
Undoing Dynamic Typing
(Declarative Pearl)

Nick Benton

Microsoft Research
nick@microsoft.com

Abstract. We propose undoable versions of the projection operations
used when programs written in higher-order statically-typed languages
interoperate with dynamically typed ones, localizing potential runtime
errors to the point at which a dynamic value is projected to a static
type. The idea is demonstrated by using control operators to implement
backtracking projections from an untyped Scheme-like language to ML.

1 Introduction

When working in a statically typed language one often has to deal with data
whose types cannot be fully determined, or at least, fully checked, at compile
time. Data read at run time from the console or persistent storage and calls to
dynamically-linked (local or remote) programs or services must be subject to
runtime checks if type safety is to be maintained.

In a typed language, dynamic data is usually given some rather uninforma-
tive ‘catch all’ static type; at a low level this might be string or byte[], whilst
higher level examples include Object, Dynamic and IUnknown. The interface
between the statically checked and unchecked worlds is provided by a collec-
tion of projection, (down)cast, coercion, retraction or unmarshalling operations
mapping values of the single dynamic type to various particular static types, and
complementary embedding, (up)cast, section or marshalling operations going the
other way. Projection operations in an ML-like language might have signatures
along the lines of:

val toInt : Dynamic -> int
val toBool : Dynamic -> bool
val toIntToInt : Dynamic -> (int->int)

but these operations are naturally partial. toInt, for example, will typically
raise an exception in the case that its argument turns out to be a Dynamic value
representing a string or a function. It is good practice to make this possibility
more explicit and instead type the projection with an option:

val toInt : Dynamic -> int option

2 Nick Benton

The programmer then has to explicitly match on the returned value before using
it, making it harder to forget to deal with the case of failure.1

There are actually two rather different classes of projection. In the case that
values of type Dynamic carry an explicit representation of their types (usu-
ally called a tag, or runtime type information) and that representation can be
trusted, a projection operation can essentially just check the tag and, assuming
it matches, proceed to use the underlying value with no further checks. This
is the way many proposals for adding dynamic typing to statically typed lan-
guages work [1] and is common when one program unmarshalls values that were
originally marshalled to persistent storage by a (trusted) program written in the
same typed language.

The second case is that in which dynamic values are untagged, incompletely
tagged, or the tags are potentially unreliable. Safely projecting values of func-
tional types (or very large values of simple datatypes) cannot then be done all
in one go. This is generally the situation when making foreign calls to functions
written in an untyped (or differently-typed) language, or when calling a remote
function in another address space or over a network. Consider, for example, link-
ing to a remote service that is supposed to compute some function on integers.
The service may well have some attached metadata (e.g. WSDL) that we can
check at runtime to see that it conforms to the programmer’s expectation that
there is an operation there that accepts and returns integers. One would expect
a projection

val toIntToInt : url -> (int->int) option

that connects to the service to retrieve and check the metadata, returning NONE if
it fails to match and SOME f it matches, where f is an ML wrapper function that
sends the service a marshalled version of its argument and returns the unmar-
shalling of the service’s response. But we cannot necessarily trust the metadata
we went to all the trouble of checking, so the wrapper usually also incorporates
a check that every returned value is an integer, and raises an exception if that
ever fails. Now the programmer has also to deal with the possibility of failure
each time he applies the function wrapping the service; we should really have
made that possibility explicit by typing the projection as

val toIntToInt : url -> (int -> int option) option

where the pattern for general higher-order types is that we have to add an option
in every positive position. A useful point of view is that projection functions
wrap untyped values with code that dynamically monitors their adherence to a
contract associated with the type, in the sense of ‘Design by Contract’ [14, 8].

Higher-order programming in the presence of all these potential runtime er-
rors is, however, painful. The situation is especially bad if one tries to deal with
1 One might choose instead to map inappropriate elements of Dynamic either to di-

vergence or to some more defined default value of the target type. Although the
first alternative is well-behaved from a denotational perspective, neither has good
software engineering properties.

