic
side conditions because the stack has to be finite [29].

The following definition describes the behaviour of a procedure
starting at f with precondition P and postcondition Q.

f 7→{P}{Q} , ∀iret. safe⊗ (EIP 7_ iret ∗ EDX? ∗Q)⇒
safe⊗ (EIP 7_ f ∗ EDX 7_ iret ∗ P )

Recall that EDX? is shorthand for ∃v. EDX 7_ v. This definition
satisfies the usual rules for a triple-like formula, including

⊗-PROC
f 7→{P}{Q} ⊗R ≡ f 7→{P ∗R}{Q ∗R}

In contrast with the triple defined in Section 5.1, this definition
of a procedure specification does not mention the code stored at f .
The code should be mentioned separately from its behaviour such
that the footprint of the code covers both the caller and the callee.

The rule for calling a procedure looks fairly standard:
CALL

.f 7→{P}{Q} ` {P} call f {Q} ⊗ EDX?

It reveals that EDX is overwritten as part of the calling convention.
The . modality on the premise, together with LÖB, permits recur-
sion [3].

Example 9. This is the first of three examples to illustrate inde-
pendent verification of caller and callee. Consider the following
definition of a program that calls some procedure at f twice:

pcaller(f) , call f ; call f

If the intention with this program is to compose it with a proce-
dure that satisfies

Scallee(f) , ∀a. f 7→{EAX 7_ a}{EAX 7_ a+ 2},

then we can specify the caller as

Scallee(f) ` {EAX 7_ a} pcaller(f) {EAX 7_ a+ 4} ⊗ EDX?

We can prove this specification directly from the program sequenc-
ing rule and CALL. No . connective is put on the assumption since
no recursion is intended. �

If a procedure body p is structured and returns at its very end,
we can prove its specification through the following rule.

S ` {P} p {Q} � EDX?
BODY

S ` f 7→{P}{Q} � f 7→ (p; jmp EDX)

In words, this means that calling f behaves as (P,Q) when in
memory where the program (p; jmp EDX) is at address f , as-
suming we can prove the given triple, which is allowed to access
EDX as long as it restores its value in the end.

Example 10. The following program almost satisfies Scallee as de-
fined in Example 9.

pcallee , inc EAX; inc EAX; jmp EDX

We say almost because the inc instruction affects the status flags
of the CPU as a side effect. The caller is not interested in the
flags, but they have to be in the specification of pcallee since they



do get affected. Let flags be the assertion that all flags are of some
(existential) value. Then we can prove

` Scallee(f)⊗ flags� f 7→ pcallee.

The proof is by applying BODY, whose conclusion matches the
above specification after rewriting by ⊗-PROC. �

The next example demonstrates how to compose a caller and a
callee, even if the callee has a larger footprint than what the caller
assumes. This shows how to execute the informal reasoning from
Example 3 in our logic.

Example 11. We can now compose the implementations of the
caller from Example 9 and the callee from Example 10 to obtain
the following closed program. We arbitrarily choose to place the
callee in memory before the caller.

pmain(entry) , LOCAL f ; f : pcallee; entry : pcaller(f)

We can give the following specification to this program, which
says that the code between entry and j will increment EAX by 4
and step on EDX and the flags.

` (safe⊗ (EIP 7_ j ∗ EAX 7_ a+ 4)⇒
safe⊗ (EIP 7_ entry ∗ EAX 7_ a)

)⊗ (EDX? ∗ flags)� (i..j 7→ pmain(entry))

The crucial step in proving this specification is to satisfy the
caller’s assumption, Scallee, with the callee specification, which is
essentially Scallee ⊗ flags. The former entails the latter, but here
we would need the entailment to go the other way. Instead, we
exploit that FRAME is a higher-order frame rule [9] and lets us
frame an assertion on to the left and right side of an entailment
simultaneously. This is allowed by the rules ⊗-` and �-` from
Sections 4.3 and 4.5. Abbreviating

Scaller(f) , ∀a. {EAX 7_ a} pcaller(f) {EAX 7_ a+ 4} ⊗ EDX?,

we can derive
Ex. 9

Scallee(f) ` Scaller(f)
⊗-`

Scallee(f)⊗ flags `
Scaller(f)⊗ flags

�-`
Scallee(f)⊗ flags� f 7→ pcallee `
Scaller(f)⊗ flags� f 7→ pcallee

We know from Example 10 that ` Scallee(f)⊗ flags� f 7→ pcallee,
so by transitivity of ` we conclude ` Scaller(f)⊗flags�f 7→pcallee.
From this, it is straightforward to derive our desired specification
for pmain. �

The preceding example showed how to use FRAME as a second-
order [9], or, hypothetical [32] frame rule. The procedure involved
was first-order at run-time, though. The following example in-
volves a proper higher-order procedure; i.e., a procedure that takes
a pointer to another procedure as argument.

