
Adventures in Interoperability: The SML.NET Experience

Nick Benton
nick@microsoft.com

Andrew Kennedy
akenn@microsoft.com

Claudio V. Russo
crusso@microsoft.com

Microsoft Research Ltd
7JJ Thomson Ave

Cambridge, United Kingdom

ABSTRACT
SML.NET is a compiler for Standard ML that targets the
Common Language Runtime and is integrated into the Vi-
sual Studio development environment. It supports easy in-
teroperability with other .NET languages via a number of
language extensions, which go considerably beyond those of
our earlier compiler, MLj.

This paper describes the new language extensions and the
features of the Visual Studio plugin, including syntax high-
lighting, Intellisense, continuous type inference and debug-
ger support. We discuss our experiences using SML.NET to
write SML programs that interoperate with other .NET lan-
guages, libraries and frameworks. Examples include the Vi-
sual Studio plugin itself (written in SML.NET, using .NET’s
COM interop features to integrate in a C++ application)
and writing ASP.NET and Pocket PC applications in SML.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—
integrated environments; D.3.2 [Programming Languages]:
Language Classifications—Standard ML, applicative (func-
tional) languages, multiparadigm languages, object-oriented
languages; D.3.4 [Programming Languages]: Processors—
compilers; D.2.12 [Software Engineering]: Interoperabil-
ity—data mapping

General Terms
Languages

Keywords
Functional programming, applications of declarative pro-
gramming, integration of paradigms, programming environ-
ments

1. INTRODUCTION
The .NET Common Language Runtime [8] presents a ex-

citing opportunity for programming language researchers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04,August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

High-level runtime infrastucture can reduce the burden of
producing a compiler, and, more importantly, rich standard
libraries and very good support for interoperability between
languages can make niche languages viable alternatives to
more mainstream commercial ones for writing all or part of
useful applications. The CLR was designed from the ground
up to support multiple languages, whilst Microsoft’s devel-
opment environment, Visual Studio .NET, is able to host
multiple compilers and can manage solutions consisting of
multiple projects, implemented in different languages.

SML.NET[2, 5] is a compiler for Standard ML [16] that
targets the Common Language Infrastructure (CLI), pro-
ducing Common Intermediate Language (CIL) as its ob-
ject code [9, 15]. SML.NET is a further development of
the MLj compiler [6], which compiled for the Java Virtual
Machine. The basic compilation strategy of SML.NET is
essentially the same as that of its predecessor: it is a whole-
program, type-directed optimizing compiler. Polymorphic
code is specialized at representation (not source) types, min-
imising code blowup whilst allowing efficient non-uniform
data representations, such as natural-sized integral types
and unwrapped datatypes. For example, ty option will map
to the same CLI type as ty does, provided that is a refer-
ence type and the representation of ty does not use the null
value. Basic type, effect and flow information is used to per-
form transformations such as eliding unit values and types,
removing dead code, minimising closure allocation, flatten-
ing tuples and varying calling conventions. Simple recursive
functional loops are compiled using jumps and we also use
the CLR’s support for tail call optimization, which was un-
available on the JVM. (Although the CLR tailcall is quite
expensive, it is crucial in allowing some programs, such as
the bootstrapped compiler, to run at all.)

This rest of this paper describes SML.NET from the point
of view of the user, rather than that of the compiler im-
plementer. We first give an overview of the compiler and
its integration within Visual Studio and then give a more
detailed account of the extensions we have made to SML
to support interoperability, concentrating particularly on
those features which differ from, or extend, the MLj de-
sign [4]. We then discuss three interesting examples of in-
terop. One is the use of SML.NET to write its own COM
plugin for Visual Studio .NET, exploiting the CLR’s COM
interface and SML.NET’s new-found ability to bootstrap
(a noted shortcoming of MLj). The others are the use of
SML.NET to script ASP.NET pages, and an experiment
running SML.NET code on mobile devices.

2. THE SML.NET USER EXPERIENCE

2.1 Language and Compilation Model
SML.NET compiles all of Standard ML ’97 [16] (MLj

omitted functors), and provides an almost complete SML
Basis Library [10]; omissions and discrepancies are docu-
mented in the manual [5]. SML.NET extends the SML lan-
guage to support safe, convenient use of the .NET Frame-
work libraries and code written in other languages for the
CLR. SML.NET can consume and produce .NET classes,
interfaces, delegates, etc. (see Section 3).

The output of the SML.NET compiler is verifiable CIL for
the CLI, either a library (dll) or a standalone executable
(exe). Like other whole-program ML compilers (MLj and
MLton [1]), SML.NET does not have an interactive read-
eval-print loop. The exposed interface of an SML.NET ap-
plication or library may (roughly speaking) only refer to CLI
types (classes, interfaces, delegates, etc.). It may not reveal
Standard ML-specific types (functions, datatypes, records,
etc.).

Despite the whole-program model, SML.NET does im-
plement a limited form of separate compilation. A pre-
compilation phase takes place at top-level module bound-
aries; this includes parsing, type checking, translation to in-
termediate form, and some optimization. The results of pre-
compilation are cached, but most optimization, and all code
generation, is deferred until after linking. SML.NET has
a convenient build system, which requires only the names
of a root module and any imported CLI libraries together
with a source path. A dependency analysis then deter-
mines which individual files are required and which need
re-(pre)-compilation. The command-line compiler can be
run in either batch or interactive mode. The latter lets the
user set and query options incrementally and see the signa-
tures of compiled and imported modules; it also speeds up
re-compilation by caching precompiled modules in memory
rather than on disk.

2.2 Performance
Compilation times using SML.NET are, as one might ex-

pect from a whole-program compiler, high. Using SML.NET
compiled with SML/NJ on a modern machine, a complete
recompile of SML.NET itself (∼80,000 lines) takes around
20 minutes. Although this can be cut by a factor of nearly 3
by using MLton instead of SML/NJ, it is still slow. On the
other hand, SML.NET typically produces small executables
with respectable runtime performance.

Looking at the performance of SML.NET on the usual ML
benchmark suite, it is immediately apparent that programs
fall into three categories:

1. Mostly-first-order code that manipulates numeric val-
ues performs between 20% faster and 20% slower than
the most recent release of SML/NJ. Typical bench-
marks in this category are fft, mandelbrot, nfib,
raytrace and simple.

2. Higher-order code or datatype-heavy code performs
between 2 and 4 times slower than SML/NJ. Typical
benchmarks in this category are life, logic, primes,
and sort.

3. Code that making heavy use of exceptions for con-
trol flow can perform between 20 and 40 times slower

Figure 1: A mixed-language application combining
SML.NET and C] projects.

than SML/NJ. Typical benchmarks in this category
are boyermoore and knuthbendix.

The performance of typical SML.NET programs is thus usu-
ally quite acceptable provided that exception-based control-
flow is avoided.

