Formalizing and Verifying Semantic Type
Soundness of a Simple Compiler

Nick Benton

Microsoft Research, Cambridge
nick@microsoft.com

Abstract

We describe a semantic type soundness result, formalizélaein
Coq proof assistant, for a compiler from a simple imperatare
guage with heap-allocated data into an idealized asserally |
guage. Types in the high-level language are interpretedrasyb
relations, built using both second-order quantificatiod arform
of separation structure, over stores and code pointerseiriothi-
level machine.

Categories and Subject Descriptors F.3.1 |Logics and mean-

Uri Zarfaty

Imperial College, London
udz@doc.ic.ac.uk

are actually applicable to realistic, low-level, ‘dirt@hguages and
systems.

In the present paper, we will be concerned vwadrtified com-
pilation, proving once and for all that a compiler always produces
object code that satisfies some policy, which in this casé beil
type safety.

But what do we mean by type safety? For high-level languages,

there are two main approaches to formalizing type soundpregs
erties:syntacticand semantic The difference between the two is
not (merely) one of proof technique; they are different kindsesf
sult.

ings of programp Specifying and Verifying and Reasoning about
Programs—Mechanical verification, Specification techaegqu F.3.3 In the syntactic approach [31], one defines a small-stepaeper
[Logics and meanings of prograinStudies of Program Constructs— tional semantics that gets stuck (makes no transition) ifigora-
Type structure; D.3.4Hrogramming LanguagésProcessors— tions that are considered to be bad. One then shows ‘pre®erva

Compilers; D.2.4 $oftware Engineerirj]g Software / Program
Verification—Correctness proofs, formal methods

General Terms Languages, theory

Keywords Compiler verification, type soundness, relational para-

metricity, separation logic, proof assistants

1. Introduction

The last decade has seen an explosion of research into tyjeersy
formal verification and certification for low-level code hited by

the original papers on typed assembly language [21] andf{roo

carrying code [23], and fanned by the development of sejparat
logic [29]. These developments have been driven by varioces:
partly by need (as well as the traditional arguments in fawafu

some level of formal verification as a way to develop software

that actually works, the internet has made checkable safety

mobile code more than a purely academic problem); partly by
improvements in the technology of theorem provers and model

checkers; and partly by the realization that conservagighriques
for verifying comparatively simple properties, such asnferof
memory safety, can be much easier and more efficient to apaty t
complete methods for showing full functional correctneshilst
still offering useful real-world guarantees. Another dhriy force
has been the (occasionally surprising) discovery thathgtype
theoretic and semantic ideas that were originally develaopéairly
abstract settings, or for very high-level programming lzagges,

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’07 July 14-16, 2007, Wroclaw, Poland.
Copyright© 2007 ACM 978-1-59593-769-8/07/0007. . . $5.00

and progress’ — that every typeable configuration is eithepgrly
terminal or makes a transition into another typeable corditipn —
and can then deduce that well-typed programs don'’t get sGick
tactic type soundness is often fairly straightforward takeksh, but
is a rather weak and fragile result. Firstly, it is closekytito the
particular set of syntactic rules that define the type sysfdmare is
no notion of the meaning of a typé as a property of phrases be-
yond ‘being assignable the typeusing this particular set of rules’,
so there is no real notion of what it is that the types are ssgqhto
ensure. Secondly, the introduction of stuckness into tleeatjpnal
semantics is something of a sleight of hand, changing ttgg-ori
nal problem to match the solution. For a simple type systethaan
high-level semantics, it seems reasonable to work withasyfar
(untyped) phrases that explicitly distinguishes, saycfioms from
integer constants, or even booleans and integers, and wgeish
stuck when one tries to apply an integer or increment a boolea
But this becomes less tenable when the type system is irdeénde
track more interesting properties, such as the use of lockbeo
reading and writing of particular parts of the store. Foratinly a
syntactic type soundness result then involves furthergésio the
operational semantics, to track extra information and ipbsadd
new stuck states. And the more sophisticated the analjisisnore
complex the instrumentation becomes. Furthermore, themof
error is not preserved by compilation: machine code doemhet-
ently distinguish code pointers, heap pointers, integeb®oleans;
no fault is raised by performing arithmetic on addresseshihv
one subsequently jumps or stofesnd compiled code, particularly
when optimized, often depends upon such possibilities.