Example 12. The simplest example of a higher-order procedure is
‘apply’, which in a functional programming language would be
defined as

apply(g, x) = g(x).

In our set-up, an apply procedure that takes its g argument in
register EBX is implemented simply as

papply , jmp EBX.

Its specification reflects how it forwards the behaviour (P,Q) of g:

`
(
g 7→{P ∗ EBX?}{Q} ⇒
f 7→{P ∗ EBX 7_ g}{Q}

)
� f 7→ papply. �

6. Practical verification
We have used our Coq development not only to build a machine
model and to validate the logic developed in this paper; it is also
an environment for building and verifying actual machine-code
programs.

In this section we describe the Coq tactic support that we have
developed for making machine code verification manageable, and
present a slightly larger example of assembly language (seven in-
structions!) in order to give a flavour of the Coq proof of its cor-
rectness.

6.1 Example: memory allocation
We illustrate the use of the logic, rules, and Coq tactics with a
slightly more challenging example: the specification of a memory
allocator and its simplest possible realisation, the bumping of a
pointer and checking it against a limit.

Its specification is as follows, parameterized by the number of
bytes n to be allocated and an address fail to jump to on failure.

allocSpec(n, fail , inv , code) , ∀i, j.
(safe⊗ (EIP 7_ fail ∗ EDI?) ∧
safe⊗ (EIP 7_ j ∗ ∃a. (EDI 7_ a+n) ∗ (a .. a+n 7→ ))⇒
safe⊗ (EIP 7_ i ∗ EDI?))
⊗ (ESI? ∗ flags ∗ inv)� (i..j 7→ code)

The specification is framed by an assertion that register ESI is used
as scratch storage, flags are updated arbitrarily, and an internal in-
variant inv is maintained. The latter might be the well-formedness
of some representation of free lists, or in our trivial allocator, sim-
ply a pair of pointers.

The calling convention is ‘inline’, in other words, the allocator
is just a macro consisting of assembly in code . In Section 6.5, we
will wrap a slightly less trivial calling convention around it.

Control either drops through, if successful, or branches to ad-
dress fail , if memory cannot be allocated. On success, the allocator
leaves an address a in EDI that is just beyond the n bytes of mem-
ory that were allocated; on failure, EDI is trashed.

Perhaps surprisingly, even a bump-and-check implementation
consists of seven instructions:

allocImp(info, n, fail) , mov ESI, info;
mov EDI, [ESI];
add EDI, n;
jc fail ;
cmp [ESI + 4], EDI;
jc fail ;
mov [ESI], EDI.

The implementation invariant inv is the following:

inv(info) , ∃base, limit .
info 7→ base ∗ (info + 4 7→ limit) ∗ (base .. limit 7→ ).

In other words, at address info there is a pair of pointers base
and limit that bound a piece of mapped memory.

6.2 Applying instruction rules
During a proof, we typically keep the goal in the form

Sctx ` (S⇒ safe⊗ P )�R.
The specifications discussed in this paper are easy to put into
that form by applying distributivity rules for ⊗ and decurrying
nested implications, and we have implemented a tactic to do this
automatically. Typically, R describes the code to be executed, and
P describes the instruction pointer and the remaining state that will
go into proving the precondition of the next instruction.

We may use the full range of specification-logic rules on this
goal, but eventually we will want to apply the lemma appropriate



for the code that EIP is pointing to in P . We assume that the lemma
has the same form as the goal and apply a lemma through the
following rule.

S′ctx ` (S′⇒ safe⊗ P ′)�R′
Sctx ` S′ctx
P ` P ′ ∗RP

R ` R′ ∗ >
Sctx ` (S⇒ S′ ⊗RP)�R

SPECAPPLY
Sctx ` (S⇒ safe⊗ P )�R

The top premise is the lemma to be applied, and the bottom premise
is the remaining proof obligation that describes the symbolic state
after having applied the lemma. If the lemma is an instruction rule,
the three middle premises correspond to satisfying its precondi-
tions at the level of specifications, data memory and code mem-
ory respectively. The latter two can be dealt with by our entailment
checker, described in the next subsection.