2.3 Visual Studio Integration
A major recent addition to SML.NET is a plugin for Mi-

crosoft Visual Studio .NET that allows the user to create,
edit, build and debug SML.NET projects from within the
.NET development environment. Figure 1 shows a simple
multi-language graphical application, a version of Conway’s
Game of Life, within VS. The Solution Explorer window
shows the two projects that make up the application: the
Server project is an SML.NET library for computing the
generations of the game using list processing. The Client

project is a C] front-end, which produces an an animated
display of the evolving generations (shown running in the
Life window). The Server.sml window shows the pure
SML definition of the function Server.life, which is called
by the C] code in the top half of the Client.cs window.
The bottom half shows a C] class extending an SML.NET
(interop) class defined in file Classes.sml.

A custom language service for SML.NET supports intel-
ligent editing of SML.NET code, shown in Figure 2. The
language service provides the usual basic features, colouring
keywords and automatically highlighting matching delim-
iters. It also supports more advanced features like Intel-
lisense, which suggests member completions against the in-
ferred types of objects and other bindings, displaying mem-
bers and type information in drop down boxes and method
tips. Whether completing against a CLI or SML.NET li-
brary, the types are always rendered under the SML.NET
translation, aiding the programmer. Here, all the members
of the object factory are shown along with the type of the
selected member. Hovering over a locally declared identifier

Figure 2: The SML.NET editor showing Intellisense
and interactive type inference at work.

shows its inferred type. Notice the red-squiggly underlining
the type error in the definition of wrong. The language ser-
vice actually performs continuous type inference, reporting
type errors early in the Task window, without requiring a
full re-build of the project. Mundane syntax errors are re-
ported early in this way too. The Task window also shows
two build warnings, which were harvested automatically by
VS from the output of the last build.

SML.NET projects can be compiled in debug configu-
rations, allowing them to be run under the Visual Studio
source code debugger. Figure 3 shows the debugger at-
tached to a paused instance of the Life application. The
Call Stack window contains a mixture of C] and SML.NET
stack frames. A breakpoint is set in the margin of the
Server.sml source code (the SML expression is highlighted
in brown). The current execution line, to which we have
advanced the debugger by stepping from the breakpoint,
is marked with an arrow with the current expression high-
lighted in yellow. The Locals window shows the current
values of local bindings, including the list of integer pairs
survivors (notice the type reported by Intellisense). The
Command window shows the result of inspecting the first tuple
(survivors.a) of the survivors list and interactively modi-
fying one of its components, for exploratory debugging. The
figure also reveals some limitations of the debug experience.
In the locals window, the types of values are shown with
their CLI representations (e.g. the cryptic $.Tuple2_c for
the type of survivors). In the Command Window, values
are inspected and modified using C] expression syntax, not
SML.NET syntax. It should be possible to write our own ex-
pression evaluator for SML.NET but we have not tried this
yet. Other losses of fidelity include stack frames and bind-
ings being removed due to inlining and other optimizations
by the compiler, and spurious temporary locations (unre-
lated to source bindings) appearing in the Locals window.
Producing precise symbolic debug information is a difficult
problem for any optimizing compiler, but we could easily do

Figure 3: Debugging an SML.NET application.

a little better. Fortunately, source stepping is precise, and
the debugger support, limited though it is, has proved useful
on a number of occasions.

As well as being useful, the VS package is itself a demon-
stration of our interoperability features. VS is a legacy C++
COM application, but our VS package is implemented en-
tirely in SML.NET! Section 4 describes the architecture.

3. LANGUAGE EXTENSIONS FOR .NET
An important feature of SML.NET is its support for smooth

interoperation with other .NET languages and libraries. We
continued with the MLj model [4], mapping .NET features
into equivalent SML features, where possible, but, where
there is no obvious equivalent, introducing extensions. An
additional guideline was the CLI’s Common Language Sub-
set (CLS) [9], which specifies which features of the CLI every
language should support for interoperability.

3.1 Namespaces, classes and nesting
If one ignores the class hierarchy and instance fields and

methods (i.e. a non-object-oriented fragment of .NET), then
.NET classes can be seen (and are used) as a minimal mod-
ule system, providing a way of packaging together static
fields, methods, and nested classes that are logically related.
Namespaces in .NET provide a further level of structuring,
grouping related classes. We model both using the SML
module system.

SML.NET reflects a top-level namespace (e.g. System) as
a top-level structure (e.g. structure System); a nested names-
pace (e.g. System.Drawing) becomes a substructure.

SML.NET reflects a class as three eponymous bindings:

• as a type identifier (see Section 3.2),

• as a (possibly overloaded) function used to construct
instances of the class (see Section 3.3.1),

• as a substructure containing value bindings, reflecting
static fields and methods (see Sections 3.4.1 and 3.4.2),
and any further bindings from nested classes.

For example, within the namespace System.Threading (re-
flected as nested structure System.Threading) the class Mutex
is mapped to an SML type identifier Mutex, to a value iden-
tifier Mutex, and to a structure Mutex.

Namespaces and classes, once interpreted as modules, can
be manipulated like any other structure in SML: they can be
rebound, constrained by a signature, passed to functors, and
open-ed. Opening a namespace is like C]’s using construct
but provides unqualified access to nested namespaces too.
Opening a class is more powerful, permitting unqualified
access to its static fields and methods and any nested classes.

3.2 Types
Many .NET primitive types map to direct equivalents in

SML.NET. Within the System namespace, Boolean, Char,
Double, Single, IntNN, SByte, UIntNN, Byte, non-null String
and Exception, map to SML.NET types bool, char, real,
Real32.real, IntNN.int, Int8.int, WordNN.word,
Word8.word, string and exn (where NN is 64,32 and 16).
In SML.NET the default int and word types are the natu-
ral Int32.int and Word32.word. Amongst .NET types only
the usual SML Basis types admit equality that can be tested
using SML’s polymorphic equality operator = (i.e. all of the
above except the real types and exn).

Any named .NET type (class, value type, enumeration, in-
terface or delegate) can be referred to from within SML.NET
using the same syntax as in C]. This syntax works because
of the interpretation of .NET namespaces as nested struc-
tures, discussed above. For example:

type XMLParser = string -> System.Xml.XmlDocument

Single-dimensional .NET arrays behave almost exactly like
SML arrays: their size is fixed at time of creation, index-
ing starts at zero, equality is based on identity not value,
and an exception is raised on out-of-bounds access or up-
date. Thus we identify the SML type constructor array

with the .NET type constructor [] (and the .NET excep-
tion System.IndexOutOfRangeException with the SML ex-
ception Subscript).

Some, but not all, array types inherit from the class System.
Array, so one can invoke methods on values of these array
type and cast their array values to and from class types.
The restriction is that the element type must be an interop
input type in the sense of Section 3.2.2.

