
Abstracting Allocation

The New new Thing

Nick Benton

Microsoft Research
nick@microsoft.com

Abstract. We introduce a Floyd-Hoare-style framework for specifica-
tion and verification of machine code programs, based on relational para-
metricity (rather than unary predicates) and using both step-indexing
and a novel form of separation structure. This yields compositional, de-
scriptive and extensional reasoning principles for many features of low-
level sequential computation: independence, ownership transfer, unstruc-
tured control flow, first-class code pointers and address arithmetic. We
demonstrate how to specify and verify the implementation of a simple
memory manager and, independently, its clients in this style. The work
has been fully machine-checked within the Coq proof assistant.

1 Introduction

Most logics and semantics for languages with dynamic allocation treat the al-
locator, and a notion of what has been allocated at a particular time, as part
of their basic structure. For example, marked-store models, and those based on
functor categories or FM-cpos, have special treatment of locations baked in, as
do operational semantics using partial stores, where programs ‘go wrong’ when
accessing unallocated locations. Even type systems and logics for low-level pro-
grams, such as TAL [14], hardwire allocation as a primitive.

For high-level languages such as ML in which allocation is observable but
largely abstract (no address arithmetic, order comparison or explicit dealloca-
tion), building ‘well-behaved’ allocation into a model seems reasonable. But even
then, we typically obtain base models that are far from fully abstract and have to
use a second level of non-trivial relational reasoning to validate even the simplest
facts about encapsulation.

For low-level languages, hardwiring allocation is less attractive. Firstly, and
most importantly, we want to reason about the low-level code that actually im-
plements the storage manager. Secondly, in languages with address arithmetic,
such as the while-language with pointers used in separation logic, one is led to
treat allocation as a non-deterministic primitive, which is semantically problem-
atic, especially if one tries to reason about refinement, equivalence or imprecise
predicates [23, 13]. Finally, it just doesn’t correspond to the fact that ‘machine
code programs don’t go wrong’. The fault-avoiding semantics of separation logic,
for example, is prescriptive, rather than descriptive: one can only prove anything

about programs that never step outside their designated footprint, even if they
do so in a non-observable way.1

We instead start with a completely straightforward operational semantics for
an idealized assembly language. There is a single datatype, the natural numbers,
though different instructions treat elements of that type as code pointers, heap
addresses, integers, etc. The heap is simply a total function from naturals to
naturals and the code heap is a total function from naturals to instructions.
Computed branches and address arithmetic are perfectly allowable. There is no
built-in notion of allocation and no notion of stuckness or ‘going wrong’: the
only observable behaviours are termination and divergence.

Over this simple and permissive model, we aim to develop semantic (defined
in terms of observable behaviour) safety properties, and ultimately a program
logic, that are rich enough to capture the equational semantics of high-level types
as properties of compiled code and also to express and verify the behavioural
contracts of the runtime systems, including memory managers, upon which com-
piled code depends.

Our approach is based on four technical ideas. Firstly, following the inter-
pretation of types as PERs, we work with quantified binary relations rather
than the unary predicates more usual in program logics. Program properties
are expressed in terms of contextual equivalence, rather than avoidance of some
artificial stuck states. Secondly, we use a perping operation, taking relations on
states to orthogonal relations on code addresses, to reason about first-class code
pointers. Thirdly, we reason modularly about the heap in a style similar to sep-
aration logic, but using an explicit notion of the portion of the heap on which
a relation depends. Finally, we reason modularly about mutually-recursive pro-
gram fragments in an assume/guarantee style, using a step-indexing technique
similar to that of Appel et al [5, 6, 3] to establish soundness.

In this paper, we concentrate on the specification and verification of an ex-
tremely basic memory allocation module, and an example client. Although the
code itself may be simple, the specifications and proofs are rather less so, and
provide a non-trivial test case for our general framework, as well as constituting
a fresh approach to freshness.

Managing the mind-numbing complexity and detail of specifications and
proofs for machine code programs, not to mention keeping oneself honest in
the face of changing definitions, seems to call for automated assistance. All the
definitions and results presented here have been formalized and checked using
the Coq proof assistant.

1 For example, skip and [10] := [10] are, under mild assumptions, observationally
equivalent, yet do not satisfy exactly the same set of triples. One might reasonably
claim that machine code programs do go wrong – by segfaulting – and that this
justifies faulting semantics and the use of partial stores. But stuck states in most
operational semantics, even for low-level code, do not correspond exactly to the
places in which segfaults might really occur, and we’d rather not assume or model
anything about an operating system for the moment anyway.