Undoing Dynamic Typing 3

more than one potentially-misbehaving untyped function at the same time (e.g.
passing one as an argument to another), in which case impedance matching is a
problem and the correct assignment of blame, and hence what error handling is
appropriate, can be tricky to ascertain.

What we would really like is to turn the second case into the first, at least
from the point of view of the programmer. The initial projection of a dynamic
value to a given static type may or may not succeed, but if it does then the
programmer should have a typed value in his hand that he can use without
further fear of failure. The message of this paper is that we can achieve this
goal by making projections undoable: the projection of a dynamic value to a
static type may provisionally succeed but subsequently be rolled back to fail
retrospectively should runtime type errors (contract violations) occur. We will
use control operators to give an implementation of undoable projections from an
untyped interpreted language to ML.

2 Background: Embedded Interpreters

In this section, based on an earlier paper [2], we briefly recall how embedding-
projection pairs may be used to translate higher type values between typed (ML-
like) and untyped (Scheme-like) languages, focussing, for concreteness, on the
situation in which the untyped language is the object language of an interpreter
written in the typed metalanguage. The underlying semantic idea here is just
that of interpreting types as retracts2 of a suitable universal domain, which goes
back to work of Scott [17] in the 1970s, though the realization that this is both
implementable and useful in functional programming seems only to have dawned
in the mid 1990s [20].

Our starting point is an ML datatype modelling an untyped call-by-value
lambda calculus with constants:

datatype U = UF of U->U | UP of U*U | UI of int | US of string
| UUnit | UB of bool

An interpreter for an untyped object language, mapping abstract syntax trees
to elements of U is then essentially just a denotational semantics. We assume
the existence of a parser for a readable object language (typeset in italic) and
let pi : string -> U be the composition of the parser with the intepretation
function.

The idea of embedded interpreters is to define a type-indexed family of pairs
of functions that embed ML values into the type U and project values of type U
back into ML values. Here is the relevant part of the signature:

2 Recall that a section-retraction pair comprises two morphisms s : X → Y and
r : Y → X such that s; r = idX . We say X is a retract of Y . Embedding-projection
pairs are a special case: if X and Y are posets, s and r are monotone and additionally
r; s v idY then s is an embedding and r is a projection.

4 Nick Benton

signature EMBEDDINGS =
sig
type ’a EP
val embed : ’a EP -> (’a->U)
val project : ’a EP -> (U->’a)

val unit : unit EP
val bool : bool EP
val int : int EP
val string : string EP
val ** : (’a EP)*(’b EP) -> (’a*’b) EP
val --> : (’a EP)*(’b EP) -> (’a->’b) EP

end

For an ML type A, an (A EP)-value is a pair of an embedding of type A->U
and a projection of type U->A. The interesting part of the definitions of the
combinators on embedding/projection pairs is the case for function spaces: given
a function from A to B, we turn it into a function from U to U by precomposing
with the projection for A and postcomposing with the embedding for B; this
is why embeddings and projections are defined simultaneously. The resulting
function can then be made into an element of U by applying the UF constructor.
Projecting an appropriate element of U to a function type A->B does the reverse:
first strip off the UF constructor and then precompose with the embedding for
A and postcompose with the projection for B.

Embeddings and projections let one smoothly move values in both directions
between the typed and untyped worlds, as demonstrated in the following, rather
frivolous, example in which we project an untyped (and untypeable) fixpoint
combinator to an ML type and apply it to a function in ML:

- let val embY = pi "fn f=>(fn g=> f (fn a=> (g g) a))

(fn g=> f (fn a=> (g g) a)) "
val polyY = fn a => fn b=> project

(((a-->b)-->a-->b)-->a-->b) embY
val factorial = polyY int int

(fn f=>fn n=>if n=0 then 1 else n*(f (n-1)))
in factorial 5
end;

val it = 120 : int

The above is simple, neat and all works very nicely in the case that untyped
values play by the rules and are used correctly. But the code is something of
a minefield, being littered with deeply buried non-exhaustive Match and Bind
exceptions. Our earlier paper said