3.2.1 Null values
In .NET, objects of class, interface, array or delegate type

(known collectively as reference types) are allowed to take on
the value null in addition to actual instances. CLI member
and array access raise NullReferenceException if their in-
stance operand is null. SML does not have this notion, and
values must always be defined (e.g. there is no null in SML’s
string type). SML operations for assignment, indirection,
and array access are inherently safer than the corresponding
operations on .NET. We wished to retain this safety in our
extensions and so interpret a value of .NET reference type
as “non-null instance”. Nevertheless, when a .NET field of
reference type is accessed from SML or a value of reference
type is returned from an external method call, it may have
the undefined value null. Moreover, SML.NET must be

able to pass null values to .NET methods and null .NET
fields, when required. To express such values of ‘possibly-
null’ reference types, as in MLj[6], we re-use the SML basis
library’s option type:

datatype ’a option = NONE | SOME of ’a

The valOf function (: ’a option -> ’a) can be used to
extract the underlying value, raising Option on NONE(null).

We interpret possibly-null values of .NET reference type
that cross the border between SML and .NET as values of
an appropriate option type. For example, the method Join

in class System.String has the C] prototype:

public static string Join(string separator,

string[] val);

This maps to an SML function with signature

val Join : string option*string option array option

-> string option

3.2.2 Interop types
We will use the term interop type for the types described

in the previous sections and new .NET types defined in-
side SML.NET code. Interop types can be used in SML ex-
tensions such as casts, overloading, implicit coercions, and
(with additional restrictions) in exported structures.

A special case of an interop type is an interop input type.
These describe values that might be passed into SML.NET
from external .NET sources, and therefore must include pos-
sible null values for reference types.

More precisely, an interop type is one of the following:

1. A .NET value type (primitive or struct). Examples:
int, System.DateTime.

2. A .NET class, interface or delegate type defined exter-
nally or from within SML.NET code by _classtype or
_interfacetype (see Sections 3.8). Examples: string,
System.IEnumerable, System.EventHandler.

3. An array whose element type is an interop input type.
Examples: string option array, System.DateTime

array.

4. Possibly-null versions of either of the above. Exam-
ples: string option array option,
System.EventHandler option array option.

A type is an interop input type if it is one of (1) or (4) above.

3.3 Objects

3.3.1 Creating objects
In C], instances of a class are created using the syntax

new class(arg1, . . . , argn), where argi are the arguments to
one of the constructors defined by the class. We avoid the
need for any new syntax in SML.NET by binding the class
name itself to the constructor function. If there is more than
one constructor, then the binding is overloaded. Construc-
tors always return non-null values so never have an option

result type.
Constructors may be used as first-class values; implicit

argument coercions are applied using the same rules as for
methods (see below). This example first-classes the Font

constructor, applying an implicit coercion from string to
string option on its first argument.

map System.Drawing.Font (("Times", 10.0)::pairs)

3.3.2 Creating and invoking delegate objects
.NET and C] support a notion of first-class method called

a delegate. A delegate object is an instance of a named
delegate type that wraps up a method and, for an instance
method, its target object. SML.NET maps delegate types to
two SML bindings: the type itself, just as with class types,
and a function binding for the delegate constructor, which
takes an SML function as its only argument.

An example is the C] delegate from System.Threading:

public delegate void ThreadStart();

This is reflected as an SML type ThreadStart and the higher-
order function

val ThreadStart : (unit->unit) -> ThreadStart

used to construct delegate objects from ordinary SML func-
tions. For example,

open System.Threading

val cookie = "cookie"

val monster =

ThreadStart(fn () => while true do print cookie)

val _ = Thread(monster).#Start()

constructs a delegate from an SML function, capturing the
cookie binding, and uses it to construct and start a new
thread. Delegates are called via their Invoke method (e.g.
monster.#Invoke() prints lots of cookies). Working with
delegates in C] 1.0 can be clumsy because there is no capture
of free variables; programmers often perform tedious manual
closure conversion in order, for example, to pass parameters
to thread creation. Having proper lexically-scoped closures,
SML.NET is much more convenient in this regard.

3.3.3 Casts and cast patterns
SML.NET retains MLj’s expression syntax, exp :> ty to

express C]-style casts. One use is to cast an object up to a
superclass:

open System.Drawing

val c = SolidBrush(System.Color.get_Red()) :> Brush

Explicit coercions are sometimes required when passing .NET
objects to SML functions and constructors, as implicit co-
ercions are only applied when invoking .NET methods.

The same syntax can also be used to cast an object down
to a subclass, with System.InvalidCastException thrown
if the actual class of the object is not compatible. A safer
alternative, combining downcasting with C]’s is construct,
is to use the new vid :> ty pattern syntax inside SML pat-
terns. This can be used to provide a construct similar to
type-case found in some languages. For example, the fol-
lowing code switches on the type of an XmlNode:

fun nodetoxmldata (n : XmlNode) =

case n of

elem :> XmlElement =>

let val SOME name = elem.#get_Name()

val first = elem.#get_FirstChild()

val children = gather (first, [])

in SOME (Elem(name,List.mapPartial

nodetoxmldata children))

end

| data :> XmlCharacterData =>

let val SOME s = data.#get_Data()

in SOME (C(stringtoscalar s)) end

| _ => NONE

The pattern vid :> ty matches only when the examined
expression has the class type ty, in which case the identifier
vid is bound to the expression casted down to type ty.

Cast patterns can be used like any other pattern. They
can appear in val bindings, as in

val x :> System.Windows.Forms.Window = y

to give an effect similar to downcasting in expressions but
raising SML’s Bind exception when the match fails. They
can also be used in exception handlers, as in

open System.IO System.Environment

fun chDir (s:string) =

set_CurrentDirectory(s) handle

e :> DirectoryNotFoundException => raise e

| e :> IOException =>

raise (Fail(valOf(e.#ToString())))

in order to catch (and possibly deconstruct) .NET excep-
tions. The order in which handlers appear is important. In
this example, type DirectyNotFoundException is a subclass
of IOException so if the handlers were switched the second
handler would never be reached.

3.4 Fields, methods and properties
Static (per-class) fields and methods are mapped to value

and function bindings in SML located in the structure cor-
responding to their class. For example, the PI static field in
the System.Math class, accessed from C] using System.Math.

PI, maps to a value binding for PI in the SML structure
System.Math accessed using the same syntax. Likewise, the
Cos static method in the same class is mapped to a value
binding of Cos in the structure System.Math.

Non-static (instance) fields and methods are handled us-
ing MLj’s syntax exp.#name for accessing members. Here
exp is an SML expression with a .NET object type, and
name is the name of an instance field or method.

Properties are really just C] syntactic sugar formalizing
the commonplace “get/set” design pattern. No special sup-
port is provided in SML.NET, so they must be accessed
through their underlying methods which have the names
get_P and set_P for a property called P.

3.4.1 Fields
Immutable .NET fields (readonly and const in C]) are

given types as explained in Section 3.2, using option to
denote the possibility of null values for objects or arrays.
For example, a field declared in C] using

public static readonly string language_name = "C#";

is interpreted as having type string option.
For the most part, mutable fields can be treated as if they

had SML ref types: they can be dereferenced using ! and
assigned to using :=. So fields declared by

class C {

public static int counter;

public int size;

}

can be used as if they were SML reference cells of type int:

C.counter := !C.counter + 1

fun size (x:C) = !(x.#size)

In fact, mutable fields are given special types (Section 3.7).