2 The Machine

Our idealized sequential machine model looks like:

s ∈ S def
= N → N states

l,m, n, b ∈ N naturals in different roles

p ∈ Programs
def
= N → Instr programs

〈p|s|l〉 ∈ Configs
def
= Programs× S× N

The instruction set, Instr, includes halt, direct and indirect stores and loads,
some (total) arithmetic and logical operations, and conditional and unconditional
branches.2 The semantics is given by an obvious deterministic transition relation
〈p|s|l〉 → 〈p|s′|l′〉 between configurations. We write 〈p|s|l〉 ⇓ if there exists n,l′,s′

such that 〈p|s|l〉 →n 〈p|s′|l′〉 with p(l′) = halt, and 〈p|s|l〉 ⇑ if 〈p|s|l〉 →ω.
The major idealizations compared with a real machine are that we have

arbitrary-sized natural numbers as a primitive type, rather than fixed-length
words, and that we have separated code and data memory (ruling out self-
modifying code and dynamic linking for the moment). Note also that we do not
even have any registers.

3 Relations, Supports and Indexing

We work with binary relations on the naturals, N, and on the set of states, S, but
need some extra structure. Firstly, the reason for using relations is to express
specifications in terms of behavioural equivalences between configurations:

〈p|s|l〉 ⇓ ⇐⇒ 〈p′|s′|l′〉 ⇓

and the relations on states and naturals we use to establish such equivalences
will generally be functions of the programs p and p′ (because they will refer to
the sets of code pointers that, in p and p′, have particular behaviours). Secondly,
to reason modularly about mutually recursive program fragments, we need to
restrict attention to relations satisfying an admissibility property, which we cap-
ture by step-indexing: relations are parameterized by, and antimonotonic in, the
number of computation steps available for distinguishing values (showing they’re
not in the relation). Formally, an indexed nat relation, is a function

r : Programs× Programs → N → P(N× N)

such that (r (p, p′) k) ⊆ (r (p, p′) j) whenever j < k.
For state relations, we also care about what parts of the state our relations de-

pend upon. Separation logic does this implicitly, and sometimes indeterminately,
via the existential quantification over splittings of the heap in the definition of
2 The Coq formalization currently uses a shallow embedding of the machine semantics,

so the precise instruction set is somewhat fluid.

separating conjunction. Instead, we work with an explicit notion, introduced in
[9], of the support of a relation. One might expect this to be a set of locations,
but the support is often itself a function of the state (think, for example, of the
equivalence of linked lists). However, not all functions S → P(N) make sense
as supports: the function itself should not depend on the contents of locations
which are not in its result.3 Formally, we define an accessibility map to be a
function A : S → P(N) such that

∀s, s′. s ∼A(s) s′ =⇒ A(s′) = A(s)

where, for L ⊆ N and s, s′ ∈ S, we write s ∼L s′ to mean ∀l ∈ L.s(l) = s′(l).
Accessibility maps are ordered by A ⊆ A′ ⇐⇒ ∀s.A(s) ⊆ A′(s). Constant

functions are accessibility maps, as is the union A∪A′ of two accessibility maps,
where (A∪A′)(s) = A(s)∪A′(s). Despite the name, accessibility maps are about
relevance and not reachability. Indeed, reachability makes little sense in a model
without an inherent notion of pointer.

A supported indexed state relation R is a triple (|R|, AR, A′
R) where

|R| : Programs× Programs → N → P(S× S)

satisfies (|R| (p, p′) k) ⊆ (|R| (p, p′) j) for all (j < k), AR and A′
R are accessibility

maps and for all s1 ∼AR(s1) s2 and s′1 ∼A′
R(s′

1)
s′2,

(s1, s
′
1) ∈ |R| (p, p′) k =⇒ (s2, s

′
2) ∈ |R| (p, p′) k.

We often elide the | · |. The constantly total and empty state relations are each
supported by any accessibility maps. The separating product of supported in-
dexed relations is given by

R1 ⊗R2 = (|R1 ⊗R2|, AR1 ∪AR2 , A′
R1
∪A′

R2
) where

|R1 ⊗R2| (p, p′) k = (|R1| (p, p′) k) ∩ (|R2| (p, p′) k) ∩
{(s, s′) | AR1(s) ∩AR2(s) = ∅ ∧ A′

R1
(s′) ∩A′

R2
(s′) = ∅}

This is associative and commutative with the constantly total relation with
empty support, T∅, as unit. The partial order R1 � R2 on state relations is
defined as

∀(s, s′) ∈ |R1|. ((s, s′) ∈ |R2|) ∧ (AR2(s) ⊆ AR1(s)) ∧ (A′
R2

(s′) ⊆ A′
R1

(s′))

which has the property that if R1 � R2 then for any RI , |R1⊗RI | ⊆ |R2⊗RI |.
If R is a (supported) indexed state relation, its perp, R>, is an indexed nat

relation defined by:

R> (p, p′) k = {(l, l′) | ∀j < k.∀(s, s′) ∈ (R (p, p′) j).
(〈p, s, l〉 ⇓j =⇒ 〈p′, s′, l′〉 ⇓) ∧
(〈p′, s′, l′〉 ⇓j =⇒ 〈p, s, l〉 ⇓)}

3 In other words, the function should support itself.

where ⇓j means ‘converges in fewer than j steps’. Roughly speaking, R> relates
two labels if jumping to those labels gives equivalent termination behaviour
whenever the two initial states are related by R; the indexing lets us deal with
cotermination as the limit (intersection) of a sequence of k-step approximants.