6.3 Assertion entailment solving
Much of the activity in a formal separation logic proof is proving
entailment between assertions. This happens every time a precon-
dition needs to be discharged, and if it is not automated, the proofs
will drown in the details of fragile manual context manipulation
and rewriting modulo associativity and commutativity.

Typically, we are given a description of the current state P and
a precondition P ′, and we must show P ` P ′ ∗ R for our own
choice of frame R, which represents all the left-over state that was
not consumed by the precondition and can therefore be framed
out. Our approach to this automation is similar to other separation-
logic tools [4, 16]: if P and P ′ consist only of ∗, emp and atomic
assertions, we iterate through the conjuncts of P ′, attempting to
unify each with a conjunct found in P and let the two cancel out.

Typically, P ′ is full of holes corresponding to universally-
quantified variables that have yet to be instantiated. The holes are
represented in Coq as unification variables, which are identifiers
that will receive a value upon being unified with a subformula
from P . Several subformulas of P may unify, but typically only
one choice will permit the entailment as a whole to be solved. For
example, we may be proving

EAX 7_ i ∗ j 7→ 2 ∗ i 7→ 1 ` EAX 7_ U1 ∗ U1 7→ U2 ∗ >,
where U1 and U2 are unification variables of type DWORD. If our
algorithm should attempt to unify the atom U1 7→U2 with the atom
j 7→ 2, it will succeed, but the remaining proof obligation will be

EAX 7_ i ∗ i 7→ 1 ` EAX 7_ j ∗ >
The algorithm succeeds even if it did not solve the goal entirely,
leaving the rest to be proved interactively, but in this case there is
no solution for the remaining part of the goal.

Rather than try to support backtracking, which does not com-
bine well with interactive proof, we make the algorithm greedy but
predictable: subformulas of P ′ are unified from left to right. In our
current example, this would first fix the choice of U1 to be i, and
the second conjunct of P ′ would therefore become i 7→ U2, which
rules out the bad unification choice from before.

There is of course no guarantee that this always works, but we
have found that it virtually always works in practice as long as
preconditions are written with this left-to-right order in mind. This
happens naturally since it is also more readable for humans who
read from left to right. If the algorithm should still fail, it remains
possible to manually instantiate the unification variables.

The entailment solving algorithm is implemented with a hybrid
approach, where the unification is done by Coq’s built-in higher-
order unification engine, while the cancellation of identical terms
is done with proof by reflection [17], which has good performance.

If an entailment has existential quantifiers on the left-hand side,
we can apply the rule

∀x. (C[P (x)] ` Q)

C[∃x. P (x)] ` Q
where C is formula with a hole that contains only ∗-connectives in
the path from the root to the hole. This lets us effectively move the
quantified variable into the Coq variable context.

If an entailment has existential quantifiers on the right-hand
side, we will eventually need to instantiate them with witnesses.
This can be done with the rule

∃x. (P ` C[Q(x)])

P ` C[∃x. Q(x)]

We immediately apply the rule, but we instantiate x with a
unification variable, which in practice defers instantiation until a
unification forces it to happen as described above.

We have extended the tactic for moving quantifiers into the
context so it also works on specification-logic entailments. For
example, given the goal

S′ ` ∀x1. S⇒ safe⊗ (∃x3. P (x1, x3))� (∃x2. R(x2)),

the extended tactic will introduce x1, x2 and x3 into the Coq
variable context and leave the new goal

S′ ` S⇒ safe⊗ P (x1, x3)�R(x2).

The rules allowing x2 and x3 to be pulled out are given in Sections
4.5 and 7.2 respectively.

6.4 Proving the allocator
Correctness consists of proving the following, for any info, n, fail .

` allocSpec(n, fail , inv(info), allocImp(info, n, fail)).

Here is a fragment of the Coq proof script that deals with the second
instruction in the implementation. (We make use of ssreflect
extensions to standard Coq tactic notation [20].)

(* mov EDI, [ESI] *)
rewrite {2}/inv. specintros => base limit.
specapply MOV_RM0_rule.
- by ssimpl.