3.4.2 Methods
.NET method types are interpreted as follows. void meth-

ods are seen as having unit result type and methods with no
arguments in .NET map to ones taking a unit in SML.NET.
.NET methods with multiple arguments map to ones taking
a tuple in SML.NET. External methods with arguments or
results of reference types are mapped using the option-type
translation described in Section 3.2.1.

Consider the following method from System.String:

public static string[] Split(char[] sep,int count);

Its type is interpreted as

val Split : char array option * int

-> string option array option

and can be called using an ordinary function application:

fun split(c:char array,i:int) =

valOf(System.String.Split(SOME c, i))

Here is an example of instance method invocation:

(* Create an object *)

val xmldoc = XmlDocument()

(* Invoke an instance method on it *)

val _ = xmldoc.#Load(filename)

.NET allows method overloading, i.e. the definition of mul-
tiple methods with the same name within a single class. The
methods must be distinguished by their argument types.
Our approach to inference, overloading and coercions is,
with minor extensions, unchanged from MLj [4]. Briefly,
we do not allow method and constructor ambiguity to be
resolved by C]-style most specific method rules, as these in-
teract unpleasantly with SML’s type inference: our inference
algorithm accepts a program only if there is an unambigu-
ous resolution of all method invocations. SML.NET does
allow implicit coercions on method and constructor invoca-
tion using C]’s reference widening coercions together with
an additional coercion from ty to ty option for any .NET
reference type ty.

3.5 Value Types
.NET provides support for an extensible set of unboxed,

structured values called value types (C]’s structs). Consider
the C] declaration of lightweight, integer pairs:

public struct Pair {

public int x,y; /* both mutable! */

/* constructor */

public Pair(int i,int j){x = i; y = j;}

/* functional swap, returns a new pair */

public Pair swap(){return new Pair(y,x);}

/* destructive swap, modifies ‘this’ pair */

public void invert(){int t; t = x; x = y; y = t;}

}

Value types, like ordinary classes, can have fields and in-
stance methods. However, because value types are sealed
(cannot be subclassed), they do not need to be boxed on the

heap (otherwise used to provide uniform representations);
nor do they need to carry run-time type descriptors (used
to support checked downcasts and virtual method invoca-
tion). For the most part, one can view instances of value
types as structured primitive types. Indeed, primitive type
such as int are value types. Values of value types do not
have identity and are passed by copying, not by reference.

In SML.NET, one can use the same syntax for accessing
fields and invoking methods on a value of value type as for
objects of reference types. So for a pair p, p.#x, !(p.#x),

p.#swap() are all legal. Unlike in MLj, method invocation
works at primitive types too, e.g. 1.#ToString().

In SML.NET, invoking on a value type first copies the
value, takes the address of the copy and then passes this
address as the “this” argument of the method. Similarly,
accessing a mutable field of some value first copies that
value. This ensures that bindings are effectively immutable
in SML.NET, preserving the fundamental invariant of func-
tional languages. Thus p.#invert() has no effect on the
value of p, nor does let val r = p.#x in r := 1 end. The
expressions do have side-effects, but they cannot alter p.

Some value types do have mutable semantics, perhaps em-
ploying mutable instance fields that are updated by instance
methods. Our copying semantics implies that these updates
cannot be observed (since they mutate a temporary copy of
the value, not the original value itself). To cater for such
types, SML.NET supports an alternative invocation seman-
tics. In addition to invoking directly on a value, SML.NET
lets one invoke on any kind of SML.NET reference to a value
type. Thus, (ref p).#invert() and, more usefully,

let val r = ref (Pair(1,2)) in r.#invert();!r end,

which returns the modified value Pair(2,1), are both legal.
This works as expected for fields too:

let val r = ref (Pair(1,2)) in (r.#x) := 3;!r end

returns the modified value Pair(3,2).
This mechanism applies not only to SML ref types, but

to all SML.NET reference types, regardless of kind (see
Section 3.7). By accessing instance fields or methods of
these storage types one can observably and selectively up-
date their contents, either directly through a field update,
or as a side effect of a method call.

3.5.1 Boxing and unboxing
In the CLI every value type, whether primitive or user-

defined, also has an implicit boxed form, which is a reference
type (subclassing System.ValueType). Values of all types
may thus be stored in object-based collections, etc. provid-
ing a more uniform object model. (Less pleasingly, boxed
values also have identity and may be mutated.)

Boxing a value allocates a new, appropriately type tagged,
object on the heap and copies that value into the object. In
SML.NET, the boxed form of a value type is obtained by an
upcast, e.g. p:>System.Object, to some suitable CLI refer-
ence type. The supertype is typically System.Object, but
may be System.ValueType. Boxing casts work for primitive
types too, e.g. 1:>System.Object.

Unboxing an object extracts a value from a heap allocated
object (and requires a dynamic type check). In SML.NET
this is achieved by a downcast from some object type to
a value type. For instance, for obj : System.Object, the
expressions obj:>Pair and obj:> int unbox the underlying

value, returning a value. Note that, like any other down-
cast, these involve a dynamic test that can fail by raising
System.InvalidCastException.

3.5.2 Default values
In SML.NET, every non-primitive value type has a defined

default value, bound to the identifier null in the structure
corresponding to the type (e.g. Pair.null is equivalent to
Pair(0,0)). The default is provided in case the value type
has no associated .NET constructor: it can be used to ini-
tialise a reference, then set up its state. For example:

let val r = ref Pair.null

in (r.#x) := 1; (r.#y) := 2; !r

end

returns the value Pair(1,2), without calling a constructor.

3.6 Enumeration Types
In .NET, an enumeration type is a distinct value type,

declared with a set of named constants of that type. Ev-
ery enumeration, in its boxed form, derives from class type
System.Enum, a subclass of System.ValueType. Each enu-
meration type has an underlying (signed or unsigned) inte-
gral type (one of the SML.NET int or word types).

In SML.NET, a .NET enumeration type is imported as a
pseudo datatype of the same name. The datatype has a sin-
gle, unary constructor, named after the type, that constructs
an enum from a value of the underlying type. The named
constants of the enumeration are imported as equivalently
named constant constructors, abbreviating particular appli-
cations of the proper constructor. The derived constructors
are bound in a separate structure, named after the enumer-
ation type. The proper constructor and its derived constant
constructors can be used in patterns as well as expressions.

For example, values of the C] enumeration type:

public enum MyEnum { A , B , C = A }

may be manipulated in SML.NET as follows:

type enum = MyEnum

fun toString MyEnum.A = "A"

| toString MyEnum.B = "B"

| toString MyEnum.C = "C" (*redundant case*)

| toString (MyEnum i) = Int.toString i

fun fromString "A" = MyEnum.A

| fromString "B" = MyEnum.B

| fromString "C" = MyEnum.C

| fromString s = MyEnum(valOf(Int.fromString s))

Whether in a pattern or expression, writing MyEnum.A is
completely equivalent to writing MyEnum 0 instead.