1This is, of course, not strictly true. Operating systemsmseory man-
agement hardware to trap ‘illegal’ pointer dereferencimgumps to ad-
dresses in pages marked as ‘no execute’, floats are passpddialsreg-
isters, etc. But faults in compiled code certainly do norespond exactly
to errors in a high-level semantics, and a major goal ofcstagrification
should surely be to remove the need for such crude and expemgiamic
checks.

Itis, of course, possible to mitigate the effect of instrumation
by also proving an erasure theorem. Even then, howeverhthe t
orem about low-level code is tied to the syntactic definitdérthe
high-level language and its type rules. This is a significdmrt-
coming: compiled code nearly always relies upon a runtinge sy
tem and library routines that are written directly in a lcawél lan-
guage, and we would also like to be able to link soundly wittleco
compiled from other high-level languages. Without an iretefent
low-level characterization of the intended behaviouraperties of
code compiled from phrases with a particular high-levektyihe
implementer of a library function or support routine writtie C or
assembler does not know what specification his code shoudd me
in order to interoperate properly with the output of the cderp

The semantic approach to type safety, by contrast, givesaame
ing to each type that is independent of any particular satlekrfor
assigning those types to program phrases. The meaning pka ty
will be (roughly) a set of values with some property; for aegiv
language and set of types, there can be many different aslgé
varying degrees of precision, for soundly assigning typesnms.

Interpretations of types as predicates over some untypettimo
of computation have a long history. Particularly relevat ds is
the work of Appel and his collaborators [6, 5, 7, 30, 3] on Faamn
tional Proof Carrying Code (FPCC). The idea of FPCC is to give
semantics to high-level types as low-level specificatioqessed
in a general program logic. This low-level logic is not tiedany
language or type system, and proofs that a particular pitlceve
level code satisfies such a specification can be generatbe cked
independently from any particular compilation schemehdiligh
the concept of FPCC is clearly parametric in just what sgbetyp-
erty one wishes to prove and check, the only instance thathily
been studied and implemented so famiemory safetyensuring
that ‘illegal’ accesses to memory cannot occur. The interadino-
tion of which accesses are legal is formalized by making theg-0
ational semantics of the low-level machine get stuck whetate
locations are dereferenced, just as in a syntactic approach

Memory safety is undeniably important, but is not the same as
type safety. Program fragments that satisfy an interpogtaif a
type in the style of previous work on FPCC, whilst memory safe
can easily fail to have other rather basic properties onddvexr
pect, and on which security and compiler correctness caardep
For an ML-like source language, for example, a machine code
function that simply returns its argument will be in the npte-
tation of the type(int — int) — int, since if one passes in the
address of some closure, one will get back something th&ssloo
like an integer. But allowing the identity function to be givthat
type, whilst not leading to illegal memory accesses, wonidlr
idate very basic reasoning principles for ML programs that a
used by both programmers and compilers: not only are statist
formations such as common subexpression elimination ngelon
behaviour-preserving, but the observable results of aicpdat
compiled binary can vary according to where it is loaded imme
ory, the behaviour of the allocator, etc. Such possibditi@late
most language-based encapsulation or security properiesan
think of.

In the present paper, we work with a semantic interpretaifon
high-level types that uses binary relations, rather tharupredi-
cates, over low-level code and data. One should think okthela-
tions as carving out both a set of valumw a type-specific notion
of equality on that set of values; these are defined togeteause
which values are judged to be in the set associated with some ¢
pound type will depend on both the sets of values and the iegual
relations associated with its components. The crucial catieat
for functions: two valuesf and f’ are in the relation interpreting
A — B iff for any z andz’ that are related by the interpretation of
A, fz and f' 2’ are related by the interpretation 8. The set of

values having a particular type is given by the diagonal phtihe
associated relation, sp has typeA — B just whenf is related
to itself by the interpretation of — B; this is the usual notion
of ‘logical’ relation [26]. Interpreting types as (partiaduivalence)
relations over an untyped model of computation also has @ lon
history, but previous work has generally taken the untypedieh
either to be rather high-level and abstract (e.g. a domaarétic
model of the untyped lambda calculus) or low-level but witk u
interesting fine structure (e.g. Gédel numbers for pargalrsive
functions). The difference here is that we work with a lowele
untyped model in whose structure we most certainly areésted,
viz.machine code (albeit very idealized), and we work with adran
lation into that model that is representative of realistimpilation
schemes (albeit for a rather toy language).