For this instruction, almost everything is handled automatically.
The initial rewrite simply unfolds the invariant inv to expose
the existential quantifiers. The custom tactic specintros pulls the
existentially-quantified variables from deep within the goal to intro-
duce them into the Coq context. The tactic ‘specapply l’ will first
normalise both the goal and lemma l to have the form required by
the SPECAPPLY rule from Section 6.2. It will then invoke SPECAP-
PLY with l as the first premise. In this case, l is MOV_RM0_rule,
the rule for instructions of the form mov r1, [r2]. The second and
fourth premises are trivial, leaving only the precondition of the mov
rule as a subgoal. This can be discharged by our ssimpl tactic,
which implements entailment checking as described in Section 6.3.

In fact none of the instructions needs more than four lines
of proof, and we hope to reduce this further through the use of
additional lemma and tactic support once we have more experience
with proving.

6.5 Wrapping the allocator
Having verified a component, such as the allocator, it is reasonably
straightforward to use to the logic to verify higher-level abstrac-
tions in a modular way. As an example, we show the wrapping of
the allocator in a procedure for consing onto a list.



We start with the inductive ‘list segment’ assertion of separation
logic (originally due to Burstall [13]):

listSeg(p, e, vs) ,{
∃q. (p 7_ v) ∗ (p+4 7_ q) ∗ listSeg(q, e, vs ′) if vs = v :: vs ′

p = e ∧ emp otherwise

Here, vs is a list of DWORDs and the assertion says that memory
contains a linked list starting at p and ending at e with elements
given by vs . A possible specification for our cons function is

consSpec(r1, r2, info, i, j, code) , ∀h, t, e, vs.
(i 7→ {r1 7_ h ∗ r2 7_ t ∗ listSeg(t, e, vs) ∗ EDI?}

{r1? ∗ r2? ∗ ((EDI 7_ 0 ∗ listSeg(t, e, vs)) ∨
(∃q. EDI 7_ q ∗ listSeg(q, e, h :: vs))}

)⊗ (ESI? ∗ flags ∗ inv(info))� (i..j 7→ code)

specifying a procedure that is passed a value h in r1 and a pointer
to a list starting at t in r2. On return, EDI is either zero, and
the original linked list is preserved, or EDI points to a linked list
segment ending at e with h added as the new head element. An
implementation is given by

cons(r1, r2, info) , LOCAL fail ; LOCAL succeed ;
allocImp(info, 8, fail);
sub EDI, 8;
mov [EDI], r1;
mov [EDI + 4], r2;
jmp succeed;
fail :

mov EDI, 0;
succeed :

jmp EDX

The proof that for any r1, r2, info, i and j,

` consSpec(r1, r2, info, i, j, cons(r1, r2, info))

is entirely modular, relying on the BODY rule and the previous
result that allocImp meets allocSpec.

7. Properties of the frame connectives
We now return to the frame connective, ⊗, defined in Section 4.3.
In previous literature on higher-order frame rules [8–10, 33], the R
in S⊗R tends to be inert and does not interact with its environment
until it has distributed inwards across all connectives and has been
merged into the pre- and post-conditions of a triple. Only at that
point will the rule of consequence and the existential rule for triples
be used to interact with R.

Since we only see triples in certain special cases, as described
in Section 5.1, we are interested in specification-level generalisa-
tions of the consequence and existential rules, just as FRAME is a
specification-level generalisation of the frame rule for triples. The
use of these generalised rules in practice is similar to their counter-
parts in ordinary Hoare logic.

7.1 Specification-level rule of consequence
The standard Hoare rule of consequence states that {P} c {Q} is
contravariant in P and covariant in Q with respect to entailment.
Analogously, the generalisation we present here describes the vari-
ance of S ⊗R in R. It turns out that S ⊗R is not always covariant
nor always contravariant inR; it can be either, depending on S. We
encode this as two predicates on S:

frame+(S) , ∀P,Q. (P ` Q)⇒ (S ⊗ P ` S ⊗Q)

frame−(S) , ∀P,Q. (P ` Q)⇒ (S ⊗Q ` S ⊗ P )

These definitions directly give rise to our two specification-level
rules of consequence:

frame+(S) P ` Q
S ⊗ P ` S ⊗Q

frame−(S) P ` Q
S ⊗Q ` S ⊗ P

All we did so far was to switch the problem to proving frame+(S)
or frame−(S) for particular S, but it turns out that there is a very
schematic set of rules for this. Writing f : (V1, . . . , Vn) −→ V to
mean

∀S1, . . . , Sn. frameV1(S1) ∧ . . . ∧ frameVn(Sn)
⇒ frameV (f(S1, . . . , Sn)),

we can tabulate the rules for various connectives concisely:

safe : −
>,⊥ : + and −

.,⊗,�,∀, ∃ : + −→ + and − −→ −
∧,∨ : (+,+) −→ + and (−,−) −→ −
⇒ : (−,+) −→ + and (+,−) −→ −

Notice that all the logical connectives preserve either covariance or
contravariance of their operands (modulo the flip that happens for
implication), but there is no way to combine the variances.

