
Higher Order Symb Comput manuscript No.
(will be inserted by the editor)

A Mechanized Bisimulation for the Nu-Calculus

Nick Benton · Vasileios Koutavas

12 September 2012 (preprint)

Abstract We introduce a Sumii-Pierce-Koutavas-Wand-style bisimulation for the nu-calc-
ulus of Pitts and Stark, a simply-typed lambda calculus with fresh name generation. This
bisimulation coincides with contextual equivalence and provides a usable and elementary
method for establishing all the subtle equivalences given by Stark. We also describe the
formalisation of soundness and of the examples in the Coq proof assistant.

Keywords Functional programming with effects · Name generation · Contextual
equivalence · Bisimulation · The Coq proof assistant

1 Introduction

Generative local names are ubiquitous: objects (as in Java), exceptions, references (as in
ML), channels (as in the π-calculus), cryptographic keys (as in the spi-calculus or crypto-
graphic lambda calculus) are all first-class things-with-identity that can be generated freshly
within some scope. The ν-calculus of Pitts and Stark [33,41] is a simply-typed, call-by-
value lambda calculus over the base types of names, ν , and booleans, o, that captures the
essence of this kind of situation in a deceptively minimal way. Names can be generated
freshly, tested for equality and passed around, but that is all; there are no other effects (not
even divergence) in the language. Though austere, the ν-calculus can express many impor-
tant aspects of generativity, locality and independence, and has proved to have a remarkably
complex theory. The central problem is to find models and reasoning principles for estab-
lishing contextual equivalence of ν-calculus terms.

Names are an abstract type in the ν-calculus: contextual equivalence only involves ob-
servations on booleans, and the only way to examine a name is to test it for equality with

Koutavas was partially supported by SFI project SFI 06 IN.1 1898.

N. Benton (B)
Microsoft Research, 7 J J Thomson Avenue, Cambridge, CB3 0FB, United Kingdom
E-mail: nick@microsoft.com

V. Koutavas
School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
E-mail: Vasileios.Koutavas@scss.tcd.ie

2 Nick Benton, Vasileios Koutavas

another one. An elementary example of the kind of equivalence we wish to be able to estab-
lish is the following:

νn.νn′.e ∼= νn′.νn.e (1)

The LHS generates a fresh name, n, then another, n′, both of which are bound in the expres-
sion e. The RHS is similar, but generates the two names in the opposite order; the equiva-
lence thus expresses that the order in which names are generated is non-observable. Equation
(1) matches one’s intuitions about names, but already requires a modicum of sophistication
to model: the obvious (adequate) denotational semantics that models names as naturals and
interprets expressions in the state monad T X = N→ N×X , passing around and increment-
ing ‘the next free name’, for example, fails to validate it. Moving to the functor category
SetI , where I is the category of finite sets and injections, yields a model that validates (1),
but is still far from fully abstract.

The subtle interaction of generativity with higher-order functions, and the restricted na-
ture of contexts, lead to the ν-calculus satisfying various more complex equivalences that
challenge both intuition and our ability to reason formally. The canonical ‘hard’ example is
the following:

νn.νn′.λ f :ν→o.(f n= f n′) ∼= λ f :ν→o.true (2)

The LHS generates two fresh names, n and n′, and yields an abstraction that accepts a func-
tion f from names to booleans and returns the result of comparing f n with f n′. One’s first
thought might be that this equivalence holds because any f that is passed to the result of
evaluating the LHS cannot ‘know’ either of the fresh names n and n′, and must therefore
treat them the same; thus the equality test must always return true. But this explanation
is far too naı̈ve, as the following program, resulting from plugging the LHS of (2) into a
cunningly-designed context, reveals:

let F = νn.νn′.λ f :ν→o.(f n= f n′)
in let G = λx:ν .F (λy:ν .(x=y))

in F G

(3)

The whole program does return indeed true, as we would expect if the equivalence (2) is to
hold, but the calls to F that occur inside G actually return false! Furthermore, naı̈ve intu-
ition might lead one to believe that the following inequivalence is actually an equivalence:

νn.λ f :ν→o.νn′.(f n= f n′) 6∼= λ f :ν→o.true

The context (3), where the term bound to F is replaced by each of the terms above, can
be used to distinguish them. In the LHS case, the calls of F inside G will this time return
different values.

Pitts and Stark have established many equivalences using logical relations, both di-
rectly over the operational semantics and denotationally, further refining the functor cate-
gory model mentioned above. Zhang and Nowak [49] define a Kripke logical relation over
a similar functor category model. None of these techniques is complete, however, failing in
particular to prove equivalences such as (2) above. Stark [41] achieved a proof of (2) using a
technique based on operational logical relations that is tailored to fit this particular example,
without an obvious completeness result.

Jeffrey and Rathke [19] define a sound and complete bisimulation for an extension of
the ν-calculus with assignment (for which (2) is not a valid equivalence) and observe that

A Mechanized Bisimulation for the Nu-Calculus 3

their analysis “illuminates the difficulties involved in finding fully abstract models for ν-
calculus proper”. More recently, the problem has been attacked using game semantics. Laird
[24] constructs a game model using automorphisms of names that is fully abstract for a
language like that of Jeffrey and Rathke. Abramsky et al. [3] use games in the topos of
FM-sets to construct the first model of ν-calculus proper that is both fully abstract and can
be used to validate (2). Discrepancies in that model were recently rectified by Tzevelekos
[46]. The proofs of (2) using Stark’s logical relations, the amended games semantics model
of Abramsky et al., and the bisimulation technique we present in this paper are summarised
and discussed by Tzevelekos [47].

In this paper we provide a sound and complete theory for reasoning about contextual
equivalence in the ν-calculus using bisimulation, which is rather more elementary than
games in nominal sets. The form of bisimulation we use was introduced by Sumii and Pierce
for proving equivalences in lambda calculi with cryptographic operations [43] and existen-
tial and recursive types [44] and later developed by Koutavas and Wand for reasoning about
untyped imperative higher-order [22] and object [21] calculi. Instead of just being a binary
relation on terms, Sumii and Pierce’s bisimulations are sets of relations, each element of
which intuitively corresponds to a different ‘state of knowledge’ of the surrounding context.
We too will work with sets, X , of typed relations, R, each of which is annotated by two
sets of (generated) names, s and s′. We remark that, although this kind of bisimulations has
already been shown sound and complete for other languages with ‘difficult’ features, such
as higher-order references, it certainly does not automatically follow that similar results will
hold for the, apparently simpler, ν-calculus. The very paucity of contexts in the simpler lan-
guage actually yields a more complex equational theory than is the case for richer ones; it is
easier to achieve completeness for extensions of the calculus (vide supra).

The theoretical development broadly follows that of previous work by Koutavas and
Wand [22,21,23]. We start by defining when a set of relations is adequate — a restate-
ment of the conditions for being contained in contextual equivalence that is arranged to be
establishable by induction. We then investigate the class of all such inductive proofs by ab-
stracting over the actual contents of the sets and attempting a proof construction scheme. By
this process we find proof obligations that the sets should satisfy in order to be adequate.
Our main theorem says that if a set satisfies exactly these conditions, then it is adequate, and,
by soundness, all terms related under the empty stores in this set are contextually equivalent.

Having a provably sound and complete reasoning principle is good, but we also want
something that is usable in practice. A further contribution, beyond the development of the
general metatheory, is that we show that our bisimulation really does give an elementary
method for establishing interesting equivalences, including the tricky (2) above. The proof
of (2) is particularly interesting in making two uses of our technique: the adequacy of an
initial relation is established via that of another. The second relation is used to show that any
argument v : ν→o created by the context outside of the dynamic extent of the functions—
i.e. before n and n′ are revealed to the context—cannot distinguish between the two private
names, even if these names are given as arguments to v. In this way we deduce the crucial
operational fact about how the expression v n = v n′ will evaluate via bisimulation-based
reasoning about the equivalence of v n and v n′.

The third contribution is a formalisation of the soundness of the metatheory and of the
examples in the Coq theorem prover. We discuss the formalisation in Section 8; the proof
script is available on the web via the authors’ homepages.

4 Nick Benton, Vasileios Koutavas

TYPE: T ::= o Boolean
| ν Name
| T→T Function

EXPRESSION: e,d ::= x Identifier
| n Name
| true | false Boolean Constants
| λx:T. e Abstraction
| e e Application
| new Fresh Name Generation
| (e= e) Name Equality
| if e then e else e Conditional

VALUE: u,v,w ::= n | true | false
| λx:T. e

NAME: n

NAMESET: s, t ∈ Pfin(NAME)

Fig. 1 Syntactic domains of the ν-calculus

s; Γ ` e : T

TYP-VAR
x : T ∈ Γ

s; Γ ` x : T

TYP-NAME
n ∈ s

s; Γ ` n : ν

TYP-BOOL
b ∈ {true,false}

s; Γ ` b : o

TYP-ABS
s; Γ ,x : T1 ` e : T2

s; Γ ` λx:T1. e : T1→T2

TYP-APP
s; Γ ` e0 : T1→T2 s; Γ ` e1 : T1

s; Γ ` e0 e1 : T2

TYP-COND
s; Γ ` e0 : o s; Γ ` e1 : T s; Γ ` e2 : T

s; Γ ` if e0 then e1 else e2 : T

TYP-NEW

s; E ` new : ν

TYP-EQ
s; E ` e1 : ν s; E ` e2 : ν

s; E ` (e1 = e2) : o

Fig. 2 Typing rules for the ν-calculus

2 The ν-calculus

The ν-calculus is a simply-typed lambda calculus over base types of names and booleans,
extended with a conditional construct and operations for generating and comparing names.
The expression new generates a fresh name, and (n1=n2) returns true when n1 and n2 are
the same name. We often write νx.e as an abbreviation of the expression (λx:ν .e) new,1

1 Pitts and Stark take νx. e as primitive and define new as νx. x, which results to evaluation trees of different
size. The proof technique we develop here is based on an induction on the size of evaluation trees, but it is not
affected by this difference since the evaluation of all constructs is of size at least one. Therefore the induction
hypotheses are equally applicable in example equivalences in both settings.

A Mechanized Bisimulation for the Nu-Calculus 5

s` e⇓k (t)w

EVAL-VAL
k > 0

s` v⇓k (/0)v

EVAL-NEW
n 6∈ s k > 0

s`new⇓k ({n})n

EVAL-COND
s` e0 ⇓k0 (t0)b s⊕t0 ` ei ⇓k (t)w (i,b) ∈ {(1,true),(2,false)}

s`if e0 then e1 else e2 ⇓1+k0+k (t0⊕t)w

EVAL-EQ1
s` e1 ⇓k1 (t1)n s⊕t1 ` e2 ⇓k2 (t2)n n ∈ s

s` (e1 = e2)⇓1+k1+k2 (t1⊕t2)true

EVAL-EQ2
s` e1 ⇓k1 (t1)n1 s⊕t1 ` e2 ⇓k2 (t2)n2 n1,n2 distinct

s` (e1 = e2)⇓1+k1+k2 (t1⊕t2)false

EVAL-APP
s` e0 ⇓k0 (t0)λx:T1. e2 s⊕t0 ` e1 ⇓k1 (t1)w1

s⊕t0⊕t1 ` e2[w1/x]⇓k2 (t2)w

s` e0 e1 ⇓1+k0+k1+k2 (t0⊕t1⊕t2)w

Fig. 3 Operational semantics for the ν-calculus

and (e=e′), when e and e′ have type o, as syntactic sugar for

(λx:o.λy:o.if x then y else (if y then false else true)) e e′

Furthermore, we use an overbar to denote sequences. Names are drawn from an infinite set
NAME, of which finite subsets are called namesets. We write s⊕t for the disjoint union of
namesets s and t. All syntactic domains of the ν-calculus are shown in Figure 1.