. . . these exceptions should be caught and gracefully handled, but we will
omit all error handling in the interests of space and clarity.

but, in fact, anything other than letting the exceptions propagate up to the
top is remarkably tedious and difficult to achieve by hand. Here we will show

Undoing Dynamic Typing 5

how much of that error handling can be built into the embedding infrastructure
instead. The SML code that follows relies on call/cc, which is supported by
both SML/NJ and MLton (though MLton’s implementation takes time linear
in the current depth of the control stack). There is also a (linear time) call/cc
library for the OCaml bytecode compiler.

3 Retractable Retractions

There are various ways in which the simple embedded interpreter of our previous
work can go wrong. The first is that object programs can contain runtime errors
all by themselves, without any attempt being made to cast them to ML types.
So, whilst this is OK:

- pi "let val x = 4 in x ";
val it = UI 4 : U

this is not:

- pi "let val x = 4 in x 3 ";
uncaught exception Bind
[nonexhaustive binding failure]
raised at: Interpret.sml:37.45-37.63

As we are going to be playing fancy games with control flow shortly, it is a good
idea to replace these exceptions with something simpler and more explicit. To
this end, we add an explicit error constructor UErr to our universal type, as is
commonly done in denotational semantics [18, p.144][1]. The definition is now

datatype U = UF of U->U | UP of U*U | UI of int | US of string
| UUnit | UB of bool | UErr

and we modify the interpreter to yield UErr when it would previously have raised
an exception, which includes making all the language constructs strict in (i.e.
preserve) UErr.3 An extract of the interpreter code is shown in Figure 1; this
is entirely standard, though note that we have separated the binding times of
variable names and values in environments. We omit the definition of Builtins,
which uses embedding to add a few pervasives, including arithmetic and com-
parisons, to the environment.

We now turn to revising the embedding-projection pairs. As one might ex-
pect from our initial discussion, we change the signature to reflect the fact that
projection will now be partial:

3 One could make the code slightly shorter and more efficient by sticking with im-
plicit exceptions in place of UErr, but the choice we have made makes what is going
on slightly clearer. In particular, we do not have to worry about interactions be-
tween handlers and continuations, as it is now obvious that there are no potentially
uncaught exceptions lurking anywhere.

6 Nick Benton

datatype Exp = EI of int (* integer constant *)

| EId of string (* identifier *)

| EApp of Exp*Exp (* application *)

| EP of Exp*Exp (* pair *)

| ELam of string*Exp (* lambda abstraction *)

| EIf of Exp*Exp*Exp (* conditional *)

| ... other clauses elided ...

(* interpret : Exp * (string list) -> U list -> U *)

fun interpret (e,static) =

case e of

EI n => (fn dynamic => (UI n))

| EId s => (case indexof (static,s) of

SOME n => fn dynamic => List.nth (dynamic,n)

| NONE => let val lib = Builtins.lookup s

in fn dynamic => lib

end)

(* if s not in static env, lookup in pervasives instead *)

| EP (e1,e2) => let val s1 = interpret (e1,static)

val s2 = interpret (e2,static)

in fn dynamic => case s1 dynamic of

UErr => UErr

| v1 => (case s2 dynamic of

UErr => UErr

| v2 => UP(v1, v2))

end

| EApp (e1,e2) => let val s1 = interpret (e1,static)

val s2 = interpret (e2,static)

in fn dynamic => case s1 dynamic of

UF(f) => f (s2 dynamic)

| _ => UErr

end

| ELam (x,e) => let val s = interpret (e, x::static)

in fn dynamic => UF(fn v=> case v of UErr => UErr

| _ => s (v::dynamic))

end

| EIf (e1,e2,e3) => let val s1 = interpret (e1,static)

val s2 = interpret (e2,static)

val s3 = interpret (e3,static)

in fn dynamic => case s1 dynamic of

UB(true) => s2 dynamic

| UB(false) => s3 dynamic

| _ => UErr

end

... other clauses elided ...