The main contribution of the present paper is not so much the
actual type soundness result, but rather its general formntlae
methodology used for proving it. We build on our earlier work
modular specification and verification of a simple memorgpadt
tor [10]. The results have been formalized and checked ilCtha
proof assistant and most of the formal parts of the presepense
presented as extracts from the proof script, using Coq syStame
further discussion may be found in a companion tech rep@it [1

2. Low-Level Target Machine

We work with the same straightforward operational semarftic

an idealized assembly language that we used in our earligt wo
on allocation [10]. There is a single datatype, the natuativers,
though different instructions treat elements of that typecade
pointers, heap addresses, integers, etc. The heap is éututtibn
from naturals to naturals and the code heap is a total fum@toon
naturals to instructions. Computed branches and addriéssatic
are perfectly allowable. There is no built-in notion of akdion
and no notion of stuckness or ‘going wrong’: the only obsklwa
behaviours are termination and divergence.

The instruction set of the machine is given by Coq inductive
definitions for lvaluesdes), rvalues §rc) and instructionsiqistruc-
tion). Destinations are either immediate (a fixed memory locjtio
indirect or indirect with a fixed offset. Sources are litevalues,
immediate (the contents of a fixed memory location), indic
indirect with an offset.

Inductive dest: Set:=
| d_imm: nat — dest |d_-ind : nat — dest
| d_indo: nat — nat — dest

Inductive src: Set:=
| s_cst: nat— src
| s_ind : nat — src
| s_indo: nat — nat — src.

Inductive instruction: Set:=
|i_halt : instruction
| i_move: dest— src — instruction
|i_add: dest— src — src — instruction
|i_sub: dest— src — src — instruction
| i_mult: dest— src — src — instruction
| i_branch: src — instruction
|i_brz: src — src — instruction
|i_brnz: src — src — instruction

| s_imm: nat — src

The mutable heap of our machine is a function from naturals to
naturals, which we represent using a record type with asifigid
and an implicit coercion t¢nat — nat):

Record state: Set:= State{ fun_of_state:> nat — nat}.

Definition update(s:statg (n:naf) (v:nat) : state:=
State(fun m=- if beg.nat n m then v else s)n

We now give the meaning of sources, destinations, and tiggesin
step semantics of instructions themselves. The latteras option
type: eitheNone indicating termination, o8omés’, pc’), giving
a new heap and a new program counter:

Definition sem.dest(dedes) (s:statd :=
match de with

| d_imm n=-n

|d_indn=-sn

| d_indo ofs n=-s n+ ofs
end

Definition sem.src (sr:src) (s:state :=
match sr with

|s_cstn=-n

|s-immn=-sn

|s.ind n=-s(sn

| s-indo ofs n= s (s n+ ofy)
end

Definition sem.instr (ins.instruction (s:state (pc.naf) :
option(statex nat) :=
match ins with
|i_halt =- None
|i_move de s
Somgupdate gsemdest de y(semsrc sr 9, S pg
|i_add de srl sr=
Someupdate gsemdest de y((sem.src srl § + (semsrc sr2
s)), S pg
|i_sub de srl sr
Some(update s(sem.dest de y((semsrc srl 9 - (sem.src sr2
9)), S pg
| i_mult de srl sr=
Somgupdate gsemdest de y((semsrc srl § x (semsrc sr2
s)), S p9
| i_branch sr=- Some(s, sem.src sr 9
| i_brz srscrut srtarg=
Someg(s, match semsrc srscrut s
with 0 = semsrc srtarg s| S_ = S pc enjl
| i_brnz srscrut srtarg=
Someg(s, match semsrc srscrut s
with 0 = S pc| S_ = semsrc srtarg s enyl
end

A program is simply a total function from labels (naturals) t
instructions, whilst a program fragment is a partial fuotfrom
labels to instructions:

Definition program: Set:= nat — instruction
Definition program_frag : Set:= nat — option instruction