The typing judgement s; Γ ` e : T states that the expression e has type T under the
nameset s and typing environment Γ . The typing rules are standard and shown in Fig-
ure 2. We write λx:T .e for the abstraction λx1:T1. . . .λxn:Tn.e and T→T for the type
T1→ . . .→Tn→T .

The evaluation judgement s` e⇓k (t)w states that the closed, well-typed expression e,
under the nameset s, terminates with the value w, generating the set of fresh names t in
the process. The judgement further records that the size of the evaluation tree is less than
k. We write s` e⇓ (t)w when there exists some k for which s` e⇓k (t)w, and s` e⇓ when
s` e⇓ (t)w, for some t and w. Figure 3 shows the evaluation rules of the ν-calculus.

Typing is stable under the addition of names. Evaluation preserves types, and is stable
under the addition and removal of unused names. It is also total and deterministic, modulo
fresh name generation.

Lemma 2.1 If s; Γ ` e : T and s∩ s0 = /0 then s⊕s0; Γ ` e : T .

Proof By induction on s; Γ ` e : T . ut

Lemma 2.2 (Type Preservation) If s; · ` e : T and s` e⇓ (t)v then s⊕t; · ` v : T .

6 Nick Benton, Vasileios Koutavas

Proof By induction on k. ut

Lemma 2.3 (Garbage Addition) If s`e⇓k (t)w and s∩s0 = t∩s0 = /0 then s⊕s0`e⇓k (t)w.

Proof By induction on s` e⇓k (t)w. ut

Lemma 2.4 (Garbage Collection) If s⊕s0 ` e ⇓k (t)w and s0 ∩ names(e) = /0 then
s` e⇓k (t)w.

Proof We prove this lemma by proving a more general property. Namely that if s1`e⇓k (t)w
and s0∩names(e) = /0 then for all s such that s1 = s⊕s0,

s` e⇓k (t)w s0∩names(v) = /0

We prove the property by induction on s` e⇓k (t)w. ut

Lemma 2.5 (Totality) If s; · ` e : T then s` e⇓.

Lemma 2.6 (Determinacy of Evaluation at o-Type) If s` e⇓ (t1)b1, s` e⇓ (t2)b2, and
/0; · ` bi : o (i = 1,2) then b1 = b2.

We prove both of the above lemmas simultaneously as in Chapter 2 of Stark’s thesis
[41]. We construct the following unary logical relation:

V(s,o) = {true,false}
V(s,ν) = s

V(s,T1→T2) = {λx:T1.e | s; · ` λx:T.e : T1→T2 ∧
∀s′,v ∈ V(s⊕s′,T1). e[v/x] ∈ E(s⊕s′,T2)}

E(s,T) = {e | s; · ` e : T ∧
∃t,w. s` e⇓ (t)w ∧ t,w are unique up to renaming of names in t}

Lemmas 2.5 and 2.6 are consequences of the following totality lemma for the logical rela-
tion.

Lemma 2.7 If s; x : T ` e : T and s; · ` v : T then e[v/x] ∈ E(s,T).

Proof By induction on s; x : T ` e : T . ut

3 Overview of the Technical Development

In Sections 4, 5, and 6 we develop our theory of equivalence for the ν-calculus. We begin
with the standard definition of contextual equivalence (≡) for the language (Definition 4.1).
This relates two possibly open expressions e and e′ if, when placed in the (single) hole of
any variable-capturing context C and evaluated under any store s, they evaluate to the same
boolean constant:

(∃t. s`C[e]⇓ (t)b) ⇐⇒ (∃t. s`C[e′]⇓ (t)b)

The quantification over possible contexts, stores, and evaluation trees makes it awkward to
use the definition of contextual equivalence directly in proofs of non-trivial equivalences.
Amongst the problems one runs into are the following:

1. The capturing of free variables makes substitution into contexts hard to work with.

A Mechanized Bisimulation for the Nu-Calculus 7

2. Evaluation may duplicate, or generate more, related values, thus leading one to have to
consider multi-hole contexts.

3. During evaluation the “Kripke world” of the equivalence changes: related expressions
may generate different number of names, some of which may be revealed to the context
and added to its “knowledge”, while others remain hidden from the context.

4. A proof of equivalence would have to reason about intermediate computations.

As in previous work [44,43,22,21,23], we will take an approach that can be seen as hav-
ing a component that addresses each of these issues. The complexity of variable-capturing
substitution is dealt with by restricting our attention to closed values. This suffices because,
as we will prove in Theorem 4.2, one can close open expressions under appropriate number
of abstractions and reason about the closed values instead:

s;x : T ` e≡ e′ : T ⇐⇒ s; · ` λx:T .e≡ λx:T .e′ : T→T

Given a relation R over closed values, we use the construction Rcxt (Definition 4.4)
to generate all multi-hole contexts with related closed values in corresponding holes. This
addresses the second complication.

The construction of (−)cxt uses name-free contexts, which can only access names re-
lated in R via holes of type ν . Hence, we make an important distinction between names in
the knowledge of the context (those related in R) and the rest, known only to the related
terms. Moreover, we annotate relations with the namesets under which the related terms can
be evaluated, forming tuples of the form (s,s′,R) which we call annotated relations. These
tuples represent the Kripke worlds of the equivalence and address the third complication.

With the above, we give a more convenient definition of equivalence which we call Pre-
Adequacy (Definition 4.6) and prove it sound and complete with respect to contextual equiv-
alence. This equivalence is the set of all pre-adequate annotated relations (Definition 4.5);
i.e., the set of all annotated relations (s,s′,R) for which whenever e and e′ are program
contexts of type o related in Rcxt,

(∃t. s` e⇓ (t)b) ⇐⇒ (∃t ′. s′ ` e′ ⇓ (t ′)b)

Pre-Adequacy is a stepping stone towards the definition of Adequacy (Definition 4.10), our
main equivalence, which addresses the final complication for an effective proof technique.

Compared to Pre-Adequacy, Adequacy considers program contexts of arbitrary type,
again drawn from Rcxt, and requires final values and stores of related computations to be in
extensions of the starting relation R. Thus, it enables reasoning about intermediate computa-
tions that do not necessarily evaluate to constants. Because of this condition, Adequacy can
be seen as a big-step bisimulation.

We show that Adequacy coincides with Pre-Adequacy, and therefore is sound and com-
plete with respect to contextual equivalence. As we discuss in Section 5, this gives us an
effective proof technique of equivalence. Roughly, to prove two terms equivalent, it suffices
to construct a set X of annotated relations that relates the terms in question under all stores,
and show that this set is adequate (and therefore included in Adequacy).

The proof that X is adequate can always be organised as an induction on the sizes of the
evaluations of related expression contexts: if an expression context evaluates to a value, then
it must do so with an evaluation tree of a finite size k, giving rise to a mathematical induction
principle. We therefore identify a pair of induction hypotheses, IHX (k) and IHX −1(k), for
the forward and reverse conditions of the definition for adequate sets, such that

X is adequate ⇐⇒ ∀k. IHX (k) ∧ IHX −1(k)

8 Nick Benton, Vasileios Koutavas

Although usable, the proof technique based on Adequacy relies greatly on intuition to
construct a convenient set that can be shown adequate. We make this task easier by giv-
ing in Section 6 smaller proof obligations for a set of annotated relations to be adequate.
These conditions are necessary and sufficient for any set X to be adequate (Theorem 6.1),
and provide a better guide for the construction of adequate sets. With these conditions we
prove two example equivalences in Section 7, including the difficult one discussed in the
introduction.

4 Equivalence and Adequacy

Here we define contextual equivalence in the usual way and develop a theory of adequate
relations. We then show that the largest adequate relation coincides with contextual equiva-
lence.

4.1 Contextual Equivalence

Contextual Equivalence is a typed binary relation on open terms, indexed by a nameset, type
environment, and type

(≡) ∈ NAMESET×TYPEENV→P(EXPRESSION×EXPRESSION×TYPE)

We write s;Γ ` e≡ e′ : T when (e,e′,T) ∈ ((≡)sΓ) and similarly for other typed relations.
We also leave implicit the assumption that both terms do actually have the type at which
they are related (i.e. s; Γ ` e : T , and similarly for e′) in such judgements.

To define contextual equivalence we first need to define typed contexts. We write s; Γ `
C[·]T ′

Γ ′ : T to mean that C[·] is a single-hole context such that whenever s; Γ ′ ` e : T ′ then
s; Γ `C[e] : T , where C[e] is the capturing substitution of e for the hole in C[·].

The ν-calculus is normalising, hence, as in [41], we take as our notion of observation
the (in-)equality of final values at type o.

Definition 4.1 (Contextual Equivalence (≡)) Write s;Γ ` e≡ e′ : T if and only if for all
contexts C with s; · ` C[·]T

Γ
: o and boolean values b:

(∃t. s`C[e]⇓ (t)b) ⇐⇒ (∃t. s`C[e′]⇓ (t)b).

Note that the generation of fresh names is not directly observable.
Part of the difficulty of reasoning about contextual equivalence is the capturing of the

free variables of terms by the context. The following theorem simplifies the situation, by
allowing us to consider only closed values:

Theorem 4.2 (Expression Closedness) For any two expressions e and e′ with s; x : T `
e,e′ : T

s;x : T ` e≡ e′ : T ⇐⇒ s; · ` λx:T .e≡ λx:T .e′ : T→T .

The proof of Theorem 4.2 is presented in Appendix A.

A Mechanized Bisimulation for the Nu-Calculus 9

4.2 Pre-Adequacy

Reasoning about intermediate states of ν-calculus programs will require us to consider re-
lated values that allocate different sets of names. So, although the definition of contextual
equivalence only involves one nameset, our development of the theory of (pre-) adequate
relations is based on typed relations on closed values, annotated by two namesets

(s,s′,R) ∈ NAMESET×NAMESET×P(VALUE /0×VALUE /0×TYPE)

Each annotated relation will be used to describe part of our semantic equivalences (i.e. pre-
adequacy and adequacy), since contextual equivalence is defined at every nameset whereas
an annotated relation is defined only at a specific pair of namesets.

We write s,s′; · ` v R v′ : T when (s,s′,R) is an annotated relation and (v,v′,T) ∈ R. The
metavariable X ranges over sets of such relations:

X ⊆ NAMESET×NAMESET×P(VALUE /0×VALUE /0×TYPE)

Definition 4.3 If X is a set of annotated relations, the inverse of X , written X −1, is
defined as

(s′,s,R−1) ∈X −1 iff (s,s′,R) ∈X

An important construction on annotated relations is context closure, substituting related
values into identical, name-free contexts. The context closure of a relation R only allows
contexts direct access to names that are R-related, via substitution into holes of type ν . This
makes a crucial distinction between names in the knowledge of the context (i.e. those that
are related in R) and names that are private to the terms.

Definition 4.4 (Context Closure of Annotated Relations) If (s,s′,R) is an annotated rela-
tion on closed values, then (s,s′,Rcxt) is the relation defined by

/0; x : T ` d : T s,s′; · ` u R u′ : T

s,s′; · ` d[u/x] Rcxt d[u′/x] : T

Using the context closure of annotated relations we give our definition of pre-adequacy
for the ν-calculus, which closely resembles the standard definition of contextual equiva-
lence. In fact, we show that the open extension of pre-adequacy coincides with contextual
equivalence.

