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Abstract
We describe a semantic type soundness result, formalized inthe
Coq proof assistant, for a compiler from a simple imperativelan-
guage with heap-allocated data into an idealized assembly lan-
guage. Types in the high-level language are interpreted as binary
relations, built using both second-order quantification and a form
of separation structure, over stores and code pointers in the low-
level machine.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ings of programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification, Specification techniques; F.3.3
[Logics and meanings of programs]: Studies of Program Constructs—
Type structure; D.3.4 [Programming Languages]: Processors—
Compilers; D.2.4 [Software Engineering]: Software / Program
Verification—Correctness proofs, formal methods

General Terms Languages, theory

Keywords Compiler verification, type soundness, relational para-
metricity, separation logic, proof assistants

1. Introduction
The last decade has seen an explosion of research into type systems,
formal verification and certification for low-level code, ignited by
the original papers on typed assembly language [21] and proof-
carrying code [23], and fanned by the development of separation
logic [29]. These developments have been driven by various forces:
partly by need (as well as the traditional arguments in favour of
some level of formal verification as a way to develop software
that actually works, the internet has made checkable safetyof
mobile code more than a purely academic problem); partly by
improvements in the technology of theorem provers and model
checkers; and partly by the realization that conservative techniques
for verifying comparatively simple properties, such as forms of
memory safety, can be much easier and more efficient to apply than
complete methods for showing full functional correctness,whilst
still offering useful real-world guarantees. Another driving force
has been the (occasionally surprising) discovery that logical, type
theoretic and semantic ideas that were originally developed in fairly
abstract settings, or for very high-level programming languages,
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are actually applicable to realistic, low-level, ‘dirty’ languages and
systems.

In the present paper, we will be concerned withcertified com-
pilation, proving once and for all that a compiler always produces
object code that satisfies some policy, which in this case will be
type safety.

But what do we mean by type safety? For high-level languages,
there are two main approaches to formalizing type soundnessprop-
erties:syntacticandsemantic. The difference between the two is
not (merely) one of proof technique; they are different kinds ofre-
sult.

In the syntactic approach [31], one defines a small-step opera-
tional semantics that gets stuck (makes no transition) in configura-
tions that are considered to be bad. One then shows ‘preservation
and progress’ – that every typeable configuration is either properly
terminal or makes a transition into another typeable configuration –
and can then deduce that well-typed programs don’t get stuck. Syn-
tactic type soundness is often fairly straightforward to establish, but
is a rather weak and fragile result. Firstly, it is closely tied to the
particular set of syntactic rules that define the type system. There is
no notion of the meaning of a typeA as a property of phrases be-
yond ‘being assignable the typeA using this particular set of rules’,
so there is no real notion of what it is that the types are supposed to
ensure. Secondly, the introduction of stuckness into the operational
semantics is something of a sleight of hand, changing the origi-
nal problem to match the solution. For a simple type system and a
high-level semantics, it seems reasonable to work with syntax for
(untyped) phrases that explicitly distinguishes, say, functions from
integer constants, or even booleans and integers, and whichgets
stuck when one tries to apply an integer or increment a boolean.
But this becomes less tenable when the type system is intended to
track more interesting properties, such as the use of locks or the
reading and writing of particular parts of the store. Formulating a
syntactic type soundness result then involves further changes to the
operational semantics, to track extra information and possibly add
new stuck states. And the more sophisticated the analysis, the more
complex the instrumentation becomes. Furthermore, the notion of
error is not preserved by compilation: machine code does notinher-
ently distinguish code pointers, heap pointers, integers or booleans;
no fault is raised by performing arithmetic on addresses to which
one subsequently jumps or stores,1 and compiled code, particularly
when optimized, often depends upon such possibilities.

1 This is, of course, not strictly true. Operating systems usememory man-
agement hardware to trap ‘illegal’ pointer dereferencing or jumps to ad-
dresses in pages marked as ‘no execute’, floats are passed in special reg-
isters, etc. But faults in compiled code certainly do not correspond exactly
to errors in a high-level semantics, and a major goal of static verification
should surely be to remove the need for such crude and expensive dynamic
checks.



It is, of course, possible to mitigate the effect of instrumentation
by also proving an erasure theorem. Even then, however, the the-
orem about low-level code is tied to the syntactic definitionof the
high-level language and its type rules. This is a significantshort-
coming: compiled code nearly always relies upon a runtime sys-
tem and library routines that are written directly in a low-level lan-
guage, and we would also like to be able to link soundly with code
compiled from other high-level languages. Without an independent
low-level characterization of the intended behavioural properties of
code compiled from phrases with a particular high-level type, the
implementer of a library function or support routine written in C or
assembler does not know what specification his code should meet
in order to interoperate properly with the output of the compiler.

The semantic approach to type safety, by contrast, gives a mean-
ing to each type that is independent of any particular set of rules for
assigning those types to program phrases. The meaning of a type
will be (roughly) a set of values with some property; for a given
language and set of types, there can be many different analyses, of
varying degrees of precision, for soundly assigning types to terms.

Interpretations of types as predicates over some untyped model
of computation have a long history. Particularly relevant for us is
the work of Appel and his collaborators [6, 5, 7, 30, 3] on Founda-
tional Proof Carrying Code (FPCC). The idea of FPCC is to givea
semantics to high-level types as low-level specifications expressed
in a general program logic. This low-level logic is not tied to any
language or type system, and proofs that a particular piece of low-
level code satisfies such a specification can be generated or checked
independently from any particular compilation scheme. Although
the concept of FPCC is clearly parametric in just what safetyprop-
erty one wishes to prove and check, the only instance that hasreally
been studied and implemented so far ismemory safety: ensuring
that ‘illegal’ accesses to memory cannot occur. The intensional no-
tion of which accesses are legal is formalized by making the oper-
ational semantics of the low-level machine get stuck when certain
locations are dereferenced, just as in a syntactic approach.

Memory safety is undeniably important, but is not the same as
type safety. Program fragments that satisfy an interpretation of a
type in the style of previous work on FPCC, whilst memory safe,
can easily fail to have other rather basic properties one would ex-
pect, and on which security and compiler correctness can depend.
For an ML-like source language, for example, a machine code
function that simply returns its argument will be in the interpre-
tation of the type(int → int) → int, since if one passes in the
address of some closure, one will get back something that looks
like an integer. But allowing the identity function to be given that
type, whilst not leading to illegal memory accesses, would inval-
idate very basic reasoning principles for ML programs that are
used by both programmers and compilers: not only are static trans-
formations such as common subexpression elimination no longer
behaviour-preserving, but the observable results of a particular
compiled binary can vary according to where it is loaded in mem-
ory, the behaviour of the allocator, etc. Such possibilities violate
most language-based encapsulation or security propertiesone can
think of.