Definition program_extendsfrag (p:program) (pf:program frag)
:=V n, match pf n with Nones> True
| Some = (pn=i)end

We now defineksteptermsaying when a configuration comprising
a progranp, a heaps, and a program countéterminates irk steps
(the termination guaranteestfuct K tells Coq that the function is
structurally recursive oR). Theterminategredicate then holds of
configurations that terminate in some number of steps:
Fixpoint kstepternik:nat) (p:program (s:state (I:naf) { struct i :
Prop:=
match k with
| O = False
| (S) = match seminstr (p) s | with
| None=- True
| Some(s’, I') = kstepterm jp s’ I
end
end

Definition terminates p s 1= 3 k, kstepterm k p s |

The major idealizations compared with a real machine are tha
we have arbitrary-sized natural numbers as a primitive, tygtber
than fixed-length words, and that we have separated codeadad d
memory. Note also that there are no registers; we will sinapligpt
a convention of using some low-numbered memory locatiorss in
register-like fashion.

3. Source Language

The source language is that ehile-commands with natural,
boolean and pair-valued expressions and a type systemupat s
ports ‘strong updates’. The syntax and type rules of theuagg
are shown in Figure 1. Expressions are typed in the conteat of
typing I" for the variables. Commands, which may update variables
with values of different types, are given both a pretypind apost-
typing, recording their assumptions and effects on thesstor

The Coq translation of Figure 1 is fairly direct. We use naltur
numbers instead of names for variables and have made elenfent
EnvTyperepresenting store types, be total functions on the natura
(we will pass a size as well later on). Note the use of simple
dependent typing for expressions and commaBag: env tis the
type of expressions that have typi store environmengny and
similarly for commands.

Inductive ExpType Set:=
| Tint: ExpType
| TBool: ExpType
| TPair : ExpType— ExpType— ExpType

Notation "a** b" := (TPair a b) (at level55).
Definition EnvType= nat — ExpType

Definition envupdatdenvEnvTypg m a:=
(fun n= if beg_nat n m then a else eny.n

Inductive Exp: EnvType— ExpType— Set.=

| Elnt: ¥V eny, nat— Exp env Tint

| EBool: V eny, bool — Exp env TBool

|Eld:Venvmah:envm=a), Expenva

| EAdd: V env, Exp env Tint— Exp env TIint— Exp env TiInt

| EGt: ¥V eny Exp env TInt— Exp env Tint— Exp env TBool

| EPair : V env a h Exp env a— Exp env b— Exp en\(TPair a
b)

| EFst: VenvabExp enTPairab) — Expenva

| ESnd: V env a h Exp en(TPair ab) — Exp env b

Inductive Command EnvType— EnvType— Set:=

| CAssign: V env m aExp env a— Command enyenvupdate
envma

| CSeq: V envl env2 enyommand envl env2> Command
env2 env3— Command envl env3

| CIf : ¥V envl env2Exp envl TBool> Command envl env2
Command envl env2 Command envl env2

| CWhile: ¥ env, Exp env TBool— Command env env-
Command env env

4. Compilation

The compiler comprises a pair of functions traversing esgins
and commands in the high-level language to produce listevof |
level instructions. The correctness of the generated celiesron
it being linked with a memory allocator module satisfyinge th
specification given in our previous work [10]. We call theoaktor
to get a statically fixed-size block for storing variablesd aam
evaluation stack and for dynamically allocating the sterdgr
values of pair types. Data structures generated by progiraims

A

Expression types int | bool | A x A’

Store types ' = wvi:A,...,un: A,
Expressions
TkFei:int T'Fes:int
T + true: bool T + false: bool I'kn:int Nr:Akax: A Tk e +es:int
Thep:int TFey:int T'Fei:A1 Thkea:As The: Al X Ao The: Al X Ay
T'Fe; > es: bool Tk (e1,e2) : A1 x As T'Fme: Ay T'F me: As
Commands

I'z:Ate:B
Nz:AF (x:=¢): T,z : B

T+ e: bool

THC T THCo: I

ey :T TVFCy: T
FFC1;CQIF”
I'ke:bool THC:T

It if e then Cq else Cs : IV

I'FwhileedoC: T’

Figure 1. The While Language

language can involve sharing, which complicates theiareeltion.
We have not yet proved either garbage collection or anycstati
memory management scheme, so for now just let the compildel co
leak memory.