Definition 4.5 (Pre-Adequate Annotated Relations) An annotated relation, (s,s′,R), is
pre-adequate if and only if for all expressions e and e′, such that s,s′; · ` e Rcxt e′ : o, we
have

(∃t. s` e⇓ (t)b) ⇐⇒ (∃t ′. s′ ` e′ ⇓ (t ′)b).

Definition 4.6 (Pre-Adequacy (∼=)) Write (∼=) for the set of all pre-adequate annotated
relations.

To provide a connection between sets of annotated relations and contextual equivalence,
we extend such sets to indexed relations on open expressions.

10 Nick Benton, Vasileios Koutavas

Definition 4.7 (Open Extension of Sets of Annotated Relations) If X is a set of an-
notated relations, then X ◦ is an indexed relation on open expressions such that s;x : T `
e X ◦ e′ : T if and only if there exists R such that

(s,s,R) ∈X

s,s; · ` (λx:T .e) R (λx:T .e′) : T→T

∀n ∈ s. s,s; · ` n R n : ν

Note that the contexts in the definition of contextual equivalence and the contexts involved
in the definition of pre-adequate relations differ in their treatment of names: the former
may contain any name in the corresponding nameset, while the latter are name-free and
have access only to related names via substitution. The definition above reconciles the two
notions of context by requiring R to be the identity on all names in the namesets.

Theorem 4.8 (Soundness and Completeness of (∼=)) The open extension of pre-adequacy
coincides with contextual equivalence: (∼=)◦ = (≡).

Proof Let x : T be a non-empty type environment, s a nameset with s = {n}, and e and e′

expressions with s; x : T ` e,e′ : T . Then

s;x : T ` e≡ e′ : T

if and only if, by Theorem 4.2,

s; · ` λx:T .e≡ λx:T .e′ : T→T

if and only if, by the definition of (≡),

∀C,b. s; · ` C[·]T→T
/0 : o

=⇒ (∃t. s`C[λx:T .e]⇓ (t)b) ⇐⇒ (∃t. s`C[λx:T .e′]⇓ (t)b)

if and only if, by choosing the appropriate C for the forward direction (and the appropriate
d for the reverse), such that /0; y : ν ,z : T→T ` d : o and s;z : T→T ` C[z] = d[n/y] : o, and
because capturing substitution of a closed term coincides with capture-avoiding substitution
of the same term,

∀y,z,d. /0; y : ν ,z : T→T ` d : o
=⇒ (∃t. s`d[n/y,λx:T .e/z]⇓ (t)b)

⇐⇒ (∃t. s`d[n/y,λx:T .e′/z]⇓ (t)b)

if and only if, by choosing R = {(λx:T .e,λx:T .e′,T→T),(n,n,ν)} for the forward direc-
tion,

∃R. s,s; · ` λx:T .e R λx:T .e′ : T→T
∧ ∀n ∈ s. s,s; · ` n R n : ν

∧ ∀ed ,e′d . s,s; · ` ed Rcxt e′d : o =⇒ (∃t. s` ed ⇓ (t)b)
⇐⇒ (∃t. s` e′d ⇓ (t)b)

A Mechanized Bisimulation for the Nu-Calculus 11

if and only if, by Definition 4.5 and the definition of (∼=),

∃R. s,s; · ` λx:T .e R λx:T .e′ : T→T
∧ ∀n ∈ s. s,s; · ` n R n : ν

∧ (s,s,R) ∈ (∼=)

if and only if, by Definition 4.7,

s;x : T ` e (∼=)◦ e′ : T ut

4.3 Adequacy

Our main technical tool for reasoning about equivalence in the ν-calculus is the definition
of adequate sets of annotated relations. This definition permits the use of an induction in the
proofs of equivalence.

Definition 4.9 (Adequate Sets of Annotated Relations) A set of annotated relations X is
adequate if and only if for all (s,s′,R) ∈X we have

∀e,e′, t,w. s,s′; · ` e Rcxt e′ : T
∧ s` e⇓ (t)w

=⇒ ∃t ′,w′,Q. s′ ` e′ ⇓ (t ′)w′

∧ (T = o) =⇒ (w = w′)
∧ s⊕t,s′⊕t ′; · ` w Qcxt w′ : T
∧ (s⊕t,s′⊕t ′,Q) ∈X
∧ R⊆ Q

and similarly for all (s,s′,R) ∈X −1.

It is easy to see that the union of adequate sets is an adequate set. Thus, the union of all
adequate sets is the largest adequate set.

Definition 4.10 (Adequacy (≈)) Write (≈) for the largest adequate set of annotated rela-
tions.

We now show that adequacy is sound and complete with respect to contextual equiva-
lence by showing that it coincides with pre-adequacy.

Theorem 4.11 (Soundness of Adequate Sets) If X is adequate then it is included in pre-
adequacy.

Proof Immediate by the definitions of pre-adequate annotated relations and adequate sets
of annotated relations. ut

Theorem 4.12 (Completeness of Adequate Sets) Pre-adequacy, (∼=), is adequate.

Proof Let (s,s′,R) ∈ (∼=) and s,s′; · ` e Rcxt e′ : T . We will show that

∀t,w. s` e⇓ (t)w
=⇒ ∃t ′,w′,Q. s′ ` e′ ⇓ (t ′)w′

∧ (T = o) =⇒ (w = w′)
∧ s⊕t,s′⊕t ′; · ` w Qcxt w′ : T
∧ (s⊕t,s′⊕t ′,Q) ∈ (∼=)
∧ R⊆ Q

12 Nick Benton, Vasileios Koutavas

By the definition of pre-adequate annotated relations (Definition 4.5) and the totality of
evaluation (Lemma 2.5), it suffices to show that

∀t, t ′,w,w′. s` e⇓ (t)w
∧ s′ ` e′ ⇓ (t ′)w′

=⇒ ∃Q. s⊕t,s′⊕t ′; · ` w Qcxt w′ : T
∧ (s⊕t,s′⊕t ′,Q) ∈ (∼=)
∧ R⊆ Q

Let s` e⇓ (t)w and s′ ` e′ ⇓ (t ′)w′; we will show that

(s⊕t,s′⊕t ′,R∪{(w,w′)}) ∈ (∼=).

For any x,T,v,v′, y, T0, b, and d such that

/0; x : T ,y : T0 ` d : o and s⊕t,s′⊕t ′; · ` v R v′ : T

we have

∃t1. s⊕t `d[v/x,w/y]⇓ (t1)b

⇐⇒∃t1. s`λy:T.d[v/x] e⇓ (t⊕t1)b (by properties of evaluation)

⇐⇒∃t ′1. s′ `λy:T.d[v′/x] e′ ⇓ (t ′⊕t ′1)b ((s,s′,R) ∈ (∼=))

⇐⇒∃t ′1. s′⊕t ′ `d[v′/x,w′/y]⇓ (t ′1)b (by properties of evaluation.)

Therefore, by Definitions 4.5 and 4.6

(s⊕t,s′⊕t ′,R∪{(w,w′)}) ∈ (∼=) ut

Theorem 4.13 Pre-adequacy coincides with adequacy: (∼=) = (≈).

Proof By Theorem 4.11 we have (≈)⊆ (∼=) and by Theorem 4.12 we have (∼=)⊆ (≈). ut

From the above we conclude that the open extension of adequacy coincides with the
standard definition of contextual equivalence.

Theorem 4.14 (≈)◦ = (≡).

Proof By Theorems 4.8 and 4.13. ut

5 Inductive Proofs of Equivalence

We now have a proof method for showing that s;x : T ` e≡ e′ : T :

1. Find a set X containing (s,s,R) such that

s,s; · ` (λx:T .e) R (λx:T .e′) : T→T

∀n ∈ s. s,s; · ` n R n : ν

2. show that X is adequate, and
3. invoke Theorem 4.14 to conclude

s;x : T ` e≡ e′ : T.

A Mechanized Bisimulation for the Nu-Calculus 13

We can always organise the proof of a set X being adequate (step (2) above) as an
inductive proof with the following induction hypothesis:

Definition 5.1

IHX (k) def
= ∀(s,s′,R) ∈X .

∀e,e′, t,w. s,s′; · ` e Rcxt e′ : T
∧ s` e⇓k (t)w

=⇒ ∃t ′,w′,Q. s′ ` e′ ⇓ (t ′)w′

∧ (T = o) =⇒ (w = w′)
∧ s⊕t,s′⊕t ′; · ` w Qcxt w′ : T
∧ (s⊕t,s′⊕t ′,Q) ∈X
∧ R⊆ Q

The measure of the induction is the size k of the evaluation s`e⇓k (t)w. Hence, proving
a set of annotated relations X adequate amounts to proving that for all k, IHX (k) and
IHX −1(k) hold. For k = 0 it is trivial; for k > 0 it can be organised as an induction:

∀k. IHX (k−1) =⇒ IHX (k)
∀k. IHX −1(k−1) =⇒ IHX −1(k)

6 Deriving Smaller Proof Obligations for Adequate Sets

By using a proof construction scheme, as in [22], we factor out the common parts of the two
inductions at the end of the previous section, and discover necessary and sufficient proof
obligations for adequacy. Thus, we arrive at the following adequacy theorem.

Theorem 6.1 A set of annotated relations X is adequate if and only if for all k and all
(s,s′,R) ∈X , assuming that IHX (k−1) holds, the following conditions hold:

1. For all s,s′; · ` b R b′ : o it must be that b = b′.
2. For all s,s′; · ` λx:T0.e R λx:T0.e′ : T0→T , and all s,s′; · ` v Rcxt v′ : T0, t, and w, such

that s` (λx:T0.e) v⇓k (t)w, there exist t ′, w′, and Q⊇ R such that

s′ ` (λx:T0.e′) v′ ⇓ (t ′)w′ s⊕t,s′⊕t ′; · ` w Qcxt w′ : T

(s⊕t,s′⊕t ′,Q) ∈X

3. For all n 6∈ s there exist n′ 6∈ s′ and Q⊇ R such that

s⊕{n},s′⊕{n′}; · ` n Q n′ : ν (s⊕{n},s′⊕{n′},Q) ∈X

4. For all s,s′; · ` n1 R n′1 : ν and s,s′; · ` n2 R n′2 : ν

n1 = n2 ⇐⇒ n′1 = n′2

Moreover, the same conditions hold for X −1.

14 Nick Benton, Vasileios Koutavas

The first condition requires that any annotated relation R in X is a partial identity at
type o and the fourth condition that R is a partial bijection at type ν . These conditions reveal
the essential observations of the context at base types.

The second condition requires that (s,s′,R)-related functions, applied to (s,s′,Rcxt)-
related values, return results that are related in an extended annotated relation (s⊕t,s′⊕t ′,Q)
from X , where t and t ′ are the namesets generated by the two applications. This condition
is reminiscent to the condition of applicative bisimulations [2], but asks for functions to be
applied to related and not identical arguments, a condition which is more characteristic of
logical relations.

The third condition requires that X is closed under allocation of fresh names by the
context. This requires related functions to still return related results when applied to argu-
ments that involve arbitrarily many new names, a condition which is again characteristic of
Kripke logical relations [12].

Proof (Theorem 6.1) As we argued in Section 5, X is adequate iff

∀k. IHX (k−1) =⇒ IHX (k)
∀k. IHX −1(k−1) =⇒ IHX −1(k)

Hence it suffices to prove that conditions 1–4 are satisfied for X iff

∀k. IHX (k−1) =⇒ IHX (k)

and similarly for X −1.