In the present paper, we work with a semantic interpretationof
high-level types that uses binary relations, rather than unary predi-
cates, over low-level code and data. One should think of these rela-
tions as carving out both a set of valuesand a type-specific notion
of equality on that set of values; these are defined together because
which values are judged to be in the set associated with some com-
pound type will depend on both the sets of values and the equality
relations associated with its components. The crucial caseis that
for functions: two valuesf andf ′ are in the relation interpreting
A → B iff for any x andx′ that are related by the interpretation of
A, f x andf ′ x′ are related by the interpretation ofB. The set of

values having a particular type is given by the diagonal partof the
associated relation, sof has typeA → B just whenf is related
to itself by the interpretation ofA → B; this is the usual notion
of ‘logical’ relation [26]. Interpreting types as (partialequivalence)
relations over an untyped model of computation also has a long
history, but previous work has generally taken the untyped model
either to be rather high-level and abstract (e.g. a domain theoretic
model of the untyped lambda calculus) or low-level but with un-
interesting fine structure (e.g. Gödel numbers for partial recursive
functions). The difference here is that we work with a low-level,
untyped model in whose structure we most certainly are interested,
viz.machine code (albeit very idealized), and we work with a trans-
lation into that model that is representative of realistic compilation
schemes (albeit for a rather toy language).

The main contribution of the present paper is not so much the
actual type soundness result, but rather its general form and the
methodology used for proving it. We build on our earlier workon
modular specification and verification of a simple memory alloca-
tor [10]. The results have been formalized and checked in theCoq
proof assistant and most of the formal parts of the present paper are
presented as extracts from the proof script, using Coq syntax. Some
further discussion may be found in a companion tech report [13].

2. Low-Level Target Machine
We work with the same straightforward operational semantics for
an idealized assembly language that we used in our earlier work
on allocation [10]. There is a single datatype, the natural numbers,
though different instructions treat elements of that type as code
pointers, heap addresses, integers, etc. The heap is a totalfunction
from naturals to naturals and the code heap is a total function from
naturals to instructions. Computed branches and address arithmetic
are perfectly allowable. There is no built-in notion of allocation
and no notion of stuckness or ‘going wrong’: the only observable
behaviours are termination and divergence.

The instruction set of the machine is given by Coq inductive
definitions for lvalues (dest), rvalues (src) and instructions (instruc-
tion). Destinations are either immediate (a fixed memory location),
indirect or indirect with a fixed offset. Sources are literalvalues,
immediate (the contents of a fixed memory location), indirect or
indirect with an offset.

Inductive dest: Set:=
| d imm: nat→ dest | d ind : nat→ dest
| d indo : nat→ nat→ dest.

Inductive src : Set:=
| s cst : nat→ src | s imm: nat→ src
| s ind : nat→ src
| s indo : nat→ nat→ src.

Inductive instruction: Set:=
| i halt : instruction
| i move: dest→ src→ instruction
| i add : dest→ src→ src→ instruction
| i sub: dest→ src→ src→ instruction
| i mult : dest→ src→ src→ instruction
| i branch: src→ instruction
| i brz : src→ src→ instruction
| i brnz : src→ src→ instruction.

The mutable heap of our machine is a function from naturals to
naturals, which we represent using a record type with a single field
and an implicit coercion to(nat→ nat):

Record state: Set:= State{ fun of state:> nat→ nat }.

Definition update(s:state) (n:nat) (v:nat) : state:=
State(fun m⇒ if beq nat n m then v else s m).



We now give the meaning of sources, destinations, and the single-
step semantics of instructions themselves. The latter is ofanoption
type: eitherNone, indicating termination, orSome(s′, pc′), giving
a new heap and a new program counter:

Definition sem dest(de:dest) (s:state) :=
match de with
| d imm n⇒ n
| d ind n⇒ s n
| d indo ofs n⇒ s n+ ofs

end.

Definition sem src (sr:src) (s:state) :=
match sr with
| s cst n⇒ n
| s imm n⇒ s n
| s ind n⇒ s (s n)
| s indo ofs n⇒ s (s n+ ofs)

end.

Definition sem instr (ins:instruction) (s:state) (pc:nat) :
option(state× nat) :=

match ins with
| i halt ⇒ None
| i move de sr⇒
Some(update s(sem dest de s) (sem src sr s), S pc)
| i add de sr1 sr2⇒
Some(update s(sem dest de s) ((sem src sr1 s) + (sem src sr2

s)), S pc)
| i sub de sr1 sr2⇒
Some(update s(sem dest de s) ((sem src sr1 s) - (sem src sr2

s)), S pc)
| i mult de sr1 sr2⇒
Some(update s(sem dest de s) ((sem src sr1 s) × (sem src sr2

s)), S pc)
| i branch sr⇒ Some(s, sem src sr s)
| i brz srscrut srtarg⇒
Some(s, match semsrc srscrut s

with 0⇒ sem src srtarg s| S ⇒ S pc end)
| i brnz srscrut srtarg⇒
Some(s, match semsrc srscrut s

with 0⇒ S pc| S ⇒ sem src srtarg s end)
end.

A program is simply a total function from labels (naturals) to
instructions, whilst a program fragment is a partial function from
labels to instructions:

Definition program: Set:= nat→ instruction.

Definition program frag : Set:= nat→ option instruction.

Definition program extendsfrag (p:program) (pf :program frag)
:= ∀ n, match pf n with None⇒ True

| Some i⇒ (p n= i) end.

We now definekstepterm, saying when a configuration comprising
a programp, a heaps, and a program counterl terminates ink steps
(the termination guarantee {struct k} tells Coq that the function is
structurally recursive onk). Theterminatespredicate then holds of
configurations that terminate in some number of steps:

Fixpoint kstepterm(k:nat) (p:program) (s:state) (l:nat) { struct k} :
Prop :=
match k with
| O ⇒ False
| (S j) ⇒ match seminstr (p l) s l with

| None⇒ True
| Some(s’, l’ ) ⇒ kstepterm j p s’ l’

end
end.

Definition terminates p s l:= ∃ k, kstepterm k p s l.

The major idealizations compared with a real machine are that
we have arbitrary-sized natural numbers as a primitive type, rather
than fixed-length words, and that we have separated code and data
memory. Note also that there are no registers; we will simplyadopt
a convention of using some low-numbered memory locations ina
register-like fashion.

3. Source Language
The source language is that ofwhile-commands with natural,
boolean and pair-valued expressions and a type system that sup-
ports ‘strong updates’. The syntax and type rules of the language
are shown in Figure 1. Expressions are typed in the context ofa
typingΓ for the variables. Commands, which may update variables
with values of different types, are given both a pretyping and a post-
typing, recording their assumptions and effects on the store.

The Coq translation of Figure 1 is fairly direct. We use natural
numbers instead of names for variables and have made elements of
EnvType, representing store types, be total functions on the naturals
(we will pass a size as well later on). Note the use of simple
dependent typing for expressions and commands:Exp env tis the
type of expressions that have typet in store environmentenv, and
similarly for commands.

Inductive ExpType: Set:=
| TInt : ExpType
| TBool : ExpType
| TPair : ExpType→ ExpType→ ExpType.

Notation "a ** b" := (TPair a b) (at level55).

Definition EnvType:= nat→ ExpType.

Definition envupdate(env:EnvType) m a:=
(fun n⇒ if beq nat n m then a else env n).