Example 13. For all P1 and P2, frame−(.safe⊗P1∧safe⊗P2).�

Example 14. For all P , frame+(safe⊗ P ⇒⊥). �

There are no definitions analogous to frame+(S) and frame−(S)
for the read-only frame connective since S � R is always con-
travariant in R. But as we will see in Section 7.3, the frame family
of predicates plays an important role for � too.

It is no coincidence that these rules for variance have not been
studied in the previous literature. There is no rule for frame+ or
frame− on Hoare triples, and in a logic where the only atomic
specifications are the triple and >,⊥, then any S that satisfies
frame+(S) or frame−(S) is equivalent to either > or ⊥.

7.2 Specification-level existential rule
The existential rule in Hoare logic allows moving an existential
quantifier from the precondition of a Hoare triple out into the
logical variable context. Just as we have generalised the frame and
consequence rules, we can generalise the existential rule to work
with other specifications than triples. Using the same approach as
in Section 7.1, we define

frame∃(S) , ∀P.
(
(∀x. S ⊗ P (x)) ` S ⊗ (∃x. P (x))

)
We can then state the specification-level existential rule as

frame∃(S) S′ ` ∀x. S ⊗ P (x)

S′ ` S ⊗ (∃x. P (x))

The following rules, using the notation introduced in Sec-
tion 7.1, let us schematically prove frame∃.

safe : ∃
.,⊗,�,∀ : ∃ −→ ∃

∧ : (∃, ∃) −→ ∃
⇒ : (−, ∃) −→ ∃

The natural converse of frame∃(S), with the entailment in the
other direction, is equivalent to frame−(S). This gives an intuitive
justification of the rule for implication above.

Example 15. For all P, c,Q, we have frame∃({P} c {Q}). This
is seen by unfolding the definition of the triple and applying the
above rules. �



7.3 Further properties of read-only frame connective
The read-only frame and the frame connectives are interchangeable
in certain cases:

1. For singleton frames: S � {σ} ≡ S ⊗ {σ}.
2. If frame∃(S) then S �R ` S ⊗R.

3. If frame−(S) then S ⊗R ` S �R.

Whereas two adjacent frame connectives can always be merged
and split by the ⊗-∗ rule, this is not always possible for the read-
only frame connective:

1. If frame∃(S) then S � (R ∗R′) ` S �R�R′.
2. Unconditionally, S �R�R′ ` S � (R ∗R′).

8. Related work
This paper builds on previous work on higher-order frame rules,
assembly-language verification and guarded recursion.

Separation logic for assembly code. Our work shares many goals
with the work of Myreen et al. [28, 29]. They have built a separa-
tion logic for subsets of ARM and x86 in the HOL4 proof assis-
tant. Their logic emphasises total correctness, but since assembly-
language programs do not terminate, total correctness does not
mean guaranteed termination as it usually would. Instead, a post-
condition Q means that execution will eventually reach a machine
state inQ. This makes specifications much more intensional than in
our case, preventing, for example, relocating and patching (or inter-
preting) code in memory in an externally-unobservable way unless
this has been somehow explicitly allowed by the specification.

The logic of Myreen et al. lacks labels in assembly programs,
relying instead on explicit instruction address arithmetic. Their en-
tire specification logic takes place in a generalised Hoare triple with
multiple pre- and postconditions and offset transformer functions.
This is general enough to support jumps, function calls and self-
modifying code, but it remains a triple and is thus restricted to
what can be expressed with preconditions, postconditions and code
blocks.

The CAP family of logics from Shao et al. are also Hoare logics
for low-level code, all verified in Coq. The family includes XCAP
[31], GCAP [14], SCAP and ISCAP [40]. Unfortunately, neither
of them is a generalisation of any of the others, so each has its
strengths and weaknesses. All except GCAP and SCAP have high-
level heap manipulation commands such as allocation or function
calls built into the machine semantics.