Forward direction: We assume that X satisfies conditions 1–4 of the theorem and
IHX (k−1), for any k, and consider s,s′,R,e,e′, t, and w such that

(s,s′,R) ∈X s,s′; · ` e Rcxt e′ : T s` e⇓k (t)w

We need to show that there exist t ′,w′, and Q such that

s′ ` e′ ⇓ (t ′)w′

(T = o) =⇒ (w = w′)

s⊕t,s′⊕t ′; · ` w Qcxt w′ : T

(s⊕t,s′⊕t ′,Q) ∈X

R⊆ Q

By expanding the definition of ()cxt (Definition 4.4) in s,s′; · ` e Rcxt e′ : T , we get that there
exist d,x,T , u, and u′ such that

e = d[u/x] e′ = d[u′/x] /0; x : T ` d : T s,s′; · ` u R u′ : T

We proceed by cases on d. The case where (d = xi) and (/0; x : T ` xi :o) follows by condition
1. The case where (d = (xi d1)), (/0; x : T ` xi : T1→T), and (/0; x : T ` d1 : T1) follows by
condition 2 and IHX (k− 1). The case where (d = new) follows by condition 3. The case
where (d = (d1=d2)), (/0; x : T ` d1 : ν), and (/0; x : T ` d2 : ν) follows by condition 4 and
IHX (k−1). The rest of the cases follow directly by IHX (k−1).

A Mechanized Bisimulation for the Nu-Calculus 15

Reverse direction: We assume that for an all k, IHX (k− 1) holds and for all s,s′,R,d,
x,T ,u,u′, t, and w such that

(s,s′,R) ∈X s,s′; · ` u R u′ : T s`d[u/x]⇓k (t)w

there exist t ′,w′, and Q such that

s′ `d[u′/x]⇓ (t ′)w′

(T = o) =⇒ (w = w′)

s⊕t,s′⊕t ′; · ` w Qcxt w′ : T

(s⊕t,s′⊕t ′,Q) ∈X

R⊆ Q

We need to show that X satisfies conditions 1–4. The first condition follows by con-
sidering (d = x1), (u1 = b), and (u′1 = b′). The second condition follows by considering
(d = (x1 d2)), (u1 = λx:T0.e), (u′1 = λx:T0.e′), (d2[u/x] = v), and (d2[u′/x] = v′). The third
condition follows by considering (d = new) and the final condition follows by considering
(d = if (x1=x2) then true else false), (u1 = n1), (u2 = n2), (u′1 = n′1), and (u′2 = n′2).

ut

7 Examples

Using the preceding theorem, we are able to prove all equivalences in the ν-calculus from
[41]. In this section we start with the proof of a straightforward equivalence and then present
the proof of the ‘hard’ equivalence (2) that we gave in the introduction.

7.1 A Simple Example: Local Names

This equivalence demonstrates that the context cannot provide names that are freshly gener-
ated and then kept local within a closure.

Theorem 7.1
/0; · ` νn.λx:ν .(x=n) ≡ λx:ν .false : ν→o.

Proof The theorem concerns the equivalence of two closed terms, but we want to work with
closed values. By Theorem 4.2, it suffices to show that the following two closed values are
equivalent:

N def
= λy:o.νn.λx:ν .(x=n)

N′ def
= λy:o.λx:ν .false

To prove /0; · ` N ≡ N′ : o→ν→o we need to construct an adequate set of annotated rela-
tions, X , such that there exists R with

(/0, /0,R) ∈X /0, /0; · ` N R N′ : o→ν→o

We start the inductive construction of an adequate X by the first two rules shown in Fig-
ure 4. Rule X -2 fulfils Condition 3 of Theorem 6.1. Conditions 1 and 4 are trivially satis-
fied.

16 Nick Benton, Vasileios Koutavas

(/0, /0,{(N,N′,o→ν→o)}) ∈X
X -1

(s,s′,R) ∈X n 6∈ s n′ 6∈ s′

(s⊕{n},s′⊕{n′},R∪{(n,n′,ν)}) ∈X
X -2

(s,s′,R) ∈X n 6∈ s
(s⊕{n},s′,R∪{(λx:ν . (x=n),λx:ν .false,ν→o)}) ∈X

X -3

Fig. 4 Construction of adequate set of annotated relations for proving the equivalence of a simple equivalence
in the ν-calculus.

We need to establish Condition 2 of Theorem 6.1 for any (s,s′,R) ∈X with s,s′; · `
N R N′ : o→ν→o. Let s,s′; · ` b Rcxt b : o. We have

s`N b⇓ ({n})λx:ν .(x=n) n 6∈ s

s′ `N′ b⇓ (/0)λx:ν .false

Thus we add Rule X -3 of Figure 4 to the construction of X , so we now have

(s⊕{n},s′,R∪{(λx:ν .(x=n),λx:ν .false,ν→o)}) ∈X (s,s′,R) ∈X n 6∈ s

We now have to check that Condition 2 holds for any (s⊕{n},s′,R) ∈X with

s⊕{n},s′; · ` λx:ν .(x=n) R λx:ν .false : ν→o

So, let

s⊕{n},s′; · ` n0 Rcxt n′0 : ν

By the definition of ()cxt we have

s⊕{n},s′; · ` n0 R n′0 : ν

Because (s,s′,R) is a typed relation, n0 ∈ s; moreover, because n 6∈ s, we have n 6= n0. Hence

s⊕{n}` (λx:ν .(x=n)) n0 ⇓(/0)false
s′ ` (λx:ν .false) n′0 ⇓(/0)false

s⊕{n},s′; · ` false Rcxt false : o

(s⊕{n},s′,R) ∈X

This concludes the proof of adequacy of X , and by Theorem 4.14

/0; · ` N ≡ N′ : ν→o ut

A Mechanized Bisimulation for the Nu-Calculus 17

(/0, /0,{(N,N′,o→(ν→o)→o)}) ∈X
X -1

(s,s′,R) ∈X n 6∈ s n′ 6∈ s′

(s⊕{n},s′⊕{n′},R∪{(n,n′,ν)}) ∈X
X -2

(s,s′,R) ∈X {n1,n2}∩ s = /0
(s⊕{n1,n2},s′,R∪{(U(n1,n2),M′,(ν→o)→o)}) ∈X

X -3

(s,s′,R) ∈X s0 ∩ s = 0
(s⊕s0,s′,R) ∈X

X -4

Fig. 5 Construction of the primary adequate set of annotated relations for proving the canonical ‘hard’ equiv-
alence in the ν-calculus.

7.2 The ‘Hard’ Equivalence

Here we prove the canonical ‘hard’ equivalence (2) of the ν-calculus, discussed in the intro-
duction. This has previously only been validated with the use of game semantics [3], and a
logical relation designed particularly for this example [41]. Our proof here uses operational
semantics and two adequate sets of annotated relations.

Theorem 7.2 If we define

M def
= νn1.νn2.U(n1,n2) U(n1,n2)

def
= λ f :ν→o.((f n1)=(f n2))

M′ def
= λ f :ν→o.true

then /0; · `M ≡M′ : (ν→o)→o.

This example is tricky because, when the result of evaluating M is applied to an argument
f that is supplied by the context, the names n1 and n2 are not kept entirely private: they
are passed as arguments to f . However, the fact that the names cannot be communicated
between subsequent applications of f (the language has no store) suffices to ensure that the
outermost application of U(n1,n2) will return true.

In the evaluation tree of the application f n1 (and f n2), the abstraction U(n1,n2) may
be applied again to an abstraction g that knows the name n1 (respectively n2) and cause
the inner application of U(n1,n2) to return false. Such an example is the application of
U(n1,n2) to the abstraction

F def
= λx:ν .(U(n1,n2) (λy:ν .(x=y)))

where the inner applications of U(n1,n2) will return false. Nonetheless, due to symmetry
of the evaluation trees of F n1 and F n2, they both return the same boolean value and thus
the overall computation returns true.

Proof From Theorem 4.2, it suffices to show that the following two values are equivalent.

N def
= λy:o.νn1.νn2.U(n1,n2)

N′ def
= λy:o.λ f :ν→o.true

18 Nick Benton, Vasileios Koutavas

To prove (/0, /0; · ` N R N′ : o→(ν→o)→o) we will construct two sets of annotated
relations X and Y and prove that both are adequate. The first set X will be the main set of
our proof and, as required by Theorem 4.14, will contain an annotated relation (/0, /0,R)∈X
such that

/0, /0; · ` N R N′ : o→(ν→o)→o

This set will essentially specify the possible worlds (s,s′,R) under which the abstractions
U(n1,n2) and M′ will need to be applied to related arguments and satisfy the second condi-
tion of Theorem 6.1. Hence, to prove adequacy of X we will need to show that in any such
possible world (s,s′,R), and for any values u and u′ of type (ν→o) related in this world,
the applications (U(n1,n2) u) and (M′ u′) will both return true. As one would expect, the
interesting part of this proof is showing that under the nameset s, the applications (u n1) and
(u n2) will evaluate to the same boolean constant.

We will prove this by making use of the second set of annotated relations Y . First we
establish a correlation between X and Y : we show that for all worlds (s,s′,R) ∈X , there
exists P such that the world (s,s,P) is in Y and

∀v,v′. s,s′; · ` v R v′ : T =⇒ s,s; · ` v P v : T

This means that when we pick a possible world (s,s′,R) from X in which we perform the
applications (U(n1,n2) u) and (M′ u′), there is a world (s,s,P) in Y where

s,s; · `U(n1,n2) P U(n1,n2) : (ν→o)→o

s,s; · ` u Pcxt u : ν→o

We will construct Y in such a way that when s,s; · ` U(n1,n2) P U(n1,n2) : (ν→o)→o
then

s,s; · ` n1 P n2 : ν s,s; · ` n2 P n1 : ν

Therefore we have that the applications of interest are related in Pcxt:

s,s; · ` (u n1) Pcxt (u n2) : o

By proving that Y is adequate we will prove that these two applications will result to the
same boolean constant, which completes the proof of the example.

We start the construction of X by the first two rules of Figure 5. Rule X -2 ensures
Condition 3 of Theorem 6.1. Conditions 1 and 4 are trivially satisfied. We need to establish
Condition 2 of Theorem 6.1 for any (s,s′,R) ∈X with s,s′; · ` N R N′ : o→(ν→o)→o.
Let s,s′; · ` b Rcxt b : o. We have

s`N b⇓ ({n1,n2})U(n1,n2) {n1,n2}∩ s = /0

s′ `N′ b⇓ (/0)M′

which leads us to add Rule X -3 to the construction of X . Hence we now have

(s⊕{n1,n2},s′,R∪{(U(n1,n2),M′,(ν→o)→o)}) ∈X

It remains to establish Condition 2 for any (s⊕{n1,n2},s′,R) ∈ X with
s⊕{n1,n2},s′; · `U(n1,n2) R M′ : (ν→o)→o. Let

s⊕{n1,n2},s′; · ` u f Rcxt u′f : ν→o

s⊕{n1,n2}`U(n1,n2) u f ⇓k (t)w

A Mechanized Bisimulation for the Nu-Calculus 19

(/0, /0,{(N,N,o→(ν→o)→o)}) ∈ Y
Y -1

(s,s,R) ∈ Y n 6∈ s
(s⊕{n},s⊕{n},R∪{(n,n,ν)}) ∈ Y

Y -2

(s,s,R) ∈ Y {n1,n2}∩ s = /0
Q = R∪{(n1,n2,ν),(n2,n1,ν),(U(n1,n2),U(n1,n2),(ν→o)→o)}

(s⊕{n1,n2},s⊕{n1,n2},Q) ∈ Y
Y -3

(s,s,R) ∈ Y s0 ∩ s = 0
(s⊕s0,s⊕s0,R) ∈ Y

Y -4

Fig. 6 Construction of the auxiliary adequate set of annotated relations for proving the canonical ‘hard’
equivalence in the ν-calculus.