If q ⊆ N×N, write q for the indexed nat relation λ(p, p′).λk.q, and similarly
for indexed state relations. If L ⊆ N, AL is the accessibility map λs.L. We
write TL for the supported indexed state relation (S× S, AL, AL) and write sets
of integers {m,m + 1, . . . , n} just as mn. If r is an indexed nat relation and
n, n′ ∈ N, write (n, n′ Z⇒ r) for the supported indexed state relation

λ(p, p′).λk. ({(s, s′) | (s(n), s′(n′)) ∈ r (p, p′) k}, λs.{n}, λs.{n′})

relating pairs of states that have values related by r stored in locations n and
n′. We write the common diagonal case (n, n Z⇒ r) as (n 7→ r). For M a program
fragment (partial function from naturals to instructions) define

|= M � l : R> def
= ∀p, p′ ⊇ M.∀k. (l, l) ∈ (R> (p, p′) k)

where the quantification is over all (total) programs extending M. We are only
considering a single M, so our basic judgement is that a label is related to itself.
More generally, define li : R>

i |= M � l : R> to mean

∀p, p′ ⊇ M.∀k. (∀i.(li, li) ∈ (R>
i (p, p′) k)) =⇒ ((l, l) ∈ (R> (p, p′) k + 1))

i.e. for any programs extending M and for any k, if the hypotheses on the labels
li are satisfied to index k, then the conclusion about l holds to index k + 1.

4 Specification of Allocation

The machine model is very concrete and low-level, so we have to be explicit
about details of calling conventions in our specifications. We arbitrarily designate
locations 0 - 9 as register-like and, for calling the allocator, will use 0 - 4 for
passing arguments, returning results and as workspace. An allocator module is
just a code fragment, Ma, which we will specify and verify in just the same way as
its clients. There are entry points for initialization, allocation and deallocation.

The code at label init sets up the internal data structures of the allocator.
It takes a return address in location 0, to which it will jump once initialization
is complete. The code at alloc expects a return address in location 0 and the
size of the requested block in location 1. The address of the new block will be
returned in location 0. The code at dealloc takes a return address in 0, the size
of the block to be freed in 1 and the address of the block to be freed in 2.

After initialization, the allocator owns some storage in which it maintains its
internal state, and from which it hands out (transfers ownership of) chunks to
clients. The allocator depends upon clients not interfering with, and behaving
independently of, both the location and contents of its private state. In par-
ticular, clients should be insensitive to the addresses and the initial contents

of chunks returned by calls to alloc. In return, the allocator promises not to
change or depend upon the contents of store owned by the client. All of these
independence, non-interference and ownership conditions can be expressed using
supported relations. Furthermore, this can be done extensionally, rather than in
terms of which locations are read, written or reachable.

There will be some supported indexed state relation Ra for the private in-
variant of the allocator. The supports of Ra express what store is owned by
the allocator; this has to be a function of the state (rather than just a set of
locations), because what is owned varies as blocks are handed out and returned.
One should think of |Ra| as expressing what configurations of the store owned
by the allocator are valid, and which of those configurations are equivalent.

When init is called, the allocator takes ownership of some (infinite) part of
the store, which we only specify to be disjoint from locations 0-9. On return,
locations 0-4 may have been changed, 5-9 will be preserved, and none of 1-9 will
observably have been read. So two calls to init yield equivalent behaviour when
the return addresses passed in location 0 yield equivalent behaviour whenever
the states they’re started in are as related as init guarantees to make them.
How related is that? Well, there are no guarantees on 0-4, we’ll preserve any
relation involving 5-9 and we’ll establish Ra on a disjoint portion of the heap.
Thus, the specification for initialization is that for any nat relations r5,r6,. . . ,r9,

|= Ma � init :

((
0 7→ (Ra ⊗ T04 ⊗

9⊗
i=5

(i 7→ ri))>
)
⊗

9⊗
i=5

(i 7→ ri)

)>

(1)

When alloc is called, the client (i.e. the rest of the program) will already have
ownership of some disjoint part of the heap and its own invariant thereon, Rc.
Calls to alloc behave equivalently provided they are passed return continuations
that behave the same whenever their start states are related by Rc, Ra and in
each state location 0 points to a block of memory of the appropriate size and
disjoint from Rc and Ra. More formally, the specification for allocation is that
for any n and for any Rc

|= Ma � alloc : (Raparms(n, Ra, Ra)⊗ T24 ⊗Rc ⊗Ra)> (2)

where

Raparms(n, Ra, Rc) =
((

0 7→ (Raret(n)⊗ T14 ⊗Rc ⊗Ra)>
)
⊗
(
1 7→ {(n, n)}

))
and Raret(n) =

(
{(s, s′) | s(0) > 9 ∧ s′(0) > 9}, Aaret(n), Aaret(n)