Inductive Exp: EnvType→ ExpType→ Set:=
| EInt : ∀ env, nat→ Exp env TInt
| EBool : ∀ env, bool→ Exp env TBool
| EId : ∀ env m a(h : env m= a), Exp env a
| EAdd: ∀ env, Exp env TInt→ Exp env TInt→ Exp env TInt
| EGt : ∀ env, Exp env TInt→ Exp env TInt→ Exp env TBool
| EPair : ∀ env a b, Exp env a→ Exp env b→ Exp env(TPair a

b)
| EFst : ∀ env a b, Exp env(TPair a b) → Exp env a
| ESnd: ∀ env a b, Exp env(TPair a b) → Exp env b.

Inductive Command: EnvType→ EnvType→ Set:=
| CAssign: ∀ env m a, Exp env a→ Command env(envupdate

env m a)
| CSeq: ∀ env1 env2 env3, Command env1 env2→ Command

env2 env3→ Command env1 env3
| CIf : ∀ env1 env2, Exp env1 TBool→ Command env1 env2→

Command env1 env2→ Command env1 env2
| CWhile : ∀ env, Exp env TBool→ Command env env→

Command env env.

4. Compilation
The compiler comprises a pair of functions traversing expressions
and commands in the high-level language to produce lists of low-
level instructions. The correctness of the generated code relies on
it being linked with a memory allocator module satisfying the
specification given in our previous work [10]. We call the allocator
to get a statically fixed-size block for storing variables and an
evaluation stack and for dynamically allocating the storage for
values of pair types. Data structures generated by programsin our



Expression types A := int | bool | A × A′

Store types Γ := v1 : A1, . . . , vn : An

Expressions

Γ ` true : bool Γ ` false: bool Γ ` n : int Γ, x : A ` x : A

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 > e2 : bool

Γ ` e1 : A1 Γ ` e2 : A2

Γ ` (e1, e2) : A1 × A2

Γ ` e : A1 × A2

Γ ` π1e : A1

Γ ` e : A1 × A2

Γ ` π2e : A2

Commands
Γ, x : A ` e : B

Γ, x : A ` (x := e) : Γ, x : B

Γ ` C1 : Γ′ Γ′ ` C2 : Γ′′

Γ ` C1 ;C2 : Γ′′

Γ ` e : bool Γ ` C1 : Γ′ Γ ` C2 : Γ′

Γ ` if e then C1 else C2 : Γ′

Γ ` e : bool Γ ` C : Γ

Γ ` while e do C : Γ

Figure 1. The While Language

language can involve sharing, which complicates their reclamation.
We have not yet proved either garbage collection or any static
memory management scheme, so for now just let the compiled code
leak memory.

We adopt a convention of using memory locations 0 to 9 in
a register-like fashion. The calling convention for the memory
allocator is that a return address is passed in location 0 (retreg)
and the size of the block requested is passed in location 1 (argreg);
a pointer to the free block is returned in location 0. Code compiled
from phrases of our language relies on location 6 (envreg) holding
a pointer to the base of a block of memory, the first part of which is
used to store the global variables and the remainder of whichis used
as a stack during the evaluation of expressions. Location 5 (spreg)
points to the next free stack slot. Figure 2 shows a typical layout of
the store at run-time. We re-emphasize that the store isreally just
a function from naturals to naturals: the intended interpretation of
some of them as pointers, booleans, etc. as shown in the figureis
just what we are going to formalize by giving a semantics to types.

The code for pushing a natural numbern onto the stack does an
indirect store of the constantn to the memory location pointed to
by spregand incrementspreg:

Definition int code n:=
(i move(d ind spreg) (s cst n)) ::
(i add (d imm spreg) (s imm spreg) (s cst1)) ::
nil.

The code for boolean constants is similar, pushing 1 for trueand
0 for false. The value of a variablen is obtained by indirection
throughenvregwith an offset:

Definition id code n:=
(i move(d ind spreg) (s indo n envreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst1)) ::
nil.

The sequence for the greater-than test uses subtraction. Weare
working with natural numbers and a subtraction operator that yields
zero when the result would otherwise be negative, thus we either
leave zero (representing false) or some strictly positive value, all
of which we take to represent true. This encoding, or realization,
of the booleans will be made more explicit when we consider the
semantics of types later.

Definition gt code:=

Figure 2. Memory Layout

(i sub(d imm spreg) (s imm spreg) (s cst2)) ::
(i sub(d ind spreg) (s ind spreg) (s indo 1 spreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst1)) ::
nil.

The code for creating a pair has to allocate a fresh cons cell,pop
two values off the stack and write them into the fields of the new
cell and finally push the address of the new cell back to the stack. It
is parameterized by the starting address of the code fragment, label,
and the entry point of the allocation routine,alloc.

Definition pair code label alloc:=
(i sub(d imm spreg) (s imm spreg) (s cst2)) ::
(i move(d imm argreg) (s cst2)) ::
(i move(d imm retreg) (s cst (4 + label))) ::



(i branch(s cst alloc)) ::
(i move(d ind retreg) (s ind spreg)) ::
(i move(d indo 1 retreg) (s indo1 spreg)) ::
(i move(d ind spreg) (s imm retreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst1)) ::
nil.

The code sequences for addition and for projections are omitted,
but may be found in the technical report.

We now show the function for compiling an expressione, given a
starting address for the generated code,labeland the address of the
allocation routine,alloc. compile expreturns a list of instructions
and the next free code address. Thecompile expressionfunction
wraps the compilation of a complete expression, decrementing the
stack pointer at the end.

Fixpoint compile exp (env:EnvType) (a:ExpType) (e:Exp env a)
(label alloc:nat) { struct e} : list instruction× nat:=

match e with
| EInt n⇒ (int code n, int code size+ label)
| EBool b⇒ (bool code b, bool code size+ label)
| EId n ⇒ (id code n, id code size+ label)
| EAdd e1 e2⇒

let (code’,label’) := compile exp e1 label alloc in
let (code”,label” ) := compile exp e2 label’ alloc in
(code’++ code” ++ add code,
add code size+ label” )

| EGt e1 e2⇒
let (code’,label’) := compile exp e1 label alloc in
let (code”,label” ) := compile exp e2 label’ alloc in
(code’++ code” ++ gt code, gt code size+ label” )

| EPair e1 e2⇒
let (code’,label’) := compile exp e1 label alloc in
let (code”,label” ) := compile exp e2 label’ alloc in
(code’++ code” ++ pair code label” alloc,
pair code size+ label” )

| EFst e’ ⇒
let (code’,label’) := compile exp e’ label alloc in
(code’++ fst code, fst code size+ label’)

| ESnd e’ ⇒
let (code’,label’) := compile exp e’ label alloc in
(code’++ snd code, snd code size+ label’)

end.

Definition compile expression env a(e:Exp env a) label alloc:=
let (code, label) := compile exp e label alloc in

(code++ ((i sub (d imm spreg) (s imm spreg) (s cst 1)) ::
nil), S label).