We need to show that there exist Q, t ′, and w′ such that

s′ `M′ u′f ⇓ (t ′)w′ w = w′

(s⊕{n1,n2}⊕t,s′⊕t ′,Q) ∈X R⊆ Q

But we have
s′ `M′ u′f ⇓ (/0)true

Thus t ′ = /0, w′ = true, and Q = R. It remains to show that for some t,

s⊕{n1,n2}`U(n1,n2) u f ⇓ (t)true (s⊕{n1,n2}⊕t,s′,R) ∈X

We add Rule X -4 to the construction of X in Figure 5 which discharges the second proof
obligation. It only remains to show that the first application evaluates to true. By the prop-
erties of evaluation, it suffices to show that there exist b, t1, and t such that

s⊕{n1,n2}`u f n1 ⇓ (t1)b

s⊕{n1,n2}⊕t1 `u f n2 ⇓ (t)b

or, from Lemma 2.3, it suffices to show that there exist b, t1, and t such that

s⊕{n1,n2}`u f n1 ⇓ (t1)b

s⊕{n1,n2}`u f n2 ⇓ (t)b

We show this by a second use of our proof technique: constructing an auxiliary adequate
set Y of annotated relations such that there exists a relation P with

s⊕{n1,n2},s⊕{n1,n2}; · ` (u f n1) Pcxt (u f n2) : o

(s⊕{n1,n2},s⊕{n1,n2},P) ∈ Y .

The construction of Y is shown in Figure 6. A correlation between the two sets of annotated
relations X and Y is established by the following lemma:

20 Nick Benton, Vasileios Koutavas

Lemma 7.3 For all (s,s′,R) ∈X , there exists P such that

(s,s,P) ∈ Y

∀v,v′. s,s′; · ` v R v′ : T =⇒ s,s; · ` v P v : T

Proof We proceed by induction on the construction of X .

CASE X -1:
(/0, /0,{(N,N′,o→(ν→o)→o)}) ∈X

This case is trivial because, by Y -1:

(/0, /0,{(N,N,o→(ν→o)→o)}) ∈ Y .

CASE X -2:
(s,s′,R) ∈X n 6∈ s n′ 6∈ s′

(s⊕{n},s′⊕{n′},R∪{(n,n′,ν)}) ∈X
By the induction hypothesis at (s,s′,R) ∈X we get that there exists P such that

(s,s,P) ∈ Y (4)

∀v,v′. s,s′; · ` v R v′ : T =⇒ s,s; · ` v P v : T (5)

By Y -2 and (4) we get that

(s⊕{n},s⊕{n},P∪{(n,n,ν)}) ∈ Y

Now let s⊕{n},s′⊕{n′}; · ` v (R∪{(n,n′,ν)}) v′ : T . We have two cases:

1. s,s′; · ` v R v′ : T . By (5) we get s,s; · ` v P v : T , and thus

s⊕{n},s⊕{n}; · ` v (P∪{(n,n,ν)}) v : T

2. v = n, v = n′, T = ν . It is immediate that

s⊕{n},s⊕{n}; · ` n (P∪{(n,n,ν)}) n : ν .

CASE X -3:
(s,s′,R) ∈X {n1,n2}∩ s = /0

(s⊕{n1,n2},s′,R∪{(U(n1,n2),M′,(ν→o)→o)}) ∈X
By the induction hypothesis at (s,s′,R) ∈X we get that there exists P such that

(s,s,P) ∈ Y (6)

∀v,v′. s,s′; · ` v R v′ : T =⇒ s,s; · ` v P v : T (7)

Let

Q = P∪{(n1,n2,ν),(n2,n1,ν),(U(n1,n2),U(n1,n2),(ν→o)→o)}

By Y -3 and (6) we get that

(s⊕{n1,n2},s⊕{n1,n2},Q) ∈ Y

Let

s⊕{n1,n2},s′; · ` v (R∪{(U(n1,n2),M′,(ν→o)→o)}) v′ : T

We have two cases:

A Mechanized Bisimulation for the Nu-Calculus 21

1. s,s′; · ` v R v′ : T . By (7) we get s,s; · ` v P v : T , and thus

s⊕{n1,n2},s⊕{n1,n2}; · ` v Q v : T

2. v =U(n1,n2), v′ = M′, T = (ν→o)→o. It is immediate that

s⊕{n1,n2},s⊕{n1,n2}; · `U(n1,n2) Q U(n1,n2) : (ν→o)→o.

CASE X -4:
(s,s′,R) ∈X s0∩ s = 0

(s⊕s0,s′,R) ∈X
Immediate by the induction hypothesis at (s,s′,R) ∈X and Y -4. ut

(Continuing proof from page 19.) We have that

(s⊕{n1,n2},s′,R) ∈X

s⊕{n1,n2},s′; · `U(n1,n2) R M′ : (ν→o)→o

s⊕{n1,n2},s′; · ` u f Rcxt u′f : ν→o

Therefore, by Lemma 7.3, there exists P such that

(s⊕{n1,n2},s⊕{n1,n2},P) ∈ Y

s⊕{n1,n2},s⊕{n1,n2}; · `U(n1,n2) P U(n1,n2) : (ν→o)→o

By construction, the value relations in the tuples of Y relate names to names, the term
N to itself (by rule Y -1), and values of the form U(n,m) to themselves for any n and m (by
rule Y -3). Hence, by an easy induction on the construction of Y , we derive that because
U(n1,n2) is related to itself we also have

s⊕{n1,n2},s⊕{n1,n2}; · ` n1 P n2 : ν

s⊕{n1,n2},s⊕{n1,n2}; · ` n2 P n1 : ν

By construction of X , there exist x, y, d, n,n′, and n1,n2 such that

/0; x : (ν→o)→o,y : ν ` d : ν→o

s⊕{n1,n2},s′; · `U(n1,n2) R M′ : (ν→o)→o

s⊕{n1,n2},s′; · ` n R n′ : ν

u f = d[U(n1,n2)/x,n/y]

u′f = d[M′/x,n′/y]

Thus, by Lemma 7.3,

s⊕{n1,n2}; · `U(n1,n2) P U(n1,n2) : (ν→o)→o

s⊕{n1,n2}; · ` n P n : ν

and therefore

s⊕{n1,n2},s⊕{n1,n2}; · ` u f Pcxt u f : ν→o

From the above we get

s⊕{n1,n2},s⊕{n1,n2}; · ` (u f n1) Pcxt (u f n2) : o

22 Nick Benton, Vasileios Koutavas

It remains to show that Y is adequate by showing that it satisfies the conditions of
Theorem 6.1. Y trivially satisfies Conditions 1 and 4 of Theorem 6.1. Condition 3 of the
theorem is fulfilled by Rule Y -2. It remains to prove Condition 2 for all related abstractions.

Let (s,s′,R) ∈ Y . It is the case that Y is the identity modulo the crosswise renaming
of some names. Thus s = s′ and for some names n1,n2 and values v we have that R =
{(v,v),(n1,n2),(n2,n1)}.

Therefore, we consider (s,s,R) ∈ Y , and prove Condition 2 for the following cases:

CASE 1: s,s; · ` N R N : o→(ν→o)→o
Let s,s; · ` b Rcxt b : o and s`N b⇓k ({n1,n2})U(n1,n2). By Rule Y -3, there exists Q

such that

Q = R∪{(n1,n2,ν),(n2,n1,ν),(U(n1,n2),U(n1,n2),(ν→o)→o)}
s`N b⇓ ({n1,n2})U(n1,n2)

s⊕{n1,n2},s⊕{n1,n2}; · `U(n1,n2) Qcxt U(n1,n2) : (ν→o)→o

(s⊕{n1,n2},s⊕{n1,n2},Q) ∈ Y

CASE 2: s,s; · `U(n1,n2) R U(n1,n2) : (ν→o)→o
Let s,s; · ` v Rcxt v′ : ν→o and s`U(n1,n2) v⇓k (t)b. By the properties of evaluation

we have t = s1⊕s2 and

s` v n1 ⇓k−1 (s1)b1 (8)

s⊕s1 ` v n2 ⇓k−1 (s2)b1 (9)

By Lemma 2.4,
s` v n2 ⇓k−1 (s2)b1 (10)

Because

s,s; · ` (v n1) Rcxt (v′ n2) : o s,s; · ` (v n2) Rcxt (v′ n1) : o

and by IHY (k−1), (8), and (10) we get that there exist Q1 and Q2 such that

s` v′ n2 ⇓ (s′1)b′1 s⊕s1,s⊕s′1; · ` b1 Q1
cxt b′1 : o (s⊕s1,s⊕s′1,Q1) ∈ Y

s` v′ n1 ⇓ (s′2)b′2 s⊕s2,s⊕s′2; · ` b2 Q2
cxt b′2 : o (s⊕s2,s⊕s′2,Q2) ∈ Y

By the definition of ()cxt we get that b1 = b′1 and b2 = b′2. Because each relation in Y is
annotated with identical stores, s1 = s′1 and s2 = s′2. Therefore

s` v′ n2 ⇓ (s1)b1

s` v′ n1 ⇓ (s2)b2

By (9) we get that s1∩ s2 = s∩ s2 = /0. Thus, by Lemma 2.3 we get

s⊕s2 ` v′ n2 ⇓ (s1)b1

and by the properties of evaluation,

s` ((v′ n1)=(v′ n2))⇓ (s1⊕s2)b

Furthermore,

s⊕s1,s⊕s1; · ` b Rcxt b : o

and by Rule Y -4 we get

(s⊕s1,s⊕s1,R) ∈ Y .

Therefore, Y is adequate. ut

A Mechanized Bisimulation for the Nu-Calculus 23

8 The Formalization in Coq

As should now be clear, both the metatheory and application of our bisimulation, although
elementary, involve lengthy and rather fiddly calculations, the correctness of some of which
one could be forgiven for doubting. We have formalised the semantics of the ν-calculus
and the soundness2 (though not the completeness) of our theory in the Coq theorem prover
[8]. We have also formalized the full proofs of the example equivalences presented in the
previous section.

There are still two axioms in our development, concerning well known basic properties
of ν-calculus evaluation that are proved in Stark’s thesis [41]. These are the determinacy
lemma (Lemma 2.6) and the totality lemma (Lemma 2.5). These are entirely standard results
and proofs, the mechanisation of which is not especially interesting.

8.1 Semantics of the ν-calculus

There has been much recent research effort expended on reducing the pain of doing mech-
anised reasoning about syntax involving binders, most notably under the umbrella of the
POPLmark challenge [5]. We were pleased to find that this effort is paying off: our formali-
sation uses a Coq framework for ‘locally nameless’ reasoning about binding due to Aydemir
et al. [6,10], which worked very well.

The locally nameless style uses de Bruijn indices for bound identifiers and names for free
variables. The benefit of this representation is that each alpha equivalence class has a unique
representation. A further feature of the framework is the use of cofinite quantification for
free variables; the definitions and tactics provided by Aydemir et al. make it very convenient
to generate fresh variable names whenever they are required in proofs.