Note that, in .NET, the constants defined for an enumer-
ation type are rarely exhaustive, and often share the same
value (e.g. 4 also has type MyEnum and C=A=0 above). This
feature distinguishes enumeration types from the familiar
SML pattern of defining a finite type as a datatype with n
constant constructors. Enums are often used as bit vectors,
using constants as bit masks: for completeness, we must be
able to map between all values of the underlying type.

3.7 Storage Types
SML.NET compiles values of type ty ref to an instance

of a private class with a single mutable instance field of type

ty. However, the CLI provides a much wider range of muta-
ble locations: static fields of classes, instance fields of heap
allocated objects and instance fields of stack allocated value
types, all multiple and indexed by name. The CLI even
provides a general address type to support call-by-reference
parameter passing (C]’s ref and out parameters). For in-
terop, SML.NET has to support addresses as well.

In SML.NET, all of these types are described as par-
ticular instantiations of a more general type constructor,
(ty,kind) reference. Unlike SML’s ref type construc-
tor, this type constructor takes two type parameters. The
first simply describes the type of the value stored in the
cell. The second parameter is a pseudo (or phantom) type
that identifies the particular kind of storage cell (others have
used related tricks for interop, for example Blume’s FFI for
SML/NJ [7]). The kind of a storage cell describes its physi-
cal representation and thus the precise runtime instructions
needed to implement reads and writes.

The advantage of introducing a parametric notion of stor-
age cell, indexed by kind, is that it allows SML.NET to treat
dereferencing (!) and assignment (:=) as generic operations,
polymorphic, as in ML, in the contents of a storage cell but
also polymorphic in the physical representation of that cell.
To achieve this, we generalise the Standard ML types of
these operations to the following kind-polymorphic types in
SML.NET:

val ! : (ty,kind) reference -> ty

val := : ((ty,kind) reference * ty) -> unit

The programmer gets to use the same notation to manipu-
late all kinds of storage cells, but it compiles to kind-specific
instructions. As kind instantiations are fully specialized at
compile-time they have no run-time representation or cost.

3.7.1 Storage kinds
The kind parameter of a storage cell of type (ty,kind)

reference can take one of the following forms:

heap: used for ordinary Standard ML references, this kind
describes a single-field, ML allocated object. SML’s
primitive ty ref type constructor merely abbreviates
the SML.NET reference type:

type ty ref = (ty,heap) reference

so SML’s allocating ref function actually has type:

val ref : ty -> (ty,heap) reference

(classty,fieldname)static: used for a static field, this
kind describes a static field by the name of the class
and the name of the field.

(classty,fieldname)field: used for an instance field, this
kind describes the class or value type in which the field
fieldname is declared.

address: used to describe the address of a storage cell. An
address can point to the interior of an ML ref, to a
static field, a stack-allocated local variable (e.g. from
C]), an instance field of a heap allocated object or an
inlined value type. Addresses are an abstraction of all
of the above storage types.

Address kinds are used to describe the type of C] call-
by-reference ref and out parameters, and typically occur in
the (argument) types of imported methods. Storage cells
of different kinds have distinct types and are thus not type
compatible, e.g. it is a static type error to create a list con-
taining both an integer heap reference and an integer static
field reference (because their kinds are not unifiable).

3.7.2 Address operators (&)
One can take the address of any kind of storage cell (in-

cluding another address) using the SML.NET primitives:

type ty & = (ty,address) reference

val & : (ty,kind) reference -> ty &

= (ty,kind) reference ->

(ty,address) reference

The & function allows one to pass any kind of SML.NET
storage cell (including an SML ref) to a C] method expect-
ing a call-by-reference parameter (marked as ref or out in
C]) by taking, and then passing, the address of that cell.

For instance, given the C] swap function:

public static void swap(ref int i, ref int j){

int temp = i; i = j; j = temp; return;

}

which is imported with SML.NET type:

val swap : (int &) * (int &) -> unit

Then we can swap two (ML) references as follows:

val (ra,rb) = (ref 2,ref 3)

val _ = swap(& ra,& rb)

val (ref 3,ref 2) = (ra,rb)

Operationally, taking the address of a storage cell returns
the address of the particular field storing its contents; taking
the address of an address is simply the identity.

3.7.3 Byref types
The various kinds of storage in SML.NET fall into two

categories: storage cells whose representations are first-class
values of the CLI and storage cells whose compiled represen-
tations are second-class CLI addresses. This second cate-
gory includes references of kind address and, less obviously,
(classty,fieldname)field, where classty is a value type
(not a reference type). In SML.NET, these are collectively
called byref types.

In the CLI, an address can, amongst other things, be the
address of a value allocated on the call-stack (e.g. an im-
ported address of C] local variable), or the address of a field
of a value on the stack (e.g. an imported address of a field
of a C] local variable). Such an address is only valid for the
lifetime of the stack frame from which it was taken. To pre-
vent such ephemeral addresses from being read or written
outside their lifetime (when they are unsafe dangling point-
ers), the CLI imposes (and the verifier checks) restrictions
on values of address type: they cannot be stored in static
fields or instance fields of CLI values or objects.

Because SML.NET’s byref storage types compile to CLI
addresses, which must obey the CLI’s rules, byref values and
types can only be used in limited ways. SML.NET imposes
these restrictions (and some more, see [5]):

• A value of byref type must not occur as a free vari-
able of any function or class declared within its scope.
Otherwise the byref value might be stored on the heap
in the closure’s environment.

• A byref type cannot be used as the argument type of a
datatype or exception constructor or component type
of a first-class tuple (since these are heap allocated).

• When matching a structure to a signature, the imple-
mentation of any opaque type in that signature may
not be a byref type.

• Finally, to ensure the above properties are preserved
by SML’s type instantiation of polymorphic values and
parameterised type constructors, type arguments (ex-
plicit or inferred) cannot be byref types, nor may they
be kinds describing byref types (with the obvious ex-
ceptions for !, := and &).

All of the restrictions are designed to prevent a byref value
being stored on the heap.1 The restrictions explicitly allow
addresses to be used as method parameters and arguments,
supporting Pascal-style call-by-reference passing of L-values.

3.8 Defining new .NET reference types
The mechanisms described so far give the SML program-

mer access to .NET libraries, but they do not support the
creation of new class libraries, nor do they allow for the spe-
cialisation of existing .NET classes with new methods coded
in SML. For this, we adapt some MLj syntax:

dec ::= _classtype 〈attribs1〉〈[cmod] 〈attribs2〉〉
class-name pat 〈:superdecs〉
with 〈local dec in〉 〈 methoddecs 〉 end

superdec ::= ty | ty exp
superdecs ::= superdec | superdec , superdecs

methoddec ::= 〈attribs〉〈[mmod]〉method-name pat = exp
| 〈attribs〉〈[mmod]〉method-name : ty

methoddecs ::= methoddec | methoddec and methoddecs

This declares a new class type class-name as follows:

• The optional, typically absent, attribs1 and attribs2 list
any class or constructor attributes (see Section 3.9).