)
Aaret(n) = λs.{0} ∪ {s(0), . . . , s(0) + n− 1}

Raret guarantees that the allocated block will be disjoint from the pseudo-
registers, but nothing more; this captures the requirement for clients to behave
equivalently whatever block they’re returned and whatever its initial contents.
Aaret includes both location 0, in which the start of the allocated block is re-
turned, and the block itself; the fact that this is tensored with Ra and Rc in the

precondition for the return address allows the client to assume that the block
is disjoint from both the (updated) internal datastructures of the allocator and
the store previously owned by the client. We can avoid saying anything explicit
about preservation of locations 5 to 9 here because they can be incorporated
into Rc.

When dealloc is called, Ra will hold and the client will have an invariant
Rc that it expects to be preserved and a disjoint block of store to be returned.
The client expresses that it no longer needs the returned block by promising that
the return address will behave equivalently provided that just Rc and Ra hold.
Formally, for any Rc and n,

|= Ma�dealloc :
((

0 7→ (T04 ⊗Rc ⊗Ra)>
)
⊗
(
1 7→ {(n, n)}

)
⊗ T34 ⊗Rfb(n)

)>
(3)

where

Rfb(n) =
(
{(s, s′) | s(2) > 9 ∧ s′(2) > 9}, Afb(n), Afb(n)

)
Afb(n) = λs. {2} ∪ {s(2), . . . , s(2) + n− 1}

Writing the relations on the RHSs of (1), (2) and (3) as rin(Ra, r5, . . . , r9),
ral(Ra, n,Rc) and rde(Ra, n,Rc), respectively, the whole specification of an al-
locator module is therefore

∃Ra. |= Ma � (init : ∀r5, . . . , r9. rin(Ra, r5, . . . , r9))
∧(alloc : ∀n.∀Rc. ral(Ra, n,Rc))
∧(dealloc : ∀n.∀Rc. rde(Ra, n,Rc))

(4)

Note that the existentially-quantified Ra is scoped across the whole module
interface: the same invariant has to be maintained by the cooperating imple-
mentations of all three operations, even though it is abstract from the point of
view of clients.

Checking that all the things we have assumed to be accessibility maps and
supported relations really are is straightforward from the definitions.

5 Verification of Allocation

We now consider verifying the simplest useful allocation module, Ma, shown in
Figure 1. Location 10 points to the base of an infinite contiguous chunk of free
memory. The allocator owns location 10 and all the locations whose addresses
are greater than or equal to the current contents of location 10. Initialization
sets the contents of 10 to 11, claiming everything above 10 to be unallocated,
and returns. Allocation saves the return address in location 2, copies a pointer
to the next currently free location (the start of the chunk to be returned) into 0,
bumps location 10 up by the number of locations to be allocated and returns to
the saved address. Deallocation is simply a no-op: in this trivial implementation,
freed store is actually never reused, though the specification requires that well-
behaved clients never rely on that fact.

init : [10]← 11 // set up free ptr
init + 1 : jmp [0] // return

alloc : [2]← [0] // save return address
alloc + 1 : [0]← [10] // return value = old free ptr
alloc + 2 : [10]← [10] + [1] // bump free ptr by n
alloc + 3 : jmp [2] // return to saved address

dealloc : jmp [0] // return (!)

Fig. 1. The Simplest Allocator Module, Ma

Theorem 1. The allocator code in Figure 1 satisfies the specification, (4), of
the previous section. ut

For this implementation, the relation, Ra, witnessing the existential in the spec-
ification is just

Ra
def
=
(
{(s, s′) | (s(10) > 10) ∧ (s′(10) > 10)}, Aa, Aa

)
where Aa is λs.{10}∪ {m|m ≥ s(10)}. The only invariant this allocator needs is
that the next free location pointer is strictly greater than 10, so memory handed
out never overlaps either the pseudo registers 0-9 or the allocator’s sole bit of
interesting private state, location 10 itself. Aa says what storage is owned by the
allocator.

The proof of Theorem 1 is essentially forward relational Hoare-style reason-
ing, using assumed separation conditions to justify the framing of invariants. In
particular, the prerelation for alloc lets us assume that the support Ac of Rc is
disjoint from both {0, . . . , 4} and Aa in each of the related states (s, s′) in which
we make the initial calls. Since the code only writes to locations coming from
those latter two accessibility maps, we know that they are still related by Rc,
even though we do not know anything more about what Rc is. More generally,
we have the following reasoning principle:

Lemma 1 (Independent Updates). For any p, p′, k, n, n′, v, v′, rold, rnew,
Rinv, s, s′,

(v, v′) ∈ (rnew (p, p′) k) and (s, s′) ∈ ((n, n′ Z⇒ rold)⊗Rinv) (p, p′) k

implies (s[n 7→ v], s′[n′ 7→ v′]) ∈ ((n, n′ Z⇒ rnew)⊗Rinv) (p, p′) k.