fun pi s = interpret (read s, []) []

Fig. 1. Revised Interpreter (extract)

Undoing Dynamic Typing 7

signature EMBEDDINGS =
sig
type ’a EP
val embed : ’a EP -> ’a -> U
val project : ’a EP -> U -> ’a option

val int : int EP
val string : string EP
val unit : unit EP
val bool : bool EP
val ** : (’a EP)*(’b EP) -> (’a*’b) EP
val --> : (’a EP)*(’b EP) -> (’a->’b) EP

end

The matching structure makes unsurprising definitions of embedding-projection
pairs:

type ’a EP = (’a->U)*(U->’a option)
fun embed ((e,p) : ’a EP) = e
fun project ((e,p) : ’a EP) = p

and the instances at base types are also straightforward:

val int = (UI, fn (UI n) => SOME n | _ => NONE)
val string = (US, fn (US s) => SOME s | _ => NONE)
val unit = (fn ()=>UUnit, fn UUnit => SOME () | _ => NONE)
val bool = (UB, fn (UB b) => SOME b | _ => NONE)

The embedding-projection for products is only a little more complex:

infix **

fun (e,p)**(e’,p’) =
(fn (v,v’) => UP(e v, e’ v’),
fn uu => case uu

of UP (u,u’) => (case (p u, p’ u’)
of (SOME v, SOME v’) => SOME (v,v’)
| _ => NONE
)

| _ => NONE)

To embed a pair of ML values, we simply embed each component and wrap the
resulting pair of untyped values in the UP constructor. To project a value of type
U to a pair type, we first check that it is indeed a UP and then that we can
project each of the components in a pointwise fashion; if so, we return SOME of
the paired results, and otherwise we return NONE.

We have now reached the important and tricky part of the paper: dealing
with function types. Recall that our intuition is that whenever we have an ML

8 Nick Benton

value of type A in our hand, then we can assume it really will behave itself as
an element of type A. In fact, we might have obtained the value by projecting
some ill-behaved untyped code, but we will arrange things so that the projected
value is ‘self-policing’ – should it ever violate the contract associated with A
then it will backtrack to the point of projection. Hence the violation will never
be observable at the actual point of use.

With that idea in mind, the embedding component for function types can be
fairly straightforward. Just as we made the interpreter ‘total’, in the sense that
dynamic errors are explicitly reified as the UErr value, the embedded version of
f :A->B should be a ‘total’ function from U to U that attempts to project its
argument to type A, returning UErr if this fails, and returning the embedding
at type B of f applied to the projected value otherwise. In code, assuming p is
the projection for A and e’ is the embedding for B, the embedding for A->B is

fn f => UF (fn u => case p u of SOME a => e’ (f a)
| NONE => UErr)

of type (A->B)->U. This is simple because nobody is at ‘fault’ here yet: we
can assume the ML function we’re embedding will be well-behaved on the given
domain and we merely extend it to return UErr on the rest of U.

We now need to define projection for a function type A->B, which will be
of type U->((A->B)option). In the case that the argument value is not even a
UF, it seems natural to return NONE immediately, though we could have chosen
to delay even this check until we try to apply the projected function. Otherwise
we have a function f of type U->U, which can clearly be turned into one, call it
f’, of type A->(B option) by precomposition with the (total) embedding for
A, e, and postcomposing with the (partial) projection for B, p’. So

f ′ = p’ ◦ f ◦ e

However, we want something of type (A->B) option, for which we need a con-
trol operator. We grab the continuation k that is expecting a value of type
(A->B) option and provisionally return SOME g where g : A->B is a wrapper
around f’ that returns b when f’ returns SOME b and throws NONE (of type
(A->B) option) to the captured continuation k should f ′ ever return NONE (of
type B option). Putting this together with the embedding component, we arrive
at the definition of the --> combinator that is shown in Figure 2.