• The optional class modifier in cmod can be abstract

or sealed and has the same meaning as in C].

• The expression class-name pat acts as a ‘constructor
header’, with pat specifying the formal argument (or
tuple of arguments) to the constructor. Any variables
bound in pat are available throughout the remainder
of the class type construct. Multiple constructors are
unnecessary and not supported.

• The optional superdecs specifies the superclass that
class-name extends and any interfaces that it imple-
ments. The superclass clause contains an argument
(or tuple of arguments) exp to pass to the superclass
(ty) constructor. The remaining types in a superdecs
clause must be interfaces.

1We believe SML.NET’s optimizing rewrites preserve this
property, but have not attempted a formal proof.

open System.Web.Services
_classtype WebFac() : WebService() with
local val SOME clsname = this.##ToString()

fun fact(0,acc) = acc
| fact(n,acc)= fact(n-1,n*acc)

in
Fac(n,acc) = fact(n,acc)

and {WebMethodAttribute()
where CacheDuration(60) end}

Fac(n:int) = this.#Fac(n,1)
and ToString() = SOME("WebService:"^clsname)
end

Figure 4: A simple WebService in SML.NET

• dec is a set of SML declarations that are local to a
single instance of the class.

• The optional methoddecs is a simultaneous binding of
instance method declarations, defined using a syntax
similar to that of ordinary functions, but with op-
tional qualifiers final and protected preceding the
method identifiers. An abstract method is declared by
omitting is implementation, but declaring its (func-
tion) type. Methods may be overloaded and may have
attributes.

The class body may refer to both to the class itself and
to the current instance (via this). Allowing this to be
bound with the local declarations as well as the method
declarations does open up a type loophole: we dicuss the
rationale for allowing this in [4].

Figure 4 shows a (contrived) implementation of a web
service, defined by deriving a new class from WebService

and attributing its exported factorial method. The local
definition of string clsname calls the ToString method in
the base class, using MLj’s exp.##method-name syntax to
access methods from the base class. The ToString method
is an override and Fac is overloaded.

Very similar syntax is used to declare new interface types:

dec ::= _interfacetype 〈attribs〉
interface-name〈:superdecs〉
with 〈 methoddecs 〉 end

An interface has a name, but no constructor argument.
The types in superdecs must all denote interfaces (not classes):
these are interfaces extended by this declaration. The meth-
ods in methoddecs must all be abstract.

SML.NET users may also declare their own delegate types
using a concise form of classtype declaration:

dec ::= _classtype 〈attribs〉 delegate-name of ty

The type argument ty of a delegate must be an SML func-
tion type. The declaration introduces the type delegate-
name; the delegate constructor delegate-name of (higher-
order) type ty -> delegate-name and an implicit Invoke in-
stance method of type ty.

For example, the ThreadStart delegate class of Section
3.3.2 could be declared within SML.NET as:

_classtype ThreadStart of unit -> unit

Unlike ordinary SML function types, delegates can be ex-
ported in the sense of Section 3.10, providing a rudimentary
way of inter-operating at the level of first-class functions.

3.9 Custom Attributes
SML.NET, like C], enables programmers to use and de-

clare new forms of custom meta-data using attribute classes.
Programmers can annotate SML.NET code with instances
of attribute classes, whether these classes were imported
or declared within SML.NET itself. These attribute values
may be retrieved at run-time using reflection or can be used
statically by tools. Figure 4 already illustrates attaching an
instance of the WebMethodAttribute to mark a method for
publication in a web service.

In SML.NET, as in C], a new attribute class is defined
by declaring a class that extends System.Attribute. At-
tributes can be attached to many declarations in an SML.NET
program using attribute expressions. An attribute expres-
sion is an essentially static description of the data required to
construct the corresponding instance of the attribute class.
Syntactically, an attribute expression is simply an applica-
tion of an instance constructor of some attribute class to a
tuple of constant arguments. Here is another example of
a WebMethodAttribute, this time calling a constructor that
takes some arguments, including an enum value:

WebMethodAttribute(true,Disabled,60)

An attribute expression may be further modified by a se-
quence of (mutable) field and property initialisers, again
supplied with constant values. The initialisers are executed
in order, just after the instance is constructed by reflection
(an example is the setting of CacheDuration in Figure 4).

Ignoring any type annotations used to resolve overloading,
constant values must be literals or values immediately con-
structed from literals, of the following SML.NET types (re-
quired by the CLS): string (option), char, bool, Word8.word,
Int16.int, int, Int64.int, Real32.real, real, any im-
ported enumeration type, or System.Type.

This is the precise grammar of attribute expressions:

attribs ::= {〈attexpseq〉}
attexp ::= exp 〈 where namedargs end 〉

attexpseq ::= attexp | attexp , attexpseq
namedarg ::= fieldname = exp | propertyname exp

namedargs ::= namedarg | namedarg , namedargs

3.10 Exporting structures
By default, all SML.NET declarations are private to the

generated executable or DLL. In order to make declarations
available outside – even simply to expose an entry point –
it is necessary to export selected top-level structures using
the compiler’s export command.

In the current version of the compiler it is only possible to
export structures whose signature can be mapped directly
back to .NET types. The following rules apply:

• Top-level SML structures export as sealed .NET classes.

• Value bindings with function type are exported as static
methods. A function type is exportable if

– Its result type is an exportable type.

– Its argument type is either unit, an exportable
input type, or a tuple of exportable input types.
An argument type, or tuple component, may also
be the address of an exportable input type.

• Value bindings with exportable types are exported as
static read-only fields.

• Class, interface and delegate type declarations are ex-
ported as .NET (nested) classes, if:

– The argument of a class constructor is either unit,
an exportable input type, or a tuple of exportable
input types (as for functions).

– The argument of a delgate constructor is an ex-
portable function type.

– The methods all have exportable types (as for
functions).

• A type is an exportable type if it is an interop type
(see Section 3.2.2) that does not refer to non-exported
class, interface or delegate types. A type is an ex-
portable input type if it is an interop input type (see
Section 3.2.2) that does not make use of non-exported
class, interface or delegate types.

• All other bindings are non-exportable.

In future, SML.NET may support the export of arbitrarily
nested structures, merging classes and substructures with
equivalent names on export. This will provide a convenient
way to define classes with both instance and static methods,
thus mirroring the semantics of class import.

4. VISUAL STUDIO INTEGRATION
This section describes the use of our interop extensions in

implementing the SML.NET plugin for Visual Studio.NET.
Microsoft’s Visual Studio Industry Partner Programme [3]
exposes the internal APIs of the VS IDE to third-party de-
velopers. In particular, the VSIP Environment SDK exposes
the APIs necessary for implementing a custom language ser-
vice. Language services are used by the VS editor to provide
language specific code navigation, syntax colouring, error re-
porting, and intelligent completion and help on source code
identifiers (Intellisense).