Following this framework we define an inductive set of pre-terms that contains the en-
codings of all valid terms of the ν-calculus, as well as some invalid ones (e.g. terms with
wrong de Bruijn indices):

Inductive trm : Set :=
...
| bvar : nat -> trm
| fvar : var -> trm
| abs : typ -> trm -> trm

This set of pre-terms is sufficient for many of our lemmas, usually the ones that require
induction over terms. For others, as well as for the definition of the typing relation, one
needs to exclude the illegal terms, which is done by the following inductive predicate:

Inductive term : trm -> Prop :=
...
| term_var : forall x, term (fvar x)
| term_nam : forall (n : nam), term (name n)
| term_abs : forall L t1 U,

(forall x, x \notin L -> term (t1 ^ x))
-> term (abs U t1)

Top-level de Bruijn indices are not valid terms; they can only appear under binders. Even
then there should not be any dangling indices. The rule for abstractions excludes such terms.

2 We prove soundness with respect to the characterization of contextual equivalence given by the Context
Lemma of [41].

24 Nick Benton, Vasileios Koutavas

It states that the abstraction is valid when its body, with all references to the abstraction’s
binder replaced with a fresh variable (t1 ^ x), is a valid term. Freshness here is expressed
by requiring to provide a finite set of names, L, for which all names not in that set prove
the premise. This co-finite quantification establishes stronger induction hypotheses than just
requiring x to be disjoint from the free variables in t1. A similar co-finite quantification is
used in defining the typing relation:

Inductive typing: nameset -> env -> trm -> typ -> Prop:=
...
| typing_abs: forall L s E U T t1,

(forall x, x \notin L
-> (typing s (E & x ~ U) (t1 ^ x) T))
-> typing s E (abs U t1) (arrow U T)

Here E & E’ concatenates two environments (or substitutions), and x ~ U is the singleton
environment that binds x to the type U.

For our formalisation of bisimulations we needed multiple substitutions, which we got
by instantiating the polymorphic library for environments from [6,10] to give finite maps
from identifiers to trms and then defining a fold function to actually apply the substitution.

8.2 Relations

We encode typed relations as sets of tuples of nameset, type environment, terms, and type:

Definition TRel := nameset -> env -> trm -> trm -> typ -> Prop.

We similarly encode generalised typed relations that contain two namesets.

Definition GTRel := nameset -> nameset -> env -> trm -> trm -> typ -> Prop.

An annotated relation of Section 4 is encoded as a generalised typed relation where all
tuples have the same two namesets, empty type environments, and the terms are values of
the type in the tuple, under the corresponding namesets. The following predicate encodes
these conditions:

Definition isAnnotRel (R : GTRel) : Prop :=
trcRel R
/\ (exists s1, exists s2, nonempty R s1 s2 empty)
/\ (forall s1 s2 E t1 t2 T,

(R s1 s2 E t1 t2 T) -> (can s1 t1 T) /\ (can s2 t2 T))
/\ (forall s1 s2 E t1 t2 T,

forall s1’ s2’ E’ t1’ t2’ T’,
(R s1 s2 E t1 t2 T /\ R s1’ s2’ E’ t1’ t2’ T’)
-> (s1 = s1’) /\ (s2 = s2’)).

The first conjunct trcRel R encodes the requirement that R is type-respecting and contains
only closed terms. The third conjunct encodes the requirement that all terms in R are values
(canonical forms), and the last conjunct that all tuples in R contain the same two namesets.
The second conjunct requires that R contains at least one tuple with namesets s1 and s2 and
is a way of expressing that R is always annotated with two namesets.

We encode Context Closure of GTRels (Definition 4.4) in two parts. First we construct
the [v/x] and [v′/x] of Definition 4.4 by defining an inductive relation on ‘synchronised’
environments and substitutions containing closed expressions from a value relation R.

A Mechanized Bisimulation for the Nu-Calculus 25

Inductive InSync (R:GTRel) (s1 s2:nameset)
: env -> substitution -> substitution -> Prop :=

| insync_empty:
nonempty R s1 s2 empty

-> InSync R s1 s2 empty empty empty
| insync_push:

forall E sub1 sub2 x T t1 t2,
InSync R s1 s2 E sub1 sub2
-> R s1 s2 empty t1 t2 T
-> closed_subst (sub1 & x ~ t1)
-> closed_subst (sub2 & x ~ t2)
-> InSync R s1 s2 (E & x ~ T) (sub1 & x ~ t1)

(sub2 & x ~ t2).

For a relation R annotated with namesets s and s′, the empty environment and the empty
substitutions are synchronised. When E, sub1, and sub2 are synchronised under the relation
R, and the stores s1 and s2, then their extension with a single mapping from a variable x to,
respectively, a type T, a term t1, and a term t2 from R is also synchronised. The predicate
closed subst ensures that the resulting substitutions are valid. R is normally type-respecting,
thus the constructed sub1 and sub2 can be used to close any term typeable under E.

We then define an operation substClosure that combines two relations, one for contexts
(R) and one for terms (Q), into a new relation using substitutions. By giving the identity
relation as the first argument and R as the second, one obtains the context closure Rcxt. The
definition of substClosure is as follows:
Definition substClosure (R:GTRel) (Q:GTRel) : GTRel :=

fun (s1 s2:nameset) (E:env) (t1 t2:trm) (T:typ) =>
(E = empty)
/\ (exists sr1, exists sr2, exists sq1, exists sq2,

s1 = (sr1 (U) sq1)
/\ s2 = (sr2 (U) sq2)
/\ (exists sub1, exists sub2, exists td1,

exists td2, exists E,
R sr1 sr2 E td1 td2 T
/\ InSync Q sq1 sq2 E sub1 sub2
/\ t1 = <[sub1]> td1
/\ t2 = <[sub2]> td2)).

where s1 (U) s2 is the syntax for union of namesets. This construction unions the namesets
from the two relations, but in the case of Rcxt, defined to be (substClosure IdCxtRel R),
sr1 and sr2 are always empty, thus all names come from the second relation. Here IdCxtRel

is the identity type-respecting GTRel with empty namesets and non-empty typing environ-
ments:
Definition IdRel : GTRel :=

fun (s1 s2 : nameset) (E : env) (t1 t2 : trm) (T : typ) =>
(s1 ; E |= t1 ~: T) /\ (s2 ; E |= t2 ~: T)
/\ (t1 = t2) /\ (s1 = s2).

Definition IdCxtRel : GTRel :=
fun (s1 s2 : nameset) (E : env) (t1 t2 : trm) (T : typ) =>

emptyns = s1 /\ emptyns = s2
/\ IdRel emptyns emptyns E t1 t2 T.

The proof of soundness, as well as the proofs for particular equivalences, are fairly
lengthy, but manageable. Having made the essential representation choices for terms and
relations, as sketched above, the formalization broadly follows an (unusually pedantic) on-
paper development. The line counts of different sections of the Coq development are cur-
rently as follows:

26 Nick Benton, Vasileios Koutavas

Section Lines
Library from UPenn 3148
Semantics, general lemmas, multiple substitutions 3188
Infrastructure about relations 2132
Soundness proof 2301
Simple example 811
Hard example 2740
Total 14320

9 Related Work on Bisimulations and Equivalence

Bisimulation originated as a technique to characterize the behavior of non-deterministic
systems [31,15,16]. Abramsky [2] adapted this idea to deterministic languages, creating
what is known as applicative bisimulations, and used it to reason about an untyped lazy
lambda-calculus. Gordon and Rees [14] applied applicative bisimilarity to one of the state-
less, typed, object calculi of Abadi and Cardelli [1] and proved that it coincides with con-
textual equivalence. Applicative bisimulations have also been used in continuation-passing
style languages to prove contextual equivalence. For example, Tiuryn and Wand [45] pre-
sented a continuation-passing model of an untyped lambda-calculus with input and out-
put, and proved that applicative approximation coincides with contextual approximation.
Recently, Koutavas, Levy and Sumii [20] showed that the simple condition of applicative
bisimulations at function type is unsound for sequential higher-order languages with local
state or existential types.

Sumii and Pierce [44,43] made possible the use of bisimulations in sequential higher-
order languages with existential types and dynamic sealing of values. They replaced a single
bisimulation with a set of partial bisimulations, each corresponding to a “world”, represent-
ing the conditions of knowledge, or the state, in which it holds. Similar ideas have previously
been used in process calculi (e.g., [11,32]) and suggested for imperative languages [25].
Their method, as presented, has limited applicability when dealing with some equivalences
of higher-order procedures [27].

Koutavas and Wand, whose work we continue here, extended Sumii and Pierce’s bisimu-
lations to a lambda calculus with general store, an object calculus, and a class-based calculus
[22,21,23] where parts of the store are hidden from the context. They used an up-to context
technique [35,36,39] to account for large parts of the relations and reduce their size, and
introduced an induction hypothesis in the definition that can be used to immediately reason
about smaller related computations, including computations that “leak” from the context
into the procedures; a similar suggestion of conditions using up-to context and induction
was originally made by Sumii and Pierce [44] but was not developed in detail.

Recently, Sangiorgi, Kobayashi, and Sumii [38,37] presented an alternative formula-
tion of Sumii-Pierce-Koutavas-Wand bisimulations dubbed environmental bisimulations.
The development starts by defining a bare-bones bisimulation à la Sumii and Pierce on a
small-step semantics and then builds on top of that a number of up-to techniques. Their
formulation uses an up-to expansion and reduction technique instead of the induction hy-
potheses we use here. Moreover, due to the use of small-step semantics, their technique can
be used to characterize reduction barbed congruence in concurrent languages, where the
branching structure of the terms is important. The big-step bisimulations we use here and
environmental bisimulations seem to be equally effective in proofs of equivalence for the
languages on which they have been defined.

A Mechanized Bisimulation for the Nu-Calculus 27

Also recently, Støvring and Lassen [42] presented an eager normal form bisimulation
for a language with control operators and general references. This is an extension of previous
work from Lassen [26], where, roughly, two expressions are bisimilar if they have bisimilar
normal forms. They make use of possible-worlds relations, similar to the ones we use here.

Of course, there is also a vast literature on contextual equivalence and full abstraction
using techniques other than bisimulation, most notably game semantics and various kinds
of logical relation (defined over an operational or a denotational semantics). We have al-
ready mentioned much of the previous work on applying such approaches to modelling and
reasoning the ν-calculus in the introduction. Game semantics have provided fully abstract
models of the ν-calculus [3,46], though the precise nature of the connection between such
models and Kripke-style relations of the sort used here seems both unclear and deserving of
further investigation. It would also be interesting to see if game-based techniques for fully
automated equivalence-checking [17] could be applied to tricky ν-calculus equivalences.

Stark [41,40] gives an adequate model of ν-calculus in the functor category SetI , in-
terpreting types as ‘variable sets’, indexed by a finite set of generated names. The type of
names is interpreted by the inclusion functor I ↪→ Set, with generation of fresh names ac-
counted for via a computational monad [28], δ on SetI , the functor part of which is given
by δX(n) = X(n+ 1). These functor category models can then be refined by parametric
logical relations to get closer to (but not, so far, provably achieve) full abstraction. Simi-
lar uses of functor categories were previously made in giving models for local variables in
Algol-like languages [34,30], and these were also refined with logical relations [29] to yield
proof techniques that could cope with ‘tricky’ equivalences involving encapsulated state; the
‘Meyer-Sieber examples’ being a canonical list [27].