Thecompilefunction compiles a command:
Fixpoint compile (env1 env2: EnvType) (c:Command env1 env2)
(label alloc:nat) { struct c} : list instruction× nat:=

match c with
| CAssign m e⇒

let (code’,label’) := compile expression e label alloc
in (code’++ (i move(d indo m envreg) (s ind spreg)

:: nil), 1 + label’)
| CSeq c1 c2⇒

let (code’,label’) := compile c1 label alloc in
let (code”,label” ) := compile c2 label’ alloc in
(code’++ code”, label” )

| CIf b c1 c2⇒
let (code’,label’) := compile expression b label alloc in
let (code”,label” ) := compile c1(1 + label’) alloc in
let (code”’,label”’ ) := compile c2(1 + label” ) alloc in
(code’ ++ (i brz (s ind spreg) (s cst (1 + label” )) :: nil)

++ code” ++ (i branch(s cst label”’) :: nil) ++

code”’, label”’ )
| CWhile b c1⇒
let (code’,label’) := compile expression b label alloc in
let (code”,label” ) := compile c1(1 + label’) alloc in
(code’ ++ (i brz (s ind spreg) (s cst (S label”)) :: nil) ++

code” ++ (i branch(s cst label) :: nil), 1 + label” )
end.
We remark that (even without mutable pairs) the compilerdoes

build datatstructures with non-trivial sharing. For example, the
program

X := (3, 4) ; Y := (X, X)

generates twocons cells, with both fields of the second (which is
pointed to from the variableY ) pointing to the first (which is also
pointed to fromX).

5. Relational Assertions
The next subsection gives a slightly informal account of theidea
of relational specifications, which is followed by the more detailed
Coq version.

5.1 Overview of relations for specification

The central idea of our approach to specifications in general, and
the interpretation of types in particular, is that they are about in-
variance, independence, or ‘how much difference makes a differ-
ence’. With our representations, there is no way that a statement
like ‘location 74 holds a boolean’ can be interpreted as a predicate
on the contents of location 74: whatever valuev is stored there,
it is always interpretable as either a natural number, a boolean or
even a pointer. How the value is interpreted depends on how itwill
be used, and the difference between a piece of code that is typed
assuming location 74 holds a natural and one that is typed assum-
ing that it holds a boolean is that the lattershould only care about
whether the value is zero or not. In other words, the code can have
two different observable behaviours: one in the case thatv is zero
and the other one forall the non-zero values. But the notion of ob-
servable behaviour needs to be defined carefully. Consider what we
might mean by saying a piece of code is supposed to be both en-
tered and exited with a boolean in location 74. This specification
is met by code that does nothing, or which doubles the value in74
(both of which implement, or realize, the identity on booleans). Af-
ter the exit point however, we certainlycan place a piece of code
that behaves differently according to whether or not the initial value
v was, say,42. Clearly, we have to restrict the notion of allowable
observation to take types into account, which we do by sayingthat
assumingthat the code at the exit point has the same behaviour for
all non-zero values in location 74,thenthe code at the entry point
promises to have the same behaviour whatever non-zero valueis in
74 whenit is called. We make this a bit more precise as follows.
Define[[bool]] to be the binary relation

[[bool]]
def
= {(n, n

′) | (n = n
′ = 0) ∨ (n > 0 ∧ n

′
> 0)}

capturing when two natural numbers are equivalent when inter-
preted as boolean values. Now, ifr ⊆ N × N andx ∈ N, define a
relation onstates

(x 7→ r)
def
= {(s, s′) | (s x, s

′
x) ∈ r}

So, in particular,(74 7→ [[bool]]) relates two states when they hold
values in location 74 that are[[bool]]-related.

We now define the ‘perp’ operator,(·)>, taking a binary relation
on states to one on pairs of programs and code pointers. IfR ⊆
state× state, thenR> relates two such pairs just when they behave
equivalently whenever they are started in states that areR-related.
The notion of equivalent behaviour we use here isequi-termination,



defined using theterminatespredicate from Section 2:

R
> def

= {((p, l), (p′
, l

′)) | ∀(s, s′) ∈ R,

terminatesp s l ⇔ terminatesp′
s
′
l
′}

One can think of the elements ofR> as ‘test contexts’ forR. The
statement that a program fragmentM both expects and produces a
boolean in location 74 can now be expressed as:

∀p p′, program extendsfrag p M

⇒ program extendsfrag p′
M

⇒ ((p, exit), (p′, exit)) ∈ (74 7→ [[bool]])>

⇒ ((p, entry), (p′, entry)) ∈ (74 7→ [[bool]])>.

To be able to reason locally and modularly about relations on
stores, we also need some handle on whichpart of the store a given
relation depends upon, which we formalize in terms of invariance
under change. IfL ⊆ N and s0 and s1 are states, then define
s0 ∼L s1 to mean∀x ∈ L, s0 x = s1 x. (In Coq, we represent
subsets by maps intoProp and defineequpto : (nat → Prop) →
state→ state→ Prop to mean∼.) Now, though we shall refine
this definition shortly, say that a pair of sets of locations(L, L′)
supports a relationR ⊆ state× statewhen

∀(s0, s
′

0) ∈ R, ∀s1 s
′

1, (s0 ∼L s1)∧(s′0 ∼L′ s
′

1) ⇒ (s1, s
′

1) ∈ R

In other words, if one starts with two states in the relation then any
modifications outside the support yield another pair of states in the
relation. IfR1 is supported by(L1, L

′

1) andR2 by (L2, L
′

2), then
define a form of separating conjunction [24] by

R1 ⊗ R2
def
=

�
R1 ∩ R2 if L1 ∩ L2 = ∅ andL′

1 ∩ L′

2 = ∅
∅ otherwise

So two states are inR1 ⊗R2 when they are in bothR1 andR2 and
the supports are disjoint.R1 ⊗R2 is supported by(L1 ∪L2, L

′

1 ∪
L′

2). The separating conjunction allows concise specifications, as it
abbreviates many ‘absence of aliasing’ conditions that would be ex-
plicit in a first-order assertion language. It proves even more useful
when we reason about modules: the private invariants of modules
will be captured by existentially quantifying over supported rela-
tions about which clients know nothingexceptthat their support is
disjoint from that of the client’s own store.

Unfortunately, the above notion of support is slightly too weak.
Consider a relation(List74) expressing that two states have equal
linked lists of integers starting from location 74. Assuming the
usual representation, this will relates and s′ when either s 74
and s′ 74 are both zero,or they are both non-zero,s (s 74) =
s′ (s′ 74), and (inductively) there are equal linked lists starting at
(s 74)+1 and(s′ 74)+1. Thus the sets of locations that get looked
at depend on the contents of those stores. So we have to replace sets
of locationsL ⊆ N with functionsA : state→ P(N). We restrict
attention toaccessibility maps[12], thoseA for which

∀ s s
′
, s ∼A(s) s

′ ⇒ A s = As
′

Intuitively, this says thatA ‘supports itself’, and makes relation
∼A, defined bys ∼A s′ ⇔ s ∼A(s) s′ an equivalence relation.
We will build our specifications out of state relations supported by
pairs of accessibility maps, making much use of (a generalization
of) the separating conjunction.