Proof. By assumption, the prestates s and s′ are related by |Rinv|, and the
supports Ainv(s) and A′

inv(s′) do not include n and n′, respectively. Hence, by
the self-supporting property of accessibility maps, Ainv(s[n 7→ v]) = Ainv(s),
and similarly for A′

inv. Thus s[n 7→ v] ∼Ainv(s) s and s′[n′ 7→ v′] ∼A′
inv(s′) s′,

so the updated states are still related by |Rinv| by the saturation property of
supported relations, and the supports of the tensored relations in the conclusion
are still disjoint. ut

We also use the following for reasoning about individual transitions:

Lemma 2 (Single Steps). For all p, p′, k, Rpre, lpre, l′pre, if for all j < k and
for all (spre, s

′
pre) ∈ (Rpre (p, p′) j)

〈p|spre|lpre〉 → 〈p|spost|lpost〉 and 〈p′|s′pre|l′pre〉 → 〈p′|s′post|l′post〉

implies there exists an Rpost such that

(spost, s
′
post) ∈ (Rpost (p, p′) j) and (lpost, l

′
post) ∈ (Rpost (p, p′) j)>

then (lpre, l
′
pre) ∈ (Rpre (p, p′) k)>. ut

For straight-line code that just manipulates individual values in fixed locations,
the lemmas above, together with simple rules of consequence involving �, are
basically all one needs. The pattern is that one applies the single step lemma to a
goal of the form (lpre, l

′
pre) ∈ (Rpre (p, p′) k)> , generating a subgoal of the form

‘transition implies exists Rpost such that post states are related and (lpost, l
′
post)

are in R>
post’. One then examines the instructions at lpre and l′pre, which defines

the possible post states and values of lpost and l′post. One then instantiates Rpost,
yielding one subgoal that the post states (now expressed as functions of the
prestates) are related and one about (lpost, l

′
post). In the case that the instruction

was an update, one then uses the independent update lemma to discharge the
first subgoal, leaving the goal of proving a perp about (lpost, l

′
post), for which the

pattern repeats. Along the way, one uses consequence to put relations into the
right form for applying lemmas and assumptions.

In interesting cases of ownership transfer, the consequence judgements one
has to prove require splitting and recombining relations that have non-trivial
supports. This typically involves introducing new existentially quantified logi-
cal variables. For example, after the instruction at alloc+1 we split the state-
dependency of the support of Ra by deducing that there exist b, b′ ∈ N, both
greater than 10, such that the two intermediate states are related by(

0 7→ {b, b′}
)
⊗
(
10 7→ {b, b′}

)
⊗ (S× S, Aold, A

′
old)⊗ (S× S, Anew, A′

new)⊗ · · ·

where Aold(s) = {m | m ≥ b + n}, A′
old(s

′) = {m | m ≥ b′ + n}, Anew(s) = {m |
b ≤ m < b + n} and A′

new(s′) = {m | b′ ≤ m < b′ + n}. The first and fourth of
these then combine to imply Raret(n), so after the update at alloc+2 the states
are related by

Raret(n)⊗
(
10 7→ {b + n, b′ + n}

)
⊗ (S× S, Aold, A

′
old)⊗ · · ·

the second and third of which then recombine to imply Ra again, eliminating b
and b′ and establishing the precondition for the return jump at alloc+3.

6 Specification and Verification of a Client

We now specify and verify a client of the allocator, using the specification of
Section 4. Amongst other things, this shows how we deal modularly with linking,

recursion and adaptation. The client specification is intended as a very simple
example of how one might express the semantics of types in a high-level language
as relations in our low-level logic, expressing the behavioural contracts of code
compiled from phrases of those types. In this case, the high-level language is
an (imaginary) pure first-order one that, for the purposes of the example, we
compile using heap-allocated activation records.

We concentrate on the meaning of the type nat→ nat. From the point of
view of the high-level language, the semantics of that type is something like the
predomain N → N⊥, or relationally, a PER on some universal domain relating
functions that take equal natural number arguments to equal results of type
‘natural-or-divergence’. There are many mappings from such a high-level se-
mantics to the low-level, reflecting many different correct compilation schemes.
We’ll assume values of type nat are compiled as the obviously corresponding
machine values, so the interpretation [[nat]] is the constantly diagonal relation
{(n, n) | n ∈ N}.