The code shown in the figure looks rather simple, but the consequences of the
way the uses of control are intertwined with the induction on types are perhaps
not obvious, so we now present a series of examples to try to understand what
we just did.

4 Examples

Our first set of examples are not intended to be representative of actual uses,
but merely a set of test cases to demonstrate and check the behaviour of our
earlier definitions. Since we want to be able to see which coercions fail, we make
our test functions return values of the following type:

Undoing Dynamic Typing 9

(* Recall:

type ’a EP = (’a->U)*(U->’a option)

val --> : (’a EP)*(’b EP) -> (’a->’b) EP

*)

infixr -->

fun (e,p)-->(e’,p’) =

(fn f => UF (fn u => case p u of SOME a => e’ (f a)

| NONE => UErr),

fn u => case u

of UF f => callcc (fn k =>

SOME (fn a =>

case p’ (f (e a))

of SOME b => b

| NONE => throw k NONE))

| _ => NONE)

Fig. 2. Embedding and projection for functions

datatype ’a TestResult = Fail of string | Result of ’a

We start with an untyped function that behaves like successor on small in-
tegers but returns a unit value on larger ones:

- val badsucc = pi "fn n => if n < 4 then n+1 else () ";
val badsucc = UF fn : U

and define a test function that attempts to project an untyped value down to
the ML type int -> int and then maps the result over a list of integers:

- fun testIntToInt v l = case (project (int-->int) v)
of SOME f => Result (map f l)
| NONE => Fail "projection to int->int";

val testIntToInt = fn : U -> int list -> int list TestResult

Now, we try our test out on a list of small integers:

- val test1 = testIntToInt badsucc [1,2,3];
val test1 = Result [2,3,4] : int list TestResult

All the integers in the test list are small and badsucc behaves like a function of
type int -> int on all of them, so we don’t see any violation. Let’s extend the
list a little:

- val test2 = testIntToInt badsucc [1,2,3,4,5,6,7];
val test2 = Fail "projection to int->int" : int list TestResult

10 Nick Benton

This time, badsucc behaves itself for the first three calls then violates its contract
on the fourth, at which point we backtrack to the original point of projection
and make that fail retrospectively. Alternatively, of course, we can project at
int -> unit, in which case the sets of arguments exhibiting success and failure
are swapped:

- fun testIntToUnit v l = case (project (int --> unit) v)
of SOME f => Result (map f l)
| NONE => Fail "projection to int->unit";

val testIntToUnit = fn : U -> int list -> unit list TestResult

- val test3 = testIntToUnit badsucc [7,6,5,4];
val test3 = Result [(),(),(),()] : unit list TestResult

- val test4 = testIntToUnit badsucc [7,6,5,4,3,2,1];
val test4 = Fail "projection to int->unit" : unit list TestResult

Note that each call to project, even on the same value, yields a new point to
which we can backtrack. Let’s check that we’ve stacked things up in the right
order to maintain the property that embedding followed by projection is the
identity, even on ill-behaved values:

- fun testreembed a1 a2 =
case project (int --> int) badsucc
of NONE => Fail "first projection"
| SOME first =>

let val r1 = first a1
val reembed = embed (int --> int) first

in case project (int --> int) reembed
of NONE => Fail "second projection"
| SOME second => let val r2 = second a2

in Result (r1,r2)
end

end;
val testreembed = fn : int -> int -> (int * int) TestResult

- val test5 = testreembed 2 3;
val test5 = Result (3,4) : (int * int) TestResult

- val test6 = testreembed 2 4;
val test6 = Fail "first projection" : (int * int) TestResult

Although the violation is only triggered by the application of the reprojected
value second to 4, we have correctly unwound all the way to the initial projec-
tion.