5.2 Relations for specifications, formally

In this section we present the formal definitions of the relations and
operations on relations with which we will be working. The first
extra complexity compared with the semi-formal account above
is that relations onstates and naturals will both generally depend
on a pair of programs, because they will involve sets of code
pointers that have particular behaviours, which only makessense

relative to some program. The second bit of structure we shall need
is an admissibility property, to justify recursive reasoning about
program fragments and definitions of relations. We get this by
working with relations that are the limits of sequences ofk-indexed
approximants, where the natural numberk represents a number of
steps in the operational semantics [7, 3, 9]. Thus our notions of
‘equivalent’ are expressed as the limit of ‘indistinguishable for up
to k steps’ ask goes toω. As more steps allow more distinctions
to be made, it is natural to work with indexed relations that are
antimonotonic ink.

Here is the program- and step-indexed definition of relations on
natural numbers. ANatrel is a record containing two fields. The
first, NRrel, is the carrier: the relation itself. The second,NRcond,
is aproof that the relation is antimonotonic in the indexk:
Record Natrel : Type:=

mkNR{ NRrel :> program→ program→ nat → nat → nat →
Prop ;

NRcond: ∀ p p’ j k x x’, j < k → NRrel p p’ k x x’→
NRrel p p’ j x x’}.

The carrier of aNatrel is a (curried) relation on pairs of programs
and triples of naturals. The first two arguments are the left and right
programs,p andp’. The third argument is the step index,k:nat. The
fourth and fifth arguments are the naturals on the left and theright,
x andx’. There is an order and an equality onNatrels:
Definition Natrelleq(R1 R2: Natrel) :=

∀ p p’ k n n’, R1 p p’ k n n’→ R2 p p’ k n n’.

Definition Natreleq Na1 Na2:= Natrelleq Na1 Na2∧ Natrelleq
Na2 Na1.

We can also lift non-indexed relations on naturals toNatrels:
Definition Natrel lift (R : nat→nat→ Prop) : Natrel.

intro R.
refine( mkNR(fun p p’ k⇒ R) ).
tauto.

Defined.
The definition ofNatrel lift makes use of the interactive proof
language of Coq: therefine tactic is used to define the carrier of
the lifted relation, leaving a hole (the underscore) for theNRcond
proof component that is needed to show that the monotonicity
requirement is satisfied. Rather than being constructed explicitly,
the proof is then filled in interactively, in this simple casejust
by calling the automatic tactictauto. We will henceforth elide the
proof components of applications ofrefine.

Here is the definition of the typeAccrel of supported, indexed
relations onstates. An Accrel is a record comprising the relation
itself (ARrel), two accessibility maps (ARaccandARacc’), a proof
(ARcond) that the accessibility maps are accessibility maps and do
support the relation, and a proof (ARindexed) that the relation is
antimonotonic in the step index:
Record Accrel : Type:= mkAR{

ARrel:>program→program→nat→state→state→Prop;
ARacc: state→ state→ nat→ Prop;
ARacc’: state→ state→ nat→ Prop;
ARcond: ∀ p p’ k s0 s0’ s1 s1’,
(ARrel p p’ k s0 s0’) → equpto(ARacc s0 s0’) s0 s1

→ equpto(ARacc’ s0 s0’) s0’ s1’
→ (ARrel p p’ k s1 s1’) ∧

(∀ n, ARacc s0 s0’ n↔ ARacc s1 s1’ n) ∧
(∀ n, ARacc’ s0 s0’ n↔ ARacc’ s1 s1’ n);

ARindexed: ∀ p p’ j k s s’,
j < k → ARrel p p’ k s s’→ ARrel p p’ j s s’}.

The carrier relates two programs (p on the left,p’ on the right), a
step index and two states (s on the left,s’ on the right).ARaccis



the accessibility map giving the locations that are relevant on the
left (i.e. in states), whilst ARacc’is associated with the state on the
right. Note that these are actually dependent on two states,rather
than one as in our earlier overview; this turns out to be technically
smoother, though we won’t really exploit the extra generality here.
ARcondcombines conditions on accessibility maps and on the
relation. Ignoring the program and index dependence it reads as
follows: if we start with two statess0 ands0’ in the relation, and
s1 ands1’ are two other states, withs1 equal tos0 up to the left
hand accessibility map (applied to the states we started with), and
s1’ equal tos0’ up to the right hand accessibility map, then three
things happen. Firstly,s1ands1’ are also in the relation - this says
that the accessibility maps do support the relation. Second, the left
hand accessibility map yields the same set of locations whengiven
s0ands0’ as arguments as it does when givens1ands1’ - this is
the accessibility map condition. Finally, the same holds ofthe other
accessibility map. Compared with our informal account we have
tied the maps and the relations closer together by only requiring
the accessibility map condition on states in the relation.

Accrels also have an equality and a partial order, involving
implication between the carrier relationsand a containment the
other way between the accessibility maps:

Definition Accrelleq(Ar1 Ar2 : Accrel) :=
∀ p p’ k s s’, Ar1 p p’ k s s’→

( (Ar2 p p’ k s s’) ∧
(∀ n, ARacc Ar2 s s’ n→ ARacc Ar1 s s’ n) ∧
(∀ n, ARacc’ Ar2 s s’ n→ ARacc’ Ar1 s s’ n)).

Definition Accreleq Ar1 Ar2:= Accrelleq Ar1 Ar2∧ Accrelleq Ar2
Ar1.

We defineEmptyrel(q : Prop) to be theAccrel with empty sup-
ports and a constant relation determined byq; in particular,Toprel
:= Emptyrel Trueis the constant true relation.RelConjis the (or-
dinary) additive conjunction onAccrels, which allows sharing, so
does not require disjoint supports:

Definition nunion(a1 a2: nat→Prop) n :=
(a1 n) ∨ (a2 n).

Definition RelConj(Ar1 Ar2 : Accrel) : Accrel.
intros. refine(mkAR
(fun p p’ k s s’⇒ (Ar1 p p’ k s s’) ∧

(Ar2 p p’ k s s’))
(fun s s’⇒ (nunion(ARacc Ar1 s s’)

(ARacc Ar2 s s’)))
(fun s s’⇒ (nunion(ARacc’ Ar1 s s’)

(ARacc’ Ar2 s s’))) ). . . .
Defined.

RelTensoris the multiplicative, separating conjunction:

Definition ndisj (a1 a2: nat→Prop) :=
∀ n, ˜(a1 n∧ a2 n).

Definition RelTensor(Ar1 Ar2 : Accrel) : Accrel.
intros. refine(mkAR
(fun p p’ k s s’⇒
(Ar1 p p’ k s s’) ∧ (Ar2 p p’ k s s’) ∧
(ndisj (ARacc Ar1 s s’) (ARacc Ar2 s s’)) ∧
(ndisj (ARacc’ Ar1 s s’) (ARacc’ Ar2 s s’)))

(fun s s’⇒ (nunion(ARacc Ar1ss’) (ARacc Ar2ss’)))
(fun s s’⇒ (nunion(ARacc’ Ar1 s s’) (ARacc’ Ar2 s s’))) ).