VSIP provides three ways to build a language service:

1. Implementing one from scratch using the flexible, but
difficult to use, low-level APIs exposed by the Environ-
ment SDK; these are the same APIs used by Microsoft
to integrate its languages.

2. Implementing an instance of a much simpler interface,
IBabelService, to be used by a pre-supplied generic
language service, the Babel package. IBabelService

provides a high-level, but less feature-rich abstraction
over the low-level interfaces available in option 1.

3. Providing an instrumented C++-lex and -yacc gram-
mar for your language that completes a boilerplate im-
plementation of the same IBabelService interface.

We rejected option (1) as a monumental task and option
(3) because it would have meant, at the very least, rewrit-
ing a new lexer and parser for SML.NET in C++. All of

these APIs, including IBabelService, are classic COM in-
terfaces, most suited for use by C++ clients. Fortunately,
the CLR provides high-level support for interoperating with
COM from managed code, both in client and server roles.
We put SML.NET’s CLI-interop extensions to the test by
implementing, via the CLR’s own COM-interop, a managed
implementation of the COM IBabelService interface.

Even though SML.NET is implemented in SML of New
Jersey (for performance reasons), SML.NET is capable of
compiling its own sources (unlike MLj). This enabled the
following strategy for constructing our language service:

• Import the COM BabelService.tlb type library as a
CLR library, BabelServiceLib.dll, using Microsoft’s
tlbimp tool.

• Write a relatively small amount of SML.NET interop
glue code (5 classes and 35 methods) implementing the
interfaces in BabelServiceLib.dll using classtypes

that simply call into appropriate bits of the front-end
of the SML.NET compiler.

• Using SML.NET, compile the combined glue code and
front-end sources (containing pure SML) into a CLR-
class library, SmlBabelService.dll.

• Register the SmlBabelService CLR-class library with
COM to expose its classes as classic COM classes vis-
ible to the VS host (we use the regasm tool).

This approach allows us to re-use much of the SML.NET
front-end: given the additional glue code, all we had to do
was instrument the existing SML.NET lexer and parser to
perform appropriate callbacks to the glue code. By sharing
the front-end sources, we could do far more, with far less
effort and duplication, than would have been possible by
following the C++ route to language integration. The entire
implementation required less than 4,000 lines of new code.

The anatomy of a Babel service is quite simple. When pre-
sented with a source document registered for that service,
the IDE calls into the service to colour lines and occasion-
ally, on a separate thread, parse the entire document. The
IBabelService interface requires a ColorLine method that,
given the cached lexer state at the beginning of a line, scans
the line, reporting, via callbacks to a supplied COM class
implementing IColorSink, the logical color (identifier, key-
word, delimiter colour), logical status (identifier, keyword,
delimiter status) of each token and any triggers associated
with the cursor encountering that location in the line. Fi-
nally, the ColorLine method returns the new state at the
end of the line, which is cached by the caller. Triggers are
trip-wires in the source document that fire different kinds
of parsing requests. These include requests to match de-
limiters such as the current brace, providing tool tip doc-
umentation for the current identifier or member comple-
tion on encountering the separator (such as ’.’) in a qual-
ified identifier. Depending on the context, the job of the
IBabelService::ParseSource method is either to register
the locations of pairs of matching delimiters, report syntax
errors or return an instance of the IScope COM interface
that maps locations to Intellisense information.

Because we have access to the bootstrapped front-end of
the compiler itself, we were able to do much more than
merely parse files looking for syntax errors. Given a suc-
cessful parse, the SML.NET language service will go on to

attempt to type-check the current source document using
the SML.NET type checker. To the user, a type error ap-
pears just like a syntax error: a red-squiggly in the source
code with tool tips providing a description. Crucially, type
errors are reported early, without requiring a full build of the
project. In a further extension, the existing type-checker was
slightly modified to construct a map from source locations to
inferred SML.NET types. By providing a custom implemen-
tation of the IScope interface (returned by the ParseSource
method), we can consult this map and use the results of
type inference to provide advanced Intellisense information.
The language service determines the environment in which
to type check the current document by consulting a well-
known location on disk that records the dependency on ex-
ternal CLR libraries and internal SML modules involved in
the last successful build of the project. From this it is easy to
recover the environment of any imported modules or CLR li-
braries by consulting the pickled type information produced
by the standalone SML.NET compiler. The CLR hosted
language service is able to read the binaries produced by
the SML of New Jersey hosted SML.NET compiler because
the format of our files is implementation-independent [11].

5. ASP.NET
ASP.NET is the CLR-based framework for server-side pro-

gramming of web applications. ASP.NET has many sophis-
ticated features, but here we will just discuss an interesting
interop issue which arose when using it to write simple dy-
namic web pages in ML.

ASP.NET can separate logic from layout in dynamic web
pages. The layout is specified in a file written in an extended
form of HTML (e.g. mypage.aspx), whilst the corresponding
server-side code lives in a separate file (e.g. mypage.aspx.cs).
The code declares a subclass of System.Web.UI.Page defin-
ing various event handlers, but how are elements on the
.aspx page related to objects in the C] code?

The answer is that each control in the .aspx file has
an ID attribute (e.g. <Button ID="MyButton">), and the
page class declares an appropriately typed field of the same
name (e.g. Button MyButton;). The framework transpar-
ently translates the .aspx file into another C] class, which
subclasses the page class defined by the programmer. This
automatically generated class initializes the control fields in-
herited from the parent class.

We did not consider this combination of inheritance and
meta-programming in the design of SML.NET. We originally
reasoned that no code with which one might wish to interop-
erate could have an interface which required clients to define
classes with particular named fields, and hence omitted the
definition of named fields from SML.NET classes. The rea-
soning is valid for external C] (say) libraries which are en-
tirely written ‘within the language’, as library classes never
subclass client ones, but ASP.NET uses code generation to
go outside the language. As SML.NET doesn’t allow the def-
inition of fields, one cannot simply replace mypage.aspx.cs

with mypage.aspx.sml.
In practice, this is not a problem (if it were, we could

just add field definitions to SML.NET). The most conve-
nient way to author ASP.NET pages is to use Visual Stu-
dio. This allows graphical editing of the layout (the aspx
file) and automatically generates the corresponding skele-
ton for the C] (or indeed VB) code class (aspx.cs). Thus
the most straightforward way to write functional server-side

Figure 5: Developing for the Compact Framework.

code is mixed-language: one fills in the autogenerated C]

stubs with calls to SML classes. We have successfully used
this technique to implement, for example, a web-based in-
terface to an interpreter for an XQuery-like language.

The mixed-language visual programming approach also
works well for writing SML programs with more conven-
tional GUIs. Although one can write graphical applications
entirely within SML.NET, we usually build a mixed C]/SML
solution within Visual Studio, using the visual designers to
generate C] which interoperates with SML.NET code to per-
form the interesting parts of the computation.