The full subcategory of SetI with pullback-preserving functors as objects is equivalent
to the category of nominal sets (also the Schanuel topos). Objects of this category are sets
X equipped with a permutation action perm(A)×X → X for a countably infinite set A of
atoms (names), such that every element has finite support (a finite subset of A such that
the element is fixed by every permutation that fixes the subset). The fully-abstract game
semantics of Abramsky et al. [3] is built over nominal sets, which have also been used
in modelling references in ML-like languages [7,9]. Nominal sets have been extensively
investigated and exploited in the context of formal manipulation of syntax with variable
binding [13,48], an issue that arose in our Coq formalization, and which we addressed by
using the ‘locally nameless’ library [6,10].

The current state of the art in non-bisimulation reasoning about contextual equivalence
in ML-like languages uses quite sophisticated step-indexed Kripke logical relations defined
directly over an operational semantics [12]. Step-indexing [4], which has been widely used
in recent years, involves stratifying predicates and relations by a number of evaluation steps.
Whilst this may seem superficially similar to the use we make of sizes of evaluation trees in
inductive proofs of adequacy (Section 5), step-indexing is really a technical device to deal
with various forms of circularity that arise when dealing with recursion, recursive types,
higher-order store or recursively-defined possible worlds. None of these issues are relevant
for the ν-calculus and steps do not occur in our definition of Adequate sets of relations,
nor in the construction of such sets, so these two uses of the natural numbers do not really
seem to be connected. However, there are many suggestive similarities between the different
approaches to reasoning about generativity and encapsulation (such as the explicitly game-
like structure of the parameters in the logical relations of Dreyer et al. [12], and the Kripke-
like structure of our bisimulations noted in Section 6), and a better understanding of their
relationships is long overdue. Recently, relation transition systems [18] have been proposed

28 Nick Benton, Vasileios Koutavas

as a method for proving equivalence of ML-like programs, which combines aspects of the
two techniques.

10 Conclusions

We have introduced a bisimulation for the ν-calculus that is both sound and complete for
contextual equivalence, and can be used in practice to establish contextual equivalences that
were previously only provable in rather sophisticated game semantic models or by logical
relations designed specifically for these examples. Moreover we formalized the relation, its
soundness and the proofs of these equivalences in Coq.

The Coq development is a little on the large side, perhaps leading one to question the
viability of this technology. However, there is no use of automation beyond that in the li-
brary from UPenn and the majority of the development was carried out in around 3 months
by someone with no previous experience of mechanical theorem proving. The framework
and library for locally nameless reasoning was extremely useful. We remain convinced of
the value of mechanizing this style of reasoning, not just for metatheory but also for spe-
cific examples, which tend to involve long error-prone calculations that are inherently less
interesting than those required to establish general facts about the language.

Acknowledgments We are grateful to Nikos Tzevelekos and the anonymous reviewers for
pointing out errors in earlier versions of the paper, and for their many helpful comments and
suggestions.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag, Berlin, Heidelberg, and New York (1996)
2. Abramsky, S.: The lazy lambda calculus. In: D.A. Turner (ed.) Research Topics in Functional Program-

ming, pp. 65–116. Addison-Wesley, Boston, MA, USA (1990)
3. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.H.L., Stark, I.D.B.: Nominal games and full ab-

straction for the nu-calculus. In: Proc. 19th Annual IEEE Symposium on Logic in Computer Science
(LICS 2004), pp. 150–159. IEEE Computer Society, Washington, DC, USA (2004)

4. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational proof-carrying code.
ACM Transactions on programming languages and systems (TOPLAS 2001) 23(5), 657–683 (2001)

5. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis, D., Wash-
burn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The POPLmark Chal-
lenge. In: Proceedings of the 18th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), Lecture Notes in Computer Science, vol. 3603. Springer-Verlag (2005)

6. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal metatheory.
In: G.C. Necula, P. Wadler (eds.) Proceeding of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pp. 3–15. ACM (2008)

7. Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for storage. In: Proc. 7th Interna-
tional Conference on Typed Lambda Calculi and Applications (TLCA 2005), Lecture Notes in Computer
Science, vol. 3461, pp. 86–101. Springer, Berlin, Heidelberg, and New York (2005)

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus
of Inductive Constructions. Texts in Theoretical Computer Science. Springer-Verlag (2004)

9. Bohr, N., Birkedal, L.: Relational reasoning for recursive types and references. In: N. Kobayashi (ed.)
Proc. 4th Asian Symposium on Programming Languages and Systems (APLAS 2006), Lecture Notes in
Computer Science, vol. 4279, pp. 79–96. Springer, Berlin, Heidelberg, and New York (2006)

10. Charguéraud, A.: The locally nameless representation. Journal of Automated Reasoning pp. 1–46 (2011).
10.1007/s10817-011-9225-2

11. Deng, Y., Sangiorgi, D.: Towards an algebraic theory of typed mobile processes. In: Proc. 31st In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2004), Lecture Notes in
Computer Science, vol. 3142, pp. 445–456. Springer, Berlin, Heidelberg, and New York (2004)

A Mechanized Bisimulation for the Nu-Calculus 29

12. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control effects on local rela-
tional reasoning. Journal of Functional Programming 22(Special Issue 4-5), 477–528 (2012). (Extended
abstract appeared in ICFP 2010.)

13. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of
Computing 13, 341–363 (2002)

14. Gordon, A.D., Rees, G.D.: Bisimilarity for a first-order calculus of objects with subtyping. In: Proc.
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL 1996), pp.
386–395. ACM, New York, NY, USA (1996)

15. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: J.W. de Bakker, J. van
Leeuwen (eds.) Proc. 7th International Colloquium Automata, Languages and Programming (ICALP
1980), Lecture Notes in Computer Science, vol. 85, pp. 299–309. Springer, Berlin, Heidelberg, and New
York (1980)

16. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32,
137–161 (1985)

17. Hopkins, D., Ong, C.H.L.: HOMER: A higher-order observational equivalence model checker. In: Com-
puter Aided Verification, 21st International Conference (CAV 2009), LNCS, vol. 6174. Springer (2009)

18. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and Kripke logical relations.
In: Proc. 39th ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL
2012), pp. 59–72. ACM, New York, NY, USA (2012)

19. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: Proceedings of the 14th
Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE (1999)

20. Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimulation. Electronic Notes in
Theoretical Computer Science 276(0), 215 – 235 (2011). Twenty-seventh Conference on the Mathemat-
ical Foundations of Programming Semantics (MFPS XXVII)

21. Koutavas, V., Wand, M.: Bisimulations for untyped imperative objects. In: P. Sestoft (ed.) Proc. 15th
European Symposium on Programming (ESOP 2006), Programming Languages and Systems, Lecture
Notes in Computer Science, vol. 3924, pp. 146–161. Springer-Verlag, Berlin, Heidelberg, and New York
(2006)

22. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs.
In: Proc. 33rd ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages (POPL
2006), pp. 141–152. ACM Press, New York, NY, USA (2006)

23. Koutavas, V., Wand, M.: Reasoning about class behavior. Appeared in FOOL/WOOD 2007 Workshop
(2007)

24. Laird, J.: A game semantics of names and pointers. In: Foundations of Software Science and Computa-
tion Structures (FoSSaCS), Lecture Notes in Computer Science, vol. 2987. Springer-Verlag (2004)

25. Lassen, S.B.: Bisimulation up to context for imperative lambda calculus (1998). Part of a presentation
”Bisimulation up to Context for Sequential Higher-Order Languages” at The Semantic Challenge of
Object-Oriented Programming, Dagstuhl Seminar 98261. Schloss Dagstuhl, Wadern, Germany. June 28
- July 3

26. Lassen, S.B.: Eager normal form bisimulation. In: Proc. 20th Annual IEEE Symposium on Logic in
Computer Science (LICS 2005), pp. 345–354. IEEE Computer Society, Washington, DC, USA (2005)

27. Meyer, A.R., Sieber, K.: Towards fully abstract semantics for local variables. In: Proc. 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1988), pp. 191–203.
ACM, New York, NY, USA (1988)

28. Moggi, E.: Notions of computation and monads. Inf. and Comp. 93(1), 55–92 (1991)
29. O’Hearn, P.W., Tennent, R.D.: Relational parametricity and local variables. J. ACM 42(3), 658–709

(1995)
30. Oles, F.J.: Type algebras, functor categories and block structure. In: M. Nivat, J.C. Reynolds (eds.)

Algebraic Methods in Semantics, pp. 543–573. Cambridge University Press (1985)
31. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Theoretical Computer Science, 5th

GI-Conference, Lecture Notes in Computer Science, vol. 104, pp. 167–183. Springer (1981)
32. Pierce, B.C., Sangiorgi, D.: Behavioral equivalence in the polymorphic pi-calculus. In: Proc. 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (POPL 1997), pp. 242–255.
ACM Press, New York, NY, USA (1997)

33. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that dynamically create lo-
cal names, or: What’s new? In: Proc. 18th International Symposium on Mathematical Foundations of
Computer Science (MFCS 1993), Lecture Notes in Computer Science, vol. 711, pp. 122–141. Springer-
Verlag, Berlin, Heidelberg, and New York (1993)

34. Reynolds, J.C.: The essence of Algol. In: J.W. de Bakker, J.C. van Vliet (eds.) Algorithmic Languages,
pp. 345–372. North-Holland (1981)

30 Nick Benton, Vasileios Koutavas

35. Sangiorgi, D.: Locality and non-interleaving semantics in calculi for mobile processes. Theoretical
Computer Science 155, 39–83 (1996)

36. Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Computer Science 8, 447–
479 (1998)

37. Sangiorgi, D., Kobayashi, N., Sumii, E.: Logical bisimulations and functional languages. In: Proc. In-
ternational Symposium on Fundamentals of Software Engineering (FSEN 2007), Lecture Notes in Com-
puter Science, vol. 4767, pp. 364–379. Springer, Berlin, Heidelberg, and New York (2007)

38. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. ACM
Trans. Program. Lang. Syst. 33(1), 5:1–5:69 (2011). (Extended abstract appeared in LICS 2007.)

39. Sangiorgi, D., Milner, R.: The problem of “Weak Bisimulation up to”. In: W. Cleveland (ed.) Proc. 3rd
International Conference on Concurrency Theory (CONCUR 1992), Lecture Notes in Computer Science,
vol. 630, pp. 32–46. Springer, Berlin, Heidelberg, and New York (1992)

40. Stark, I.: Categorical models for local names. LISP and Symbolic Computation 9(1), 77–107 (1996)
41. Stark, I.D.B.: Names and higher-order functions. Ph.D. thesis, University of Cambridge, Cambridge,

UK (1994). Also published as Technical Report 363, University of Cambridge Computer Laboratory
42. Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential control and state.

In: Proc. 34th ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL
2007), pp. 161–172. ACM, New York, NY, USA (2007)

43. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theoretical Computer Science 375(1–3),
169–192 (2007). (Extended abstract appeared in POPL 2004.)

44. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. Journal of the ACM 54(5),
1–43 (2007). (Extended abstract appeared in POPL 2005.)