. . .
Defined.

BothRelConjandRelTensorare associative and commutative with
Toprel as unit (amongst other properties whose formal statements
we elide). Theptsto relation is like the ‘points to’ predicate of
separation logic. It relates two statess ands’ just when the values

stored in locationl in s and in locationl’ in s’ are related by the
Natrel, r.

Definition ptsto(l l’ :nat) (r : Natrel) : Accrel.
intros.
refine(mkAR(fun p p’ k s s’⇒ r p p’ k (s l) (s’ l’ ))

(fun s s’ n⇒ n=l)
(fun s s’ n⇒ n=l’ ) ). . . .

Defined.

Notation "[ m , n ] |=> r" := (ptsto m n r) (at level80).
Notation "m |-> r" := (ptsto m m r) (at level80).

The definition of the ‘perp’ operation is the place where we make
careful use of the step-indexing.

Definition Perp(R:Accrel) : Natrel.
intros. refine( mkNR
(fun p p’ k l l’ ⇒ ∀ j s s’, j < k → R p p’ j s s’→

(((kstepterm j p s l) → (terminates p’ s’ l’)) ∧
((kstepterm j p’ s’ l’) → (terminates p s l))))

). . . .
Defined.

Note the way in which the indices are used: two labelsl, l′ are in
Perp Rat indexk just when for any strictly smallerj, and states
related byR at indexj, if jumping to l terminates withinj steps,
then jumping tol′ terminates insomenumber of steps, and vice
versa. The limit ofPerp Rask goes toω can be seen to agree with
the definition ofR> that we gave earlier. As one would expect,
Perp is contravariant:

Lemma Accrelleq Perp: ∀ R1 R2,
Accrelleq R1 R2→ Natrelleq(Perp R2) (Perp R1).

We define ‘#’ as Coq notation forRelTensor, and ‘!’ as notation for
Perp.

6. Specification of Allocation
We briefly recall the specification of a memory allocator module
from our previous work [10]. There are three entry points: for
init ialization, forallocation, and fordeallocation. We concentrate
on allocation here, as we will not be using the other routines.

After the allocator is initialized, the heap will, like Gaul, be di-
vided into three parts: the pseudo-registers 0 to 9, the partbelonging
to the allocator, and the part belonging to the rest of the program.
Ownership of blocks is transferred between the allocator and its
clients by calls toalloc anddealloc. The allocator promises not to
(observably) read or write the part belonging to the clients, whilst
the clients promise not to read or write the part belonging tothe
allocatorandnot to care about either the location or the initial con-
tents of the blocks they are given.

We capture this intent by saying that a moduleMa with entry
point alloc meets the specification of an allocator if there exists
a supported relationRa – the allocator’s private invariant – such
that for all programsp, p′ extendingMa, for all k, for all Rc(client
invariants) and for alln (block sizes),

(R al Ra n Rc) p p
′
k alloc alloc,

where

Definition R aret (n:nat) : Accrel.
intro. refine(mkAR
(fun p p’ k s s’⇒ s 0 > 9∧ s’ 0 > 9)
(fun s s’ l⇒ (l = 0)∨ (l ≥ s 0∧ l < n + s 0))
(fun s s’ l⇒ (l = 0)∨ (l ≥ s’ 0∧ l < n + s’ 0)) ). . . .

Defined.

Definition R al (Ra:Accrel) n (Rc:Accrel) :=
! ((0 |-> !(R aret n# T rel (1 to 4) (1 to 4) #Rc# Ra))



# (1 |-> (Natrel lift (fun l l’ ⇒ l = n∧ l’ = n)))
# T rel (2 to 4) (2 to 4) #Rc# Ra).

This means two calls toalloc must behave the same if they are
started in initial statess, s′ that are related by all of the following
disjoint relations: First,Ra, so the allocator’s invariant holds before
the call. Second,Rc, so the client’s invariant holds before the call.
Third, T rel (2 to 4) (2 to 4). This is the ‘true’ relation with support
{2, 3, 4} on both sides, so these locations are not looked at by the
allocator. Fourth, location 1 holds the valuen in both s and s′.
Fifth, the contents of location 0 on the two sides are code pointers
that promise to behave the same iftheyare started in states related
by all of the following: (i)Ra, so the allocator invariant holdsafter
the call. (ii)Rc, so the client invariant holds after the call. (iii)T rel
(1 to 4) (1 to 4), so these locations are not looked at by the return
addresses, i.e. they may be modified by the allocator. (iv)R aret n,
which expresses that location 0 on each side points to a blockof
sizen that doesn’t overlap the pseudo-registers.

In previous work, we described a very naive allocation module
that satisfies this specification; we have since verified thata slightly
less trivial implementation that uses a free list satisfies the same
spec.

7. Formalizing and Verifying Type Soundness
This section presents the actual type soundness theorem forthe
compiler. We start with a useful (if unusual-looking) construction
onAccrels:

Definition pex(l l’ :nat) (h: nat→ nat→ Accrel) : Accrel.
intros. refine(mkAR
(fun p p’ k(s s’:state) ⇒ h (s l) (s’ l’ ) p p’ k s s’∧

¬ (ARacc(h (s l) (s’ l’ )) s s’ l) ∧
¬ (ARacc’(h (s l) (s’ l’ )) s s’ l’))

(fun s s’ n⇒ (n = l) ∨ (ARacc(h (s l) (s’ l’ )) s s’ n))
(fun s s’ n⇒ (n = l’ ) ∨ (ARacc’(h (s l) (s’ l’ )) s s’ n)) ). . . .

Defined.

Notation "’ pexists’( x , y ) @ ( l , m ) , g" :=
(pex l m(fun x y⇒ g)) (at level200, . . . ).

Thepexistsoperation captures a pattern of existential quantification
over values in the store that is common in definingAccrels:

∃ x x
′
, ([l, l′] |=> [x, x

′]) # g(x, x
′).

Statess ands′ are in this relation when locationsl andl′ in s, s′

respectively hold some valuesx, x′ and the relationg(x, x′) holds
on some disjoint part of the store.2

Now we define the semantics of types as relations over values
and stores of the low-level machine:

Fixpoint typerefsem(t : ExpType) (l l’ : nat) { struct t} : Accrel :=
match t with

| TInt ⇒ Emptyrel(l = l’ )
| TBool⇒ Emptyrel((l=0)∧ (l’ =0)∨ (l 6=0)∧ (l’ 6=0))
| TPair a b⇒ pexists(va, va’) @ (l, l’ ), pexists(vb, vb’) @ (S

l, S l’), RelConj(typerefsem a va va’) (typerefsem b vb vb’)
end.

Two states are related bytyperefsem t l l’just whenl andl’ are equal
as values of typet in those states. So: (i) Two values are equal as
natural numbers just when they are equal, independent of what the
states are. (ii) Similarly, two values are equal as booleansjust when
they are in[[bool]], again independent of the states. (iii)l andl′ are

2 The reason for this definition, due to Matthew Parkinson, is that supported
relations do not admit general existential quantification.pexistsis a form
of quantification in which the witness is uniquely determined, fixing the
support.

equal as values of typeTPair a b in statess ands′ when the cons
cells pointed to byl in s and byl′ in s′ have first components that
are equal as values of typea and second components that are equal
as values of typeb. The use of the additive conjunction,RelConj,
allows the storage used by the values pointed to in the first and
second components to share with one another, but note that wehave
not allowed sharing with the cell itself (because of the separation
built into the definition ofpexists).