We adopt a convention of using memory locations 0 to 9 in
a register-like fashion. The calling convention for the noeyn
allocator is that a return address is passed in locatiorete@)
and the size of the block requested is passed in locatiangte();
a pointer to the free block is returned in location 0. Code ited
from phrases of our language relies on locatiomi/(eg holding
a pointer to the base of a block of memory, the first part of Wwisc
used to store the global variables and the remainder of whicked
as a stack during the evaluation of expressions. Locatiapied
points to the next free stack slot. Figure 2 shows a typigaduaof
the store at run-time. We re-emphasize that the storeaity just
a function from naturals to naturals: the intended integtien of
some of them as pointers, booleans, etc. as shown in the figure
just what we are going to formalize by giving a semantics pety

[T T el [T

globals stack

The code for pushing a natural numipeonto the stack does an
indirect store of the constantto the memory location pointed to

LI TP

by spregand incremenspreg

Definition int_code n:=
(i—-move(d-ind spreg (s-cst n) ::
(i_add (d_imm spreg (s_.imm spreg (s_cst1)) ::
nil.

retreg
argreg
workreg
spreg
envreg

pseudo-registers

The code for boolean constants is similar, pushing 1 for ame
0 for false. The value of a variable is obtained by indirection
throughenvregwith an offset:

Definition id_code n:=
(i—move(d-ind spreg (s-indo n envrey) :
(i_add (d_imm spreg (s_.imm spreg (s_cst1)) ::
nil.

The sequence for the greater-than test uses subtractiorar®Ve
working with natural numbers and a subtraction operatdntiedds
zero when the result would otherwise be negative, thus viereit
leave zero (representing false) or some strictly positaieie, all

of which we take to represent true. This encoding, or retidina

of the booleans will be made more explicit when we consider th
semantics of types later.

Definition gt_code:=

Figure 2. Memory Layout

(i_sub(d_imm spref (s_.imm spref (s_cst2)) :
(i_sub(d_ind spreg (s_ind spreg (s-indo 1 spreg) ::
(i—add (d_imm spreg (s_.imm spreg (s_cst1)) ::

nil.

The code for creating a pair has to allocate a fresh conspmll,
two values off the stack and write them into the fields of thes ne
cell and finally push the address of the new cell back to theksta
is parameterized by the starting address of the code fragfabal,
and the entry point of the allocation routiradloc.

Definition pair_code label alloc=
(i_sub(d_imm spref (s_.imm spre{ (s_cst2)) :
(i—-move(d_imm argreg (s-cst2)) ::
(i_move(d_imm retreq (s_cst(4 + label))) :

(i_branch(s_cst allog) ::

(i—-move(d_ind retreg (s-ind spreg) ::
(i_move(d-indo 1 retreg) (s_indo 1 spreg) ::
(i—-move(d_ind spreg (s-imm retreg) ::

(i—add (d_imm spreg (s_.imm spreg (s_cst1)) ::
nil.

The code sequences for addition and for projections areteuinit
but may be found in the technical report.

We now show the function for compiling an express®mgiven a
starting address for the generated cddeel and the address of the
allocation routinealloc. compile.expreturns a list of instructions
and the next free code address. Toenpile expressiorfunction
wraps the compilation of a complete expression, decremg iie
stack pointer at the end.

Fixpoint compile.exp (envEnvTypé (a:ExpTyp¢ (EExp env &
(label allocnat) { struct & : list instruction x nat=
match e with
| EInt _ n = (int_code nint_code size+ label)
| EBool _ b = (bool_code hbool_code size+ label)
|Eld - n_ _ = (id_code nid_code size+ label)
| EAdd_ el e2=
let (code’label’) := compile.exp el label alloc in
let (code” label”) := compile.exp e2 label’ alloc in
(code’++ code” ++ add_code
add_code size+ label”)
|EGt_ el e2=
let (code’label’) := compile.exp el label alloc in
let (code” label”) := compile_exp e2 label’ alloc in
(code’++ code” ++ gt_code gt_code size+ label”)
| EPair - _ _ el e2=
let (code’label’) := compile.exp el label alloc in
let (code” label”) := compile_exp e2 label’ alloc in
(code’++ code” ++ pair_code label” allog
pair_code size+ label”)
|EFst_ _ _e' =
let (code’label’) := compile.exp e’ label alloc in
(code’++ fst_code fst_.code_size+ label’)
|[ESnd- _ _e' =
let (code’label’) := compile.exp e’ label alloc in
(code’++ snd_code snd.code size+ label’)
end

Definition compile.expression env ge:Exp env alabel alloc:=
let (code label) := compile_exp e label alloc in
(code++ ((i-sub (d_imm spreg (s.imm spred (s_cst 1)) :
nil), S labe).