For functions we choose to pass arguments and return results in location 5,
to pass return addresses in 6, to use 7 to point to the activation record, and 0-4
as workspace.4 Since functions call the allocator, they will also explicitly assume
and preserve Ra, as well as some unknown frame Rc for the invariants of the rest
of the program. The allocator’s invariant is abstract from the point of view of
its clients, but they all have to be using the same one, so we parameterize client
specs by the allocator’s invariant. This leads us to define [[nat→ nat]] (Ra) as
the following indexed nat relation:

∀Rc.∀r7.

(
T04 ⊗ (5 7→ [[nat]])⊗ (7 7→ r7)⊗Rc ⊗Ra⊗(
6 7→ (T04 ⊗ (5 7→ [[nat]])⊗Rc ⊗Ra ⊗ T6 ⊗ (7 7→ r7))

>
))>

which one can see as the usual ‘equal arguments to equal results’ logical rela-
tion, augmented with extra invariants that ensure that the code respects the
calling convention, uses the allocator properly and doesn’t observably read or
write any storage that it shouldn’t. Although the high-level type is simple, the
corresponding low-level specification is certainly non-trivial.

As a concrete example of something that should meet this spec, we (pre-
dictably) take an implementation, Mf , of the factorial function, shown in Fig-
ure 2. The factorial code is mildly optimized: it calls the allocator to allocate its
activation record, but avoids the allocation if no recursive call is needed. After
a recursive call, the activation record is deallocated using a tail call: dealloc
returns directly to the caller of fact. The ability to reason about optimized code
is a benefit of our extensional approach compared with more type-like methods
which assume code of a certain shape.

The result we want about the factorial is that it satisfies the specification
corresponding to its type whenever it is linked with code satisfying the specifi-
cation of an allocator. Opening the existential package, this means that for any

4 This differs from the allocator’s calling convention because we need to call the allo-
cator to get some space before we can save the parameters to a function call.

fact : brz [5] (fact+17) // jump to fact+17 if [5]=0

fact+ 1: [1] <- 3 // size of activation record

fact+ 2: [0] <- (fact+4) // return address for alloc

fact+ 3: jmp alloc // allocate activation record

fact+ 4: [[0]] <- [5] // copy arg to frame[0]

fact+ 5: [[0]+1] <- [6] // copy ret addr to frame[1]

fact+ 6: [[0]+2] <- [7] // copy old frame ptr to frame[2]

fact+ 7: [7] <- [0] // new frame ptr in 7

fact+ 8: [5] <- ([5]-1) // decrement arg

fact+ 9: [6] <- (fact+11) // ret addr for recursive call

fact+10: jmp fact // make recursive call

fact+11: [5] <- ([5]*[[7]]) // return value = (fact (n-1))*n

fact+12: [0] <- [[7]+1] // ret addr for dealloc tail call

fact+13: [2] <- [7] // arg for call to dealloc

fact+14: [7] <- [[7]+2] // restore old frame ptr

fact+15: [1] <- 3 // size of block for dealloc

fact+16: jmp dealloc // dealloc frame and tail return

fact+17: [5] <- 1 // return value = 1

fact+18: jmp [6] // return

Fig. 2. Code for the Factorial Function, Mf

Ma satisfying (4), there’s an Ra such that

|= (Ma ∪ Mf) � (fact : [[nat→ nat]](Ra)) ∧ (alloc : ∀n.∀Rc. ral(Ra, n,Rc)) ∧ . . .

which is a consequence of the following, quite independent of any particular Ma:

Theorem 2. For any Ra,

init : ∀r5, . . . , r9. rin(Ra, r5, . . . , r9),
alloc : ∀n.∀Rc. ral(Ra, n,Rc),
dealloc : ∀n.∀Rc. rde(Ra, n,Rc)

|= Mf � fact : [[nat→ nat]](Ra)

ut

This is another Hoare-style derivation, mostly similar to that of Theorem 1. Prov-
ing the calls, including the recursive one, requires the universal quantifications
over Rc, n and r7, occurring in the specifications of alloc, dealloc and fact,
to be appropriately instantiated (‘adapted’). For example, the instantiation of
Rc for the recursive call at label fact+10 is

R′
c ⊗ (b, b′ Z⇒ [[nat]])

⊗
(
b + 1, b′ + 1 Z⇒ ((5 7→ [[nat]])⊗ T04 ⊗R′

c ⊗Ra ⊗ T6 ⊗ (7 7→ r′7))
>)

⊗ (b + 2, b′ + 2 Z⇒ r′7)

where R′
c and r′7 were the instantiations of the outer call, and b and b′ are logical

variables standing for the addresses returned by the previous related calls to the
allocator at fact+3. This clearly expresses how the recursive call has to preserve

whatever the outer one had to, plus the frame of the outer call, storing the outer
call’s argument and return address and the outer call’s caller’s frame pointer
from location 7.