The support part of theAccrel returned bytyperefsemfollows
pointers to capture what parts of the two heaps are looked at in
judging relatedness; this is a function of both the actual values in
the heap and the type at which we are comparing them.

Having defined the relational interpretation of eachExpType, we
need to define the relational interpretation of anEnvType, capturing
the notion of equality on the vector of globals, the evaluation stack
and the heap (as was illustrated in Figure 2). This is built upby
induction over the length of the environment (globals+stack), tak-
ing care to maintain the separation between individual environment
entries and between the environment and the heap, whilst allowing
sharing within the heap. To this end, we first define a functionthat
builds anAccrel by folding pexistsover the vectors of lengthn
(starting at locationsl and l′, respectively) in the two states, ad-
ditively conjoining all the results of applying a functionf to the
existentially quantified values stored in the corresponding elements
of the vectors.

Fixpoint pexconj(n m l l’ : nat) (f : nat → nat → nat → Accrel)
(r:Accrel) { struct n} : Accrel :=

match n with
| 0⇒ r
| S n’⇒ pex l l’ (fun (x1 x2: nat) ⇒ pexconj n’(S m) (S l) (S

l’ ) f (RelConj(f x1 x2 m) r))
end.

Using pexconj to fold typerefsem, we can define the relational
interpretation of an environment typeenv of length n, starting at
locationsbaseandbase’:

Definition typesem n(env:EnvType) base base’:=
pexconj n0 base base’(fun x1 x2 m⇒ typerefsem(env m) x1 x2)

Toprel.

Figure 3 shows an example of two states related by

typesem4 env20 22

where we assumeenvmaps offsets to types as follows:
0 7→ TBool
1 7→ (TInt** TBool)**( TInt** TBool)
2 7→ TInt
3 7→ TInt** TBool

Having defined relations accounting for the structure of theenvi-
ronment and heap, we now need to define the contracts for the
pieces of compiled code that come from typed expressions and
commands in the source language. These will involvePerps, ex-
pressing that jumping to certain pairs of addresses will yield equi-
termination provided that the initial states are in a certain relation,
which will involve atypesemfor the heap plus something about the
pseudo-registers being suitably related.

Here is the formal definition of the prerelation for commands
and expressions that expect to be entered withenvsizeglobal vari-
ables typed according to theEnvType envand an empty stack
(which is allowed to grow up tomaxstack+ 1 locations), assum-
ing allocators related byRaand starting addressesenvbaseanden-
vbase’for the two environments.Ro is an arbitrary relation on the
parts of memory which donot belong to either the allocator or the
compiled code:



Figure 3. Typesem Example

Definition R comp(Ra Ro: Accrel) envsize env envbase envbase’
maxstack:=

let sp:= (envsize+ envbase) in
let sp’ := (envsize+ envbase’) in
! (T rel (0 to 4) (0 to 4)
# (envreg|-> (Natrel lift (fun l l’ ⇒ l = envbase∧ l’ = en-

vbase’)))
# (spreg|-> (Natrel lift (fun l l’ ⇒ l = sp∧ l’ = sp’)))
# typesem envsize env envbase envbase’
# T rel (sp to(maxstack+sp)) (sp’ to (maxstack+sp’))
# Ra# Ro).

As explained in Section 5.1, however, the entry point of the code
for a command or expression will only be in theR compcorre-
sponding to the pretype under the assumption that the code atits
exit point satisfies a suitable relation for the posttype. For com-
mands, which always expect to be entered with an empty stack,the
assumption on the exit will just be another instance ofR comp.
For expressions, however, we expect a value of a particular type to
be left on the stack. That’s expressed by the following variant of
R compwhich adds the requirement that there be values related by
the interpretation of typet on the stacks:

Definition R comp exp post (Ra Ro: Accrel) envsize(env : En-
vType) t envbase envbase’ maxstack:=

let sp:= (envsize+ envbase) in
let sp’ := (envsize+ envbase’) in
! (T rel (0 to 4) (0 to 4)
# (envreg|-> (Natrel lift (fun l l’ ⇒ l = envbase∧ l’ = en-

vbase’)))
# (spreg|-> (Natrel lift (fun l l’ ⇒ l = S sp∧ l’ = S sp’)))
# typesem(S envsize) (envupdate env envsize t) envbase en-

vbase’
# T rel ((S sp) to (maxstack+ sp)) ((S sp’) to (maxstack+ sp’))
# Ra# Ro).

Note the way in which the first stack location is treated as if it were
the(envsize+1)-th variable. At last, we can give the type soundness
theorems for our compiler. There is one for expressions and one for
commands. Here is the one for expressions:

Theorem comp expressionthm :
∀ (alloc alloc’ : nat) (Ra Ro: Accrel) (p p’ : program)

(envbase envbase’: nat) (envsize: nat)
(env:EnvType) (a:ExpType) (e:Exp env a),

∀ (h env:env ok exp e envsize)
(maxstack:nat) (h stack:stack ok exp e maxstack)
(k label label’: nat)

(code:list instruction) (code’:list instruction)
(hcode: code= fst (compile exp e label alloc))
(hcode’: code’= fst (compile exp e label’ alloc’)),

program extendsfrag p (fragfromlist code label)
→ program extendsfrag p’ (fragfromlist code’ label’)
→ (∀ n Rc, (R al Ra n Rc) p p’ k alloc alloc’)
→ (R comp exp post Ra Ro envsize env a envbase envbase’

maxstack) p p’ k (length code+ label) (length code’+ label’)

→ (R comp Ra Ro envsize env envbase envbase’ maxstack) p p’
(1 + k) label label’.

where the functionfragfromlistgenerates aprogram frag from the
instruction list returned bycompile exp, placing the first instruction
at the givenlabel argument.

Here is the theorem for commands:

Theorem comp thm :
∀ (alloc alloc’ : nat) (Ra Ro: Accrel) (p p’ : program)

(envbase envbase’: nat) (envsize: nat)
(env1 env2:EnvType) (c:Command env1 env2),

∀ (h env:env ok c envsize)
(maxstack:nat) (h stack:stack ok c maxstack)
(label label’: nat)
(code:list instruction) (code’:list instruction)
(hcode: code= fst (compile c label alloc))
(hcode’: code’= fst (compile c label’ alloc’)),

program extendsfrag p (fragfromlist code label)
→ program extendsfrag p’ (fragfromlist code’ label’)
→ ∀ k, ((∀ n Rc, (R al Ra n Rc) p p’ k alloc alloc’)
→ (R comp Ra Ro envsize env2 envbase envbase’ maxstack) p

p’ k (length code+ label) (length code’+ label’)
→ (R comp Ra Ro envsize env1 envbase envbase’ maxstack) p

p’ (1 + k) label label’).