The compilefunction compiles a command:

Fixpoint compile(envl env2 EnvTyp¢ (c:Command envl eny2
(label allocnat) { struct ¢ : list instruction x nat=
match ¢ with
| CAssignn m_e=-
let (code’label’) := compile.expression e label alloc
in (code’++ (i-move(d_indo m envrel(s_ind spreg
2nil), 1 +label’)
|CSeq. - _clc2=
let (code’label’) := compile c1 label alloc in
let (code” label”) := compile c2 label alloc in
(code’++ code”, label”)
|CIf __bclc2=
let (code’label’) := compile_expression b label alloc in
let (code” label”) := compile c1(1 +label’) alloc in
let (code™ label™) := compile c2(1 + label”) alloc in
(code’ ++ (i_brz (s_ind spreg (s_cst (1 + label™)) :: nil)
++ code” ++ (i_branch(s_cst label™) :: nil) ++

code™, label™)
| CWhile_b cl=
let (code’label’) := compile_expression b label alloc in
let (code” label”) := compile c1(1 + label’) alloc in
(code’ ++ (i_brz (s_ind spreg (s-cst(S label) :: nil) ++
code” ++ (i_branch(s_cst labe) :: nil), 1 +label”)
end
We remark that (even without mutable pairs) the compilses
build datatstructures with non-trivial sharing. For exdephe
program

X:=(3,4) ;YV:=(X,X)

generates twaons cells, with both fields of the second (which is
pointed to from the variabl&”) pointing to the first (which is also
pointed to fromX).

5. Relational Assertions

The next subsection gives a slightly informal account ofithea
of relational specifications, which is followed by the morgailed
Coq version.

5.1 Overview of relations for specification

The central idea of our approach to specifications in genaral
the interpretation of types in particular, is that they apew in-
variance, independence, or ‘how much difference makesferdif
ence’. With our representations, there is no way that arsete
like ‘location 74 holds a boolean’ can be interpreted as dipate
on the contents of location 74: whatever valués stored there,
it is always interpretable as either a natural number, adaoobr
even a pointer. How the value is interpreted depends on hatll it
be used, and the difference between a piece of code thated typ
assuming location 74 holds a natural and one that is typadrass
ing that it holds a boolean is that the lat&tould only care about
whether the value is zero or not. In other words, the code esa h
two different observable behaviours: one in the casedhatzero
and the other one fall the non-zero values. But the notion of ob-
servable behaviour needs to be defined carefully. Consitiat we
might mean by saying a piece of code is supposed to be both en-
tered and exited with a boolean in location 74. This spedifina
is met by code that does nothing, or which doubles the valT@in
(both of which implement, or realize, the identity on booigga Af-
ter the exit point however, we certainban place a piece of code
that behaves differently according to whether or not thigahialue
v was, say42. Clearly, we have to restrict the notion of allowable
observation to take types into account, which we do by satjiat
assuminghat the code at the exit point has the same behaviour for
all non-zero values in location 7thenthe code at the entry point
promises to have the same behaviour whatever non-zeroigdlue
74 whenit is called. We make this a bit more precise as follows.
Define[bool] to be the binary relation

[bool] “ {(n,n')|(n=n"=0)V(n>0An">0)}
capturing when two natural numbers are equivalent whernr-inte
preted as boolean values. NowyrifC N x N andx € N, define a
relation onstates

(z—r) def {(5,8") | (sz, s'x) €r}

So, in particular(74 — [bool]) relates two states when they hold
values in location 74 that afool]-related.

We now define the ‘perp’ operatdfr) T, taking a binary relation
on states to one on pairs of programs and code pointers? I
statex state thenR " relates