Now let’s try some higher-order examples:

- fun testho A x y =
case project (A-->int) x

Undoing Dynamic Typing 11

of NONE => Fail "function projection"
| SOME f => (case project A y

of NONE => Fail "argument projection"
| SOME g => Result (f g));

val testho = fn : ’a EP -> U -> U -> int TestResult

- val test7 = testho (int-->int) (pi "fn f => f 1 + f 2 ")
(pi "fn n => n + 1 ");

val test7 = Result 5 : int TestResult

- val test8 = testho (int-->int) (pi "fn f => f 1 + f 2 ")
(pi "fn n => if n = 1 then 7 else () ");

val test8 = Fail "argument projection" : int TestResult

- val test9 = testho (int-->int) (pi "fn f => f 1 + f true ")
(pi "fn n => n + 1 ");

val test9 = Fail "function projection" : int TestResult

In these tests, we try to project the first untyped program to (int->int)->int,
the second to int->int and then apply one to the other. We can see that in
test7, both are well-behaved, in test8 it’s the argument that goes wrong whilst
in test9 the higher order function is at fault.

What should happen if we try to combine more than one faulty value? We
are doing dynamic checking of the contracts: projections are only rolled back in
the case that the particular use that is made of them exposes a violation. The
checking is eager, in that the context C[·] that tests a projected value v should
not have previously violated its contract at the point when the v does something
wrong; otherwise we should already have rolled back some other projected value
in C[·]. So when we combine more than one projected value, we roll back the
first one which detectably goes wrong in the execution trace:

- val test10 = testho (int-->int) (pi "fn f => f 1 + f true ")
(pi "fn b => if b then 3 else 4 ");

val test10 = Fail "argument projection" : int TestResult

- val test11 = testho (int -->int) (pi "fn f => f true + f 1 ")
(pi "fn b => if b then 3 else 4 ");

val test11 = Fail "function projection" : int TestResult

In test10, the error is signalled in the argument. This is because the first call
made by the higher-order function passes an integer, as per the contract, and
then the argument tries to use that in a conditional, violating its contract. In
test11, we have swapped the order of evaluation in the addition so that the
first dynamically occurring violation is the attempt by the higher order function
to pass true in place of an integer; in this case the error is detected in the
higher-order function. Here’s a more complex example:

12 Nick Benton

- val test12 = testho ((int-->int)-->(int-->int))
(pi "fn f => f (f (fn n => n+1)) 5 ")
(pi "fn g => if g 2 = 3 then fn n => true

else fn n => n ");
val test12 = Fail "argument projection" : int TestResult

In this case, the outer call to the function bound to f passes in a function that is
not of type int->int, but that function was itself obtained by the inner call to
f, which was with a well-behaved argument. Hence blame is correctly assigned
to the second of the original terms.

Finally, we present a toy version of a marginally more realistic example.
Consider making queries on an external database, modelled as a function that
takes a query predicate on strings (of type string -> bool) and returns a
function of type int -> string that enumerates the results. Here are some
definitions in the untyped language that construct three different purported
databases, using LISP-style lists internally (represented as nested pairs with the
unit value for nil):

- fun mkdb ds = pi ("let fun query l f n =

if isnil l then \"\"

else if f (car l)

then if n=0 then (car l)

else query (cdr l) f (n-1)

else query (cdr l) f n

in query " ^ ds)
val mkdb = fn : string -> U

- val db1 = mkdb "(\"um\",(\"dois\",(\"tres\",(true,())))) "
- val db2 = mkdb "(\"un\",(2,(\"trois\",(\"quatre\",())))) "
- val db3 = mkdb "(\"one\",(\"two\",(\"three\",(\"four\",())))) "

Note that the first two contain some non-string values. The following function
takes a list of untyped values and returns the first one that projects correctly to
our ML type for databases:

- fun selectdb [] = (fn f => fn n => "")
| selectdb (x::xs) =

case project ((string --> bool) --> (int --> string)) x
of NONE => selectdb xs
| SOME db => db

val selectdb = fn : U list -> (string -> bool) -> int -> string

Now we can try some queries:

- val test15 = let val thedb = selectdb [db1,db2,db3]
val results = thedb (fn s => String.size s > 3)

in [results 0, results 1]
end

Undoing Dynamic Typing 13

val test15 = ["dois","tres"] : string list

- val test16 = let val thedb = selectdb [db1,db2,db3]
val results = thedb (fn s => String.size s > 3)

in [results 0, results 1, results 2]
end

val test16 = ["three","four",""] : string list

The first database in the list produces two results without violating the contract,
so we get the answers from that database. When we ask for more results, however,
the first database tries to apply the filter to a boolean, so gets rolled back; we
then try the second database, which also fails because it contains an integer, and
finally end up getting all our results from the third one.

5 Discussion

We have shown how continuation-based backtracking combines smoothly with
type indexed embedding-projection pairs to yield a convenient form of dynamic
contract checking for interoperability between typed and untyped higher-order
languages, localizing runtime errors to a single point of failure.

Extensions of statically-typed languages with various forms of dynamic type
have been well-studied (see, for example, [1, 10]), but undoable projections have
not, as far as I’m aware, been proposed before.

The use of embedding-projection pairs to define type-indexed functions in
ML-like languages is attributed by Danvy [6] to Filinski and to Yang [20], both
of whom used it to implement type-directed partial evaluation [4], which in-
volves type-indexed functions that appear at first sight to call for dependent
types. Rose [16] describes an implementation of TDPE in Haskell that uses type
classes to pass the pairs representing types implicitly. Kennedy and I have pre-
viously used it for writing picklers [12] and interpreters [2], respectively. Similar
type-directed constructions have also been used in implementing printf-like
string formatting [5] and in generic programming. Ramsey has also applied the
technique for embedding an external interpreter for a scripting language (Lua)
into OCaml programs [15].

Control operators have, of course, been used to implement various other
forms of backtracking before, including that of logic programming languages.
Nevertheless, getting the apparently simple code here correct is not entirely
trivial (my first couple of attempts were more complex and subtly wrong).

It remains to be seen whether or not the technique presented here is actually
useful in practical situations. Even before one worries about the specific techni-
calities, many reasonable people believe that experience with RPC, distributed
objects, persistent programming, and so on, all indicates that trying to hide the
differences between operations with widely varying runtime costs, failure models
or lifetimes is fundamentally a bad idea – the distinctions should be reflected
in the language because programmers need to be aware of them. Holding onto
continuations costs space, whilst the possibility of backtracking over expensive

14 Nick Benton

computations certainly doesn’t make reasoning about time or space behaviour
any easier.

There is also the issue of what can be undone. We have been implicitly
assuming that the untyped programs that we project, and the typed contexts
into which we project them, do not themselves involve side-effects other than
potential divergence, as these will not be undone by throwing to the captured
continuation. One could certainly extend our technique to effects that are inter-
nal to the language, such as uses of state or other uses of control, if one were
prepared to modify the compiler, runtime system or bits of the basis library (as
in previous work on transactions in ML [9]). But the most exciting examples,
namely those that involve external I/O, unfortunately concern side-effects that
are rather hard to roll back automatically and generically. If I’ve sent you some
messages and then you start to misbehave, the best general thing I can do is
break off further communication with you; I certainly can’t unsend the messages.
That suffices in the case of pure computations, but in the stateful case a general
solution seems to require at least wrapping the underlying messages in a more
complex fault-tolerant protocol, and probably introducing explicit transactional
commitment points, beyond which rollbacks would no longer be possible. Indeed,
explicitly delimiting the the extent of possible rollbacks may be advantageous
even in the case of purely internal effects.