Let’s look at the theorem for commands,comp thm, first to see
what it says. Ignoring the checks thatmaxstackis sufficiently large
and that only variables numbered less thanenvsizeare used, the
essence is the following:

• For anyCommand, c, typeable with a pretypeenv1and a post-
typeenv2,

• if we compilec twice, once starting atlabeland once starting at
label’, linking the first with an allocator atalloc and the second
with an allocator atalloc’,

• then if we put those bits of code into contexts such thatalloc
andalloc’ are equivalent memory allocators (according to the



specification of allocation) and the exit points of the two bits of
compiled code behave equivalently in all states related by the
interpretation of the posttypeenv2

• then the entry points of the bits of compiled code behave equiv-
alently in all states related by the interpretation of the pretype
env1.

The above captures lots of information about what the behaviour
of the code compiled fromc can depend upon. For example, it
is independent of where the compiled code is placed, where the
allocator is, where the environment is stored, what addresses the
allocator returns and what their original contents are, howbooleans
or pairs are represented in the initial state, and so on.

We have a strong (extensional) form of memory safety, showing
that the compiled code doesn’tobservablyread or write any loca-
tions that it shouldn’t. The preservation of anyRo, for example,
means that storage disjoint from both the allocator’s private store
and the while-program’s heap neither affects the behaviourof code
compiled from a command, because the poststates will be equiv-
alent forany initial Ro, nor is affected by it, because anyRo (in
particular extensions of singleton relations) will be preserved. Note
that the notion of independence really is more liberal than anaive
intensional one: code that messes with unowned memory locations
but restores them before exit meets the specification, as does code
that builds literally different, but equivalent accordingto the types,
heap structures according to the contents of unowned memory. See
[11] for more on how preservation of sets of relations can express
not only complete independence, but also read-only and write-only
effects on particular storage locations.

The theorem for expressions is similar to that for commands,
except that the environments in the pre and post relations stay the
same and the postrelation assumes that there is a value of type a on
the stack.

The proofs of the above theorems are basically inductions over
the source language, with each case being dealt with by forward
Hoare-style reasoning, similar to that of our previous workon
allocation. The indexing structure on relations is used just in the
case forCWhile, which uses mathematical induction: we assume
that the label at the entry of the loop satisfies the desired relation
at indexk, and then examine the loop body to show that the entry
then satisfies the same relation to indexk + 1.

The total size of the Coq development is around 8500 lines,
which includes the low-level machine, metatheory of supported re-
lations, the language and compiler and the actual proofs. There is
scope for significant simplification here though. We are still com-
paratively inexperienced Coq users and were developing much of
the theoryin the prover, rather than doing post-hoc formalization
of a completed paper development, so there is a lot of ‘junk DNA’
in those 8500 lines. We use little automation so far, but the proof
scripts for particular segments of assembly code are already about
an order of magnitude shorter than in our earlier efforts, averaging
around 20 (instead of 200) lines of proof for each assembly lan-
guage instruction.

8. Discussion
We have presented a semantic interpretation of the types of a
high-level language as relations over configurations of a low-level
machine, and used that to formulate and prove type correctness of
a compiler.

A crucial feature of our approach is that the semantics of a
type is a relation on low-level stores that makes no further refer-
ence to the original source language type. One might have instead
defined a ‘represents’ relation between high-level values and low-
level stores; two low-level stores could then be said to be equiva-
lent at a type if there exists a high-level value such that both stores

represent that value. We do not take such a definition as primitive
(though we used something like it in some of the intuitive expla-
nations in Section 7) for a couple of reasons. Firstly, it does not
fit with our ‘foundational’ goal of compiling different high-level
type systems to a common low-level assertion language in such a
way that we can justify cross-language linking and specify run-time
systems. Secondly, for languages with features such as higher-order
functions and references, the question of what equal means at high-
level types is about as hard, and addressed using the same relational
techniques, as what we do at the low-level. Rather than construct a
naive denotational semantics for the high-level language,then re-
fine (quotient) it with a state-based logical relation [12] and then
construct a relation between the refined model and the low level, we
just construct low-level relations directly. This should ultimately
prove simpler and more useful, since encapsulation provided by
language features (e.g. local references) will be treated in the same
way as encapsulation used in implementing language features (e.g.
environments of closures, memory management). But that will only
be tested when we consider more complex source languages.

The treatment of termination in the current work could be im-
proved. Our use of perping means that an always-divergent pro-
gram fragment satisfies any pre-post relation pair, irrespective of
its effects on the store. This is normal for interpretationsof types in
languages with recursion or looping, but evaluation ofexpressions
in this particular source language actually always terminates. One
could make the low-level semantics closer to fully abstractby us-
ing relational total correctness judgements. There is a related weak-
ness in the specification of allocation, which also allows for non-
termination. These differences do not substantially weaken our type
soundness result, but restrict our ability to prove programtransfor-
mations. Type soundness is about programs being in the diagonal
part of the relational interpretations of their types, i.e.being re-
lated to themselves. But we also want to prove thatdifferentpieces
of machine code are equivalent modulo the contract of a particu-
lar type. If the allocator is assumed to be able to diverge, and we
make different calls to the allocator in the two programs, then such
proofs don’t go through. Our more recent work uses an allocator
specification that does enforce totality, so that we can reason about
equations on low-level code.

There is a much related work, of which we can only mention
a fraction. Compiler correctness has been studied for at least four
decades [20] with notable early formalizations in the Boyer-Moore
prover [33]. More recent examples include Leroy’s verified com-
piler for a C-like language [19]. Full compiler correctnessis more
ambitious than type safety, but these projects relate high-level to
low-level without the explicit language-independent low-level con-
tracts that we are formalizing here.

Reasoning directly about unstructured low-level code alsohas
a long history, going right back to Floyd’s original work. The idea
of developing type systems for low-level programs, and preserving
typing through compilation, is more recent [21] and has attracted
much attention in the context of proof-carrying code [23], as well
as in more traditional compiler certification. That low-level types
might be given a semantic interpretation using more primitive log-
ical assertions is the key idea offoundationalproof-carrying code
[5].

Modelling types by partial equivalence relations goes backa
long way [28, 4, 18, 2, 17] and, amongst many other things, para-
metric logical relations have recently been used by many authors
in reasoning about program equivalences in the presence of higher
order functions and dynamically allocated store [25, 27, 12]. Rela-
tional program logics have been developed by several researchers
[1, 8, 32].

The other great influence on this work is separation logic [24,
29], though we work with relations rather than predicates, and use



explicit higher-order parameterization over frames in place of the
more usual ‘tight’ interpretation. Recent work on separation logic
typing with higher order frame rules [15] and extensions with quan-
tification [14, 16] are technically very close to the presentwork,
though working on paper and with slightly higher-level languages.
Hoare type theory (HTT) is a related mixture of polymorphism, de-
pendent type theory and separation-logic style reasoning about side
effects [22].

Thanks to Josh Berdine and Andrew Kennedy for useful discus-
sions and feedback on earlier drafts of this work.
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