All except GCAP have the program residing in a map from
labels to instruction sequences, which is a high level of abstraction
and cannot support treating code as data. As Myreen [28] and
hopefully this paper have shown, it is not difficult to treat code
as data and support function pointers if the logic is fundamentally
set up for it. In contrast, GCAP supports it with some awkwardness
by attempting to impose the map-from-labels abstraction on top of
what is actually happening in the machine.

Affeldt et al [1] have formalized in Coq a separation logic for
first-order MIPS assembly code, extending a simpler logic due
to Saabas and Uustalu [36], and applied it to verifying provable
security of implementations of cryptographic primitives.

Chlipala’s Bedrock project [16] is also a Coq framework for ver-
ifying low-level code with separation logic. Like our framework,
Bedrock has ‘while’ and ‘if’ macros and associated proof princi-
ples for common patterns of structured code. Chlipala emphasises
automated verification, and the program logic is therefore not very
expressive. There is no frame rule, so frames are instead passed
around explicitly in procedure specifications. Chlipala explains the

problem with defining a frame rule for programs with unstructured
jumps; here we have demonstrated how this may be solved.

None of the logics discussed above feature a higher-order frame
rule.

Higher-order frame rules. The frame rule was extended by
O’Hearn et al. [32] to the hypothetical frame rule, which allowed
framing invariants onto a context of procedure specifications in
addition to the triple under consideration. This allowed greater
modularity in separate verification of caller and callee, but it still
required programs to have structured control flow.

The higher-order frame rule was proposed by Birkedal et al.
and used in a separation-logic type system for a programming
language with higher-order functions and ground store [8–10]. It
has later been extended to languages with higher-order store and
used by Krishnaswami [23] and by Pottier [33]. In all cases, it has
been for high-level functional programming languages, whereas we
have applied it to machine code. We believe we are the first to
complement the higher-order frame rule with a higher-order rule of
consequence and a higher-order existential rule (Sections 7.1 and
7.2).

Typed assembly language. The work of Appel et al. on typed as-
sembly language and foundational proof-carrying code has demon-
strated that step indexing [2] is a viable technique for describing the
behaviour of low-level programs. The ‘Very Modal Model’ paper
[3] popularised Nakano’s later operator, which we also use here,
and demonstrated its applicability to assembly code.

The work on typed assembly language focuses on safety of
reference types coming from high-level languages and does not
attempt to verify code for full functional correctness as we do.

9. Future work
The logic described in this paper will form the foundation for
broader research on language-based security in verified systems
software.

Although the focus of this paper is on the general design of a
separation logic for machine code, and is thus largely parametric
in the underlying machine model, one’s confidence in the real
world validity of verifications in the logic is undeniably limited
by one’s confidence in the accuracy of that model. Our x86 model
was hand-constructed from reading the Intel manuals and, although
small programs extracted from Coq seem to run as expected on
real hardware, has not been subject to any systematic testing or
verification. Indeed, there is one aspect of the Intel specification
that we knowingly do not currently model, namely the presence of
a code cache: instructions written to memory are, on post-Pentium
processors, not guaranteed to be picked up by subsequent execution
until a jump or other synchronizing instruction has occurred. We
plan to treat the code cache following the approach of Myreen [28],
which we expect to be unproblematic. More generally, however, we
would like to work with a more trustworthy machine model; these
have previously been obtained by extensive testing [19, 26] and
semi-automated extraction from the text of reference manuals [11].

An important feature currently missing from our machine model
is I/O. By adding this we would incorporate observations beyond
the simple notion of ‘safe’ execution, but we believe that our frame-
work is generic enough that the safe specification can be gener-
alized to safety properties involving observable input and output
transitions. We have not so far given any serious thought to how
one might also prove liveness properties in a comparably exten-
sional way, though that is clearly an interesting subject for future
work. It would also be useful to extend our logic to deal with binary
relations, rather than unary predicates, on machine states. Such an
extension would allow us to verify information flow and abstraction
properties [7].



We have already begun to experiment with verified compilation,
building a tiny imperative language, its compiler, program logic and
proof of correctness, all within Coq. It is straightforward to mix
machine code with higher-level languages, as our logic provides
a common framework for specifying their interaction at a suitably
high level. We plan to develop a number of domain-specific ‘little
languages’ within the same framework.

Low-level code often makes sophisticated use of low-level data
structures whose ‘ownership’ properties cannot easily be captured
by the default model of separation described here. We might instead
employ ‘fictional separation logic’ [22]; it is interesting to note that
even our use of partial states Σ to describe the machine state S in a
more fine-grained way is reminiscent of fictional separation.
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