45. Tiuryn, J., Wand, M.: Untyped lambda-calculus with input-output. In: H. Kirchner (ed.) Proc. 21st Inter-
national Colloquium on Trees in Algebra and Programming (CAAP 1996), Lecture Notes in Computer
Science, vol. 1059, pp. 317–329. Springer, Berlin, Heidelberg, and New York (1996)

46. Tzevelekos, N.: Nominal game semantics. Ph.D. thesis, University of Oxford, Oxford, UK (2009). Also
published as OUCL Technical Report RR-09-18

47. Tzevelekos, N.: Program equivalence in a simple language with state. Computer Languages, Systems &
Structures 38(2), 181 – 198 (2012)

48. Urban, C.: Nominal techniques in Isabelle/HOL. J. Automated Reasoning 40(4), 327–356 (2008)
49. Zhang, Y., Nowak, D.: Logical relations for dynamic name creation. In: Proceedings of the 17th Inter-

national Workshop on Computer Science Logic (CSL), Lecture Notes in Computer Science, vol. 2803.
Springer-Verlag (2003)

A Omitted Proofs

Theorem 4.2, reducing general contextual equivalence to equivalence of closed values, is established via an
auxiliary congruence relation (4), shown in Figure 7.

We write s;Γ ` e 4m e′ : T when there is some derivation tree of height less than m for the relatedness
judgement. The following lemma states several useful properties of the (4) relation.

Lemma A.1 (Properties of (4))
1. If s;Γ ` b 4 b′ : o then b = b′.
2. If s;Γ ` e 4 e′ : T then s⊕s′;Γ ` e 4 e′ : T .
3. If s;Γ ` e 4 e′ : T and s; Γ0 ` C[·]T

Γ
: T0 then s;Γ0 ` C[e]4 C[e′] : T0.

4. If s;x : T ` e 4 e′ : T0 and s; · ` v 4 v′ : T then s; · ` e[v/x]4 e′[v/x] : T0.
5. If s;Γ ` λx:T1. e 4 λx:T1. e′ : T1→T2 then s;Γ ,x : T1 ` e 4 e′ : T2.

Proof The first property is immediate by construction of (4) and the second by Lemma 2.1. We prove the
third property by induction on the typing derivation s; Γ0 ` C[·]T

Γ
: T0 and the fourth property by induction on

the sequence x : T .
We prove the last property by induction on the height of the derivation s;Γ ` λx:T1. e 4 λx:T1. e′ :

T1→T2 using the following induction hypothesis:

IH(m) = ∀s,Γ ,x,T1,T2,e,e′.
s;Γ ` λx:T1. e 4m λx:T1. e′ : T1→T2
=⇒ s;Γ ,x : T1 ` e 4 e′ : T2

The base case is trivial. In the inductive case we assume

s;Γ ` λx:T1. e 4m
λx:T1. e′ : T1→T2

and take cases on this derivation. There are three cases that apply:

A Mechanized Bisimulation for the Nu-Calculus 31

s;Γ ,x : T ` x 4 x : T s;Γ ` true4 true : o s;Γ ` false4 false : o
n ∈ s

s;Γ ` n 4 n : ν

s;Γ ` new4 new : ν

s;Γ ,x : T1 ` e 4 e′ : T2

s;Γ ` (λx:T1. e)4 (λx:T1. e′) : T1→T2

s;Γ ` e1 4 e′1 : T1→T2
s;Γ ` e2 4 e′2 : T1

s;Γ ` e1 e2 4 e′1 e′2 : T2

s;Γ ` e0 4 e′0 : o s;Γ ` e1 4 e′1 : T s;Γ ` e2 4 e′2 : T
s;Γ ` if e0 then e1 else e2 4 if e′0 then e′1 else e′2 : T

s;Γ ` e1 4 e′1 : ν

s;Γ ` e2 4 e′2 : ν

s;Γ ` (e1 = e2)4 (e′1 = e′2) : o

s;Γ ,x : T0 ` e 4 e′ : T
s;Γ ,x : T0 ` e 4 (λx:T0. e′) x : T

s;Γ ,x : T0 ` e 4 e′ : T s; · ` v 4 v′ : T0

s;Γ ` e[v/x]4 e′[v′/x] : T

Fig. 7 The congruence relation (4).

CASE
s;Γ ,y : T1→T2 ` y 4m1 y : T1→T2 s; · ` λx:T1. e 4m2 λx:T1. e′ : T1→T2

s;Γ ` y[λx:T1. e/y]4m y[λx:T1. e′/y] : T1→T2
, m1 <m, m2 <m: This

case follows by IH(m2) and s; · ` λx:T1. e 4m2 λx:T1. e′ : T1→T2.

CASE
s;Γ ,y : T0 ` λx:T1. e0 4

m1 λx:T1. e′0 : T1→T2 s; · ` v 4m2 v′ : T0

s;Γ ` λx:T1. e0[v/y]4m
λx:T1. e′0[v

′/y] : T1→T2
, m1 < m, m2 < m, e = e0[v/y],

e′ = e′0[v
′/y]: By IH(m1) and s;Γ ,y : T0 ` λx:T1. e0 4m1 λx:T1. e′0 : T1→T2 we get

s;Γ ,y : T0,x : T1 ` e0 4 e′0 : T2

and therefore

s;Γ ,x : T1 ` e0[v/y]4 e′0[v/y] : T2

CASE
s;Γ ,x : T1 ` e 4m−1 e′ : T2

s;Γ ` λx:T1. e 4m
λx:T1. e′ : T1→T2

: This case follows by IH(m−1). ut

The following lemma says that (in a suitably generalised sense) evaluation preserves (4):

Lemma A.2 If s;x : T ` e 4 e′ : T and s; · ` v 4 v′ : T then if s` e[v/x]⇓ (t)w, there exists w′ such that

s` e′[v′/x]⇓ (t)w′ s⊕t; · ` w 4 w′ : T

and similarly for any t,w′ such that s` e′[v′/x]⇓ (t)w′.

Proof We give the proof for the forward direction; the converse is similar. We define the lexicographic
ordering (≺lex) of pairs of natural numbers by

(i, j)≺lex (k, l) if i < k or (i = k and j < l)

and proceed by lexicographic induction on the pair of sizes (k,m) of the derivations s` e[v/x]⇓k (t)w and
s;x : T ` e 4m e′ : T . The induction hypothesis is the following.

IH(k,m)
def
= ∀x,v,v′,e,e′,s,w, t.

(s;x : T ` e 4m e′ : T) ∧ (s; · ` v 4 v′ : T)
∧ (s` e[v/x]⇓k (t)w)
=⇒ ∃w′. (s` e′[v′/x]⇓ (t)w′) ∧ (s⊕t; · ` w 4 w′ : T)

32 Nick Benton, Vasileios Koutavas

We will prove that, for all k and m, IH(k,m) holds by proving that for any k and m

(∀ j,n. (j,n)≺lex (k,m) =⇒ IH(j,n)) =⇒ IH(k,m)

Assume
∀ j,n. (j,n)≺lex (k,m) =⇒ IH(j,n)

and s;x : T ` e 4m e′ : T , s; · ` v 4 v′ : T , and s` e[v/x]⇓k (t)w. We proceed by cases on s;x : T ` e 4m e′ :
T . Most cases easily follow from the induction hypothesis. The interesting cases are the ones for lambda
abstraction and application, and the beta and substitution rules shown above.

CASE
s;x : T ,y : T1 ` e0 4

m−1 e′0 : T2

s;x : T ` λy:T1. e0 4
m

λy:T1. e′0 : T1→T2
: We have s ` λy:T1. e0[v/x] ⇓k (/0)λy:T1. e0[v/x] and

s`λy:T1. e′0[v′/x]⇓ (/0)λy:T1. e′0[v′/x] and by Lemma A.1 (4):

s; · ` λy:T1. e0[v/x]4 λy:T1. e′0[v′/x] : T1→T2

CASE

s;x : T0 ` e1 4m1 e′1 : T2→T
s;x : T0 ` e2 4m2 e′2 : T2

s;x : T0 ` (e1 e2)4
m e′1 e′2 : T

, m1 < m, m2 < m: We have s` (e1 e2)[v/x]⇓k (t)w, thus for some s1,

s2, s3, λy:T2. e3, w2, and k < k
s` e1[v/x] ⇓k1 (s1)λy:T2. e3

s⊕s1 ` e2[v/x] ⇓k2 (s2)w2
s⊕s1⊕s2 ` e3[w2/y] ⇓k3 (s3)w

and t = s⊕s1⊕s2⊕s3. By IH(k1,m1) and IH(k2,m2), there exist λy:T2. e′3 and w′2, such that

s` e′1[v′/x]⇓ (s1)λy:T2. e′3 s⊕s1; · ` λy. e3 4 λy. e′3 : T2→T

s1 ` e′2[v′/x]⇓ (s2)w′2 s⊕s1⊕s2; · ` w2 4 w′2 : T2

Therefore, by Lemma A.1 (2),

s⊕s1⊕s2; · ` λy. e3 4 λy. e′3 : T2→T

and by Lemma A.1 (5), for some m3,

s⊕s1⊕s2;y : T2 ` e3 4
m3 e′3 : T

Because k3 < k, it is (k3,m3)≺lex (k,m). Thus, by IH(k3,m3) we get that there exists w′, such that

s⊕s1⊕s2 ` e′3[w
′
2/y]⇓ (s3)w′ s⊕s1⊕s2⊕s3; · ` w 4 w′ : T

and therefore, by the evaluation rule of application,

s` (e′1 e′2)[v′/x]⇓ (t)w′.

CASE
s;x : T ,y : T0 ` e 4m−1 e′ : T

s;x : T ,y : T0 ` e 4m (λy:T0. e′) y : T
: We have s` e[v/x,u/y]⇓k (t)w. By IH(k,m− 1) we get that

for any u′ with s; · ` u 4 u′ : T0 there exists w′ such that

s` e′[v′/x,u′/y]⇓ (t)w′ s⊕t; · ` w 4 w′ : T

and therefore s` ((λy:T0. e′) y)[v′/x,u′/y]⇓ (t)w′.

CASE

s;x : T ,y : T0 ` e 4m1 e′ : T
s; · ` u 4m2 u′ : T0

s;x : T ` e[u/y]4m e′[u′/y] : T
, m1 < m, m2 < m: We have s`e[v/x,u/y]⇓k (t)w. By IH(k,m1) we

get that there exists w′ such that

s` e′[v′/x,u′/y]⇓ (t)w′ s⊕t; · ` w 4 w′ : T

which concludes this proof. ut

A Mechanized Bisimulation for the Nu-Calculus 33

It is immediate by the above lemma and Lemma A.1(1) that (4)-related expressions at type o evaluate
to the same value:

Corollary A.3 If s; · ` e 4 e′ : o, t is a nameset, and b a boolean value then

s` e⇓ (t)b ⇐⇒ s` e′ ⇓ (t)b.

We can now give the proof of Theorem 4.2.

Proof (Theorem 4.2) The forward direction follows directly by the definition of (≡). For the converse direc-
tion we need to show that for all contexts C with s; · ` C[·]T

Γ
: o and boolean values b,

(∃t. s`C[e]⇓ (t)b) ⇐⇒ (∃t. s`C[e′]⇓ (t)b)

assuming s; ` λx:T . e≡ λx:T . e′ : T→T and x : T ∈ Γ . By construction of (4) and Lemma A.1(3),

s; · ` C[e]4 C[(λx:T . e) x1 . . .xn] : o (11)

s; · ` C[e′]4 C[(λx:T . e′) x1 . . .xn] : o (12)

Hence

∃t. s`C[e]⇓ (t)b

iff ∃t. s`C[(λx:T . e) x1 . . .xn]⇓ (t)b (by Corollary A.3 and (11))

iff ∃t. s`C[(λx:T . e′) x1 . . .xn]⇓ (t)b (by Definition 4.1)

iff ∃t. s`C[e′]⇓ (t)b (by Corollary A.3 and (12)) ut