Recursion is dealt with in the proof of Theorem 2 as one would expect, by
adding fact : [[nat→ nat]](Ra) to the context. This is sound thanks to our use
of indexing and interpretation of judgements:

Lemma 3 (Recursion). For any Γ , l, R and M, if Γ, l : R> |= M� l : R> then
Γ |= M � l : R>. ut

Lemma 3, proved by a simple induction, suffices for first-order examples but only
involves statically known labels.5 We will discuss ‘recursion through the store’
in detail in future work, but here give a trivial example to indicate that we
already have enough structure to deal with it. Consider independently verifying
the following code fragments, assuming that wantzero : (1 7→ {(0, 0)})>

silly : brz [1] wantzero knot : [0] <- silly
silly+1 : [1] <- [1]-1 knot+1 : jmp silly
silly+2 : jmp [0]

To show knot : (1 7→ [[nat]])>, there are various choices for the specification
assumed for silly (and proved of its implementation). An obvious one is that
silly expects to be passed itself in 0, but this may be an overspecification. Alter-
natively, we can use the recursive specification µr. ((0 7→ r)⊗ (1 7→ [[nat]]))>, the
semantics of which is given by well-founded induction: observe that the meaning
of R> at index k only depends on R at strictly smaller j. In general, we have a
fixpoint equation

µr. (R[r])> =
(
λ(p, p′).λk. R

[
µr. (R[r])> (p, p′) k

]
(p, p′) k

)>
letting us prove the following two judgements, which combine to give the result
we wanted about knot:

Theorem 3.

1. wantzero :
(
1 7→ {(0, 0)}

)>
|= Msilly � silly : µr. ((0 7→ r)⊗ (1 7→ [[nat]]))>

2. silly : µr. ((0 7→ r)⊗ (1 7→ [[nat]]))> |= Mknot � knot : (1 7→ [[nat]])>

ut

7 Discussion

As we said in the introduction, this work is part of a larger project on relational
parametricity for low-level code, which one might characterize as realistic real-
izability.6 It should be apparent that we are drawing on a great deal of earlier
5 This is equivalent to the more symmetric linking rule of our previous work [8].
6 Modulo the use of unbounded natural numbers, etc. Our computational model is

clearly only ‘morally’ realistic, but it’s too nice a slogan not to use. . .

work on separation logic [21], relational program logics [19, 1, 7, 23], models and
reasoning principles for dynamic allocation [18, 20, 9], typed assembly language
[14], proof-carrying code [15], PER models of types [2], and so on.

Two projects with similar broad goals to ours are the FLINT project at
Yale [11] and the Foundational Proof-Carrying Code project at Princeton [4].
The Yale group started with a purely syntactic approach to types for low-level
code, and are now combining first-order Hoare-style reasoning using a semantic
consequence relation within a more syntactic framework. This is argued to be
simpler than techniques based on sophisticated constructions such as indexing,
but the treatment of code pointers in [16] seems no less complex, and possibly less
useful, than that of the present work. As the syntactic approach never says what
types (or higher-order assertions) are supposed to ensure (what they actually
mean), it seems more difficult to use it to combine proofs generated from different
type systems or compilers, link in hand-written and hand-proved fragments or
prove optimizations. The Princeton project takee a semantic approach, which is
much closer to ours (as we’ve said, the step-indexing idea that we use comes from
work on FPCC), but is still a fixed type system restricted to talking about a
single form of memory safety rather than a general logic. FPCC uses a hardwired
and rather limited form of allocation and has no deallocation at all [10].

There are other mechanized proofs of storage managers, including one by
Yu et al. [24], and one using separation logic by Marti et al. [12]. These both
treat more realistic implementations than we do here, but establish intensional
‘internal’ correctness properties of the implementations, rather than the more
extensional and abstract specification used here. In particular, note that our
specification uses no ‘model variables’ for recording the history of allocations.

Note that we make explicit use of second-order quantification over invariants,
such as Rc, in our specifications and proofs (this is rather like row-polymorphism
in record calculi). In separation logic, by contrast, the tight interpretation of pre-
conditions means that {P}C {Q} is semantically equivalent to ∀I.{P ∗I}C {Q∗
I} so universal quantification over predicates on store outside the footprint of
a command can be left implicit, but is still exploitable via the frame rule. Our
use of explicit polymorphism is arguably more primitive (especially since pro-
cedures and modules require second order quantification anyway), doesn’t rule
out any programs and is closed under observations. On the other hand, the more
modal-style approach of separation logic is simpler for simple programs and its
stronger intensional interpretation of separation, whilst being more restrictive,
has the significant advantage over ours that it extends smoothly to a concurrent
setting.