6. .NET COMPACT FRAMEWORK
The .NET Compact Framework (CF) [14] is an implemen-

tation of the CLI, supporting a only a subset of the Frame-
work libraries but running on resource-constrained devices,
such as Pocket PCs, with a variety of CPUs.

We have succesfully ported some smallish SML.NET ap-
plications to the Pocket PC using the CF. Figure 5 displays
an SML.NET raytracer (with C] front-end) being debugged
with VS while running on a Pocket PC emulator; it runs
just the same on the real device. The SML code (∼ 2,500
lines) is adapted from John Reppy’s port from OCaml of the
winning entry [18] to the 3rd ICFP Programming Contest.

To make this work, we modified the relevant parts of the
SML Basis to use only the .NET libraries that are part of the
CF. We then ran into two resource problems. The first was
stack size: the emulator (like older implementations of the
CF for real devices) heap-allocates CLI method frames, but
the current implementation on ARM processors uses a fixed-
size stack. Worse, the OS gives the main thread of an ap-
plication only 56KB of stack. Secondary threads, however,
can request up to 1MB of stack (via a setting in the binary),
so we simply ran the ML code in a new thread. The second
limitation we ran into in this case was that current CF imple-
mentations reject methods with compiled bodies larger than
64KB. Crudely disabling some inlining options in SML.NET
produced runnable binaries without source code modifica-
tion, though at significant cost in performance; hacking the
sources to introduce one or two barriers to inlining would be
unpleasant but probably more effective.

A further unfortunate limitation of current CF implemen-
tations is that they do not respect the CLI tailcall instruc-
tion, so we are unlikely to be able to run SML.NET itself on

a mobile device in the near future. Nevertheless, being able
to run SML code on a PDA at all is gratifying, especially as
it comes (almost) for free.

7. CONCLUSIONS
It has often been claimed that the CLI (or JVM) is un-

suitable as a compilation target for functional languages (or
logic languages, or scripting languages, or whatever) be-
cause it lacks particular features. SML.NET provides good
evidence to the contrary. There are other ML implemen-
tations on .NET, including F] [17] and Moscow ML.NET
[13]. These both take a more straighforward approach to
compilation than SML.NET. This gives worse runtimes but
allows separate compilation (and, in the case of Moscow
ML, an interactive loop). Neither F] nor Moscow ML se-
riously extends the language for interop, as we have done.
However, because they use uniform .NET representations
for ML types, it is possible to interoperate with ML pro-
grams by writing C] or VB code which delves into those
representations.

The two sweet spots for compiling research languages to
the CLI seem to be, firstly, writing a quick and dirty com-
piler for a new language and, secondly, working harder to
write a compiler with good interoperability features and re-
spectable performance. In the first case, leveraging all the
CLI infrastructure allows one to write a compiler which will
produce code with better performance than a naive inter-
preter written in a high-level language but with comparable
implementation effort. In the second case, one has to per-
form non-trivial optimizations, make compromises (in our
case, separate compilation) and solve tricky language de-
sign problems, and still runtime performance will lag that
of an optimizing native-code compiler for a single language.
But as we have gained experience of the practical benefits
of interoperability with industrially mainstream languages
and tools, we have only become more convinced that these
compromises are worth making. Having immediate and sim-
ple access to any .NET library really does make it easier to
write functional programs which do practical things than in
any other implementation of which we are aware. As more
Windows APIs are exposed as managed code, these bene-
fits will become greater (SML.NET code has already been
shown running on an early build of Longhorn and accessing
the new WinFx APIs).

The benefits of using SML.NET within Visual Studio have
surprised us. Despite our all being longtime Emacs devotees,
the convenience of Intellisense (especially when working with
large object-oriented libraries) interactive type inference and
(albeit limited) source-level debugging, have made it our
preferred working environment.

The main limitation of SML.NET remains its slow compile-
times. Recent work with Sam Lindley on using a mutable
graph representation for the rewriting phases of the compiler
indicate that an order of magnitude speedup in compilation
is possible; we will report on this elsewhere.

Our most pressing future task is to extend SML.NET to
support the forthcoming addition of parametric polymor-
phism (generics) to the CLI[12, 19]. Extending our exten-
sions to interoperate with generic .NET code raises some
challenging issues. (For example, our current treatment of
null-values is not straightforwardly compatible with allow-
ing class type parameters to range over both ML and .NET
types.) We also plan to exploit generics in compiling SML

itself, which may lead us back to a more traditional separate
compilation model.

8. REFERENCES
[1] The MLton Compiler. http://www.mlton.org/.

[2] The SML.NET Compiler.
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/.

[3] Visual Studio Industry Partner Programme.
http://msdn.microsoft.com/vstudio/extend/.

[4] N. Benton and A. Kennedy. Interlanguage working
without tears: Blending SML with Java. In 4th ACM
SIGPLAN International Conference on Functional
Programming, Paris, France, September 1999.

[5] N. Benton, A. Kennedy, and C. Russo. The SML.NET
1.1 user guide. http://www.cl.cam.ac.uk/Research/
TSG/SMLNET/smlnet.pdf.

[6] N. Benton, A. J. Kennedy, and G. Russell. Compiling
Standard ML to Java bytecodes. In 3rd ACM
SIGPLAN International Conference on Functional
Programming, September 1998.

[7] M. Blume. No-longer-foreign: Teaching an ML
compiler to speak C “natively”. In BABEL’01: First
workshop on multi-language infrastructure and
interoperability, Sept. 2001.

[8] D. Box and C. Sells. Essential .NET, Volume I: The
Common Language Runtime. Addison Wesley, 2003.

[9] Ecma International. ECMA and ISO C# and
Common Language Infrastructure standards.
http://www.ecma-international.org/.

[10] E. R. Gansner and J. H. Reppy, editors. The Standard
ML Basis Library reference manual. Cambridge
University Press, to appear.

[11] A. J. Kennedy. Functional pearl: Pickler combinators.
Journal of Functional Programming, 2004.

[12] A. J. Kennedy and D. Syme. Design and
implementation of generics for the .NET Common
Language Runtime. In Programming Language Design
and Implementation. ACM, 2001.

[13] N. J. Kokholm and P. Sestoft. Moscow ML.NET
owner’s manual. http:
//www.dina.kvl.dk/~sestoft/mosml/netmanual.pdf,
Nov. 2003.

[14] Microsoft Corporation. The .NET Compact
Framework. http://msdn.microsoft.com/mobile/.

[15] J. B. Miller and S. Ragsdale. The Common Language
Infrastructure Annotated Standard. Addison Wesley,
2003.

[16] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
Cambridge, Mass., 1997.

[17] D. Syme. The F] compiler. http://research.
microsoft.com/projects/ilx/fsharp.aspx.

[18] J. Vouillon, H. Hosoya, E. Sumii, and V. Gapeyev.
Team PLClub.
http://www.cis.upenn.edu/~sumii/icfp/, 2000.

[19] D. Yu, A. Kennedy, and D. Syme. Formalization of
generics for the .NET Common Language Runtime. In
ACM Symposium on Principles of Programming
Languages, 2004.