The semantics we have chosen to implement here tracks type errors rather
strictly along the control flow: any violation will cause the guilty projection
to be undone, even if the value that is eventually produced is well-behaved. A
small change in the interpreter code to remove strictness in UErr yields a laxer,
more data-dependent, semantics, in which ‘benign’ errors are ignored; this might
be useful in some circumstances, but seems harder to reason about and a less
natural fit with call-by-value languages.

It would be good to formulate and prove correctness of the code we have
presented. The problem here seems not to be one of proof technique, but in
coming up with a statement of correctness that covers the correct assignment
of blame in the case of multiple ill-behaved untyped programs and which is
intuitively significantly clearer than the code itself. One starting point might be
the operational semantics for interoperability between ML-like and Scheme-like
languages recently described by Matthews and Findler [13].

A second, and perhaps more interesting, line of further work is to extend
the idea from dynamic checking of the interface between typed and untyped
languages to recovery in more general higher-order contract monitoring. Runtime
checking of contracts, and the associated issue of blame assignment, have been
extensively studied in recent years (see, for example, [8, 7, 11, 3, 19]) and the kind
of ‘transactional’ recovery mechanism described here seems eminently applicable
in that setting.

Thanks to Josh Berdine, Olivier Danvy, Andrzej Filinski, Norman Ramsey
and the referees for many useful comments on earlier drafts of this paper.

Undoing Dynamic Typing 15

References

1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-
typed language. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(2), 1991.

2. N. Benton. Embedded interpreters. Journal of Functional Programming, 15(4),
2005.

3. M. Blume and D. McAllester. Sound and complete models of contracts. Journal
of Functional Programming, 16(4/5), 2006.

4. O. Danvy. Type-directed partial evaluation. In Proceedings of the 23rd ACM
Symposium on Principles of Programming Languages (POPL). ACM, 1996.

5. O. Danvy. Functional unparsing. Journal of Functional Programming, 8(6), 1998.
6. O. Danvy. A simple solution to type specialization (extended abstract). In Pro-

ceedings of the 25th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), volume 1443 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

7. R. Findler and M. Blume. Contracts as pairs of projections. In Proceedings of the
International Symposium on Functional and Logic Programming (FLOPS), volume
3945 of Lecture Notes in Computer Science. Springer-Verlag, 2006.

8. R. Findler and M. Felleisen. Contracts for higher-order functions. In Proceedings
of the International Conference on Functional Programming (ICFP), 2002.

9. N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and J. M. Wing. Compos-
ing first-class transactions. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(6), 1994.

10. F. Henglein. Dynamic typing. In Proceedings of the 4th European Symposium on
Programming (ESOP), volume 582 of Lecture Notes in Computer Science. Springer-
Verlag, 1992.

11. J. Jeuring, R. Hinze, and A. Loeh. Typed contracts for functional programming. In
Proceedings of the International Symposium on Functional and Logic Programming
(FLOPS), volume 3945 of Lecture Notes in Computer Science. Springer-Verlag,
2006.

12. A. Kennedy. Functional pearl: Pickler combinators. Journal of Functional Pro-
gramming, 14(6), 2004.

13. J. Matthews and R. B. Findler. Operational semantics for multi-language pro-
grams. In Proceedings of the 34th ACM Symposium on Principles of Programming
Languages (POPL), 2007.

14. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
15. N. Ramsey. Embedding an interpreted language using higher-order functions and

types. Journal of Functional Programming, 2008. To appear.
16. K. Rose. Type-directed partial evaluation in Haskell. In Preliminary Proceedings

of the 1998 APPSEM Workshop on Normalization by Evaluation, number NS-98-1
in BRICS Notes, 1998.

17. D. Scott. Data types as lattices. SIAM Journal of Computing, 4, 1976.
18. J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, 1977.
19. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In ACM

Workshop on Scheme and Functional Programming, 2007.
20. Z. Yang. Encoding types in ML-like languages. In Proceedings of the 3rd ACM SIG-

PLAN International Conference on Functional Programming (ICFP), September
1998.