The proof scripts for the general framework plus the verification of the al-
locator code and the factorial client currently total about 8,500 lines, which is
excessively large. However, this really reflects my own incompetence with Coq,
rather than any inherent impracticality of machine-checked proofs in this style.
There are dozens of unused lemmas, variations on definitions, cut-and-pasted
proofs and downright stupidities that, having learnt more about both Coq and
the problem domain, I could now remove. The proofs of actual programs could

easily be made an order of magnitude shorter. We have an eye to using this kind
of logic in PCC-style scenarios, for which mechanical checkability is certainly
necessary. But working in Coq also caught errors in definitions and proofs. For
example, we originally took |Raret(n)| to be simply S× S. The allocator does
satisfy that specification, but a failed proof of a simple client revealed that it
has a subtle flaw: if the block size is 1, the allocator can return location 0 itself
(in location 0) as the free block.

Theorem 2 is only a semantic type soundness result – it does not say that the
code actually computes factorials. In fact, only a couple of lines need tweaking to
add the functional part of the specification too. We presented a type soundness
result because that, rather than more general verification, is the direction of our
immediate future plans. Once we have refactored our Coq definitions somewhat,
we intend to investigate certified compilation of a small functional language in
this style. We will also prove a slightly more interesting allocator which actually
has a free list.

Although we have so far only focussed on proving a single program, a signif-
icant feature of the relational approach is that it can talk about equivalence of
low-level code modulo a particular contextual contract. For example, one might
hope to prove that all (terminating) allocators meeting our specification are ob-
servationally equivalent, or to verify the preservation of equational laws from
a high-level language. Previous work on modularity, simulation and refinement
in separation logic has run into some technical difficulties associated with the
non-deterministic treatment of allocation [23, 13] which we believe are avoided
in our approach. We also need to look more seriously at the adjoint perping op-
eration, taking nat relations to nat×state relations [17, 22]. Making all relations
be (·)>>-closed validates more logical principles and may be an alternative to
step-indexing.

Thanks to Noah Torp-Smith for helping with an early version of this work,
Josh Berdine for many useful discussions about separation, and Georges Gonthier
for his invaluable advice and instruction regarding the use of Coq.

References

1. M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. The-
oretical Computer Science, 121, 1993.

2. M. Abadi and G. D. Plotkin. A PER model of polymorphism and recursive types.
In Proc. 5th IEEE Symposium on Logic in Computer Science (LICS), pages 355–
365. IEEE Computer Society Press, June 1990.

3. A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. In Proc. 15th European Symposium on Programming (ESOP), 2006.

4. A. Appel. Foundational proof-carrying code. In Proc. 16th IEEE Symposium on
Logic in Computer Science (LICS), 2001.

5. A. Appel and A. Felty. A semantic model of types and machine instructions for
proof-carrying code. In Proc. 27th ACM Symposium on Principles of Programming
Languages (POPL), 2000.

6. A. Appel and D. McAllester. An indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(5), 2001.

7. N. Benton. Simple relational correctness proofs for static analyses and pro-
gram transformations. In Proc. 31st ACM Symposium on Principles of Pro-
gramming Languages (POPL), January 2004. Revised version available from
http://research.microsoft.com/∼nick/publications.htm.

8. N. Benton. A typed, compositional logic for a stack-based abstract machine. In
Proc. 3rd Asian Symposium on Programming Languages and Systems (APLAS),
volume 3780 of Lecture Notes in Computer Science, November 2005.

9. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proc. 7th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA), volume 3461 of Lecture Notes in Computer Science, 2005.

10. J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL for back-end
optimization. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2003.

11. N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to
foundational proof-carrying code. Journal of Automated Reasoning, 31(3-4), 2003.

12. N. Marti, R. Affeldt, and A. Yonezawa. Verification of the heap manager of an
operating system using separation logic. In Proc. 3rd Workshop on Semantics, Pro-
gram Analysis and Computing Environments for Memory Management (SPACE),
2006.

13. I. Mijajlovic, N. Torp-Smith, and P. O’Hearn. Refinement and separation contexts.
In Proc. Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), December 2004.

14. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems (TOPLAS),
21(3), 1999.

15. G. Necula. Proof-carrying code. In Proc. 24th ACM Symposium on Principles of
Programming Languages (POPL), 1997.

16. Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers.
In Proc. 33rd ACM Symposium on Principles of Programming Languages (POPL),
2006.

17. A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10, 2000.

18. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local
state. In Higher Order Operational Techniques in Semantics. CUP, 1998.

19. G. D. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proc. Inter-
national Conference on Typed Lambda Calculi and Applications (TLCA), volume
664 of Lecture Notes in Computer Science, 1993.

20. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, March 2004.

21. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proc. 17th IEEE Symposium on Logic in Computer Science (LICS), 2002.

22. J. Vouillon and P.-A. Mellies. Semantic types: A fresh look at the ideal model for
types. In Proc. 31st ACM Symposium on Principles of Programming Languages
(POPL), 2004.

23. H. Yang. Relational separation logic. Theoretical Computer Science, 2004. Sub-
mitted.

24. D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC: Dynamic
storage allocation. Science of Computer Programming, 50, 2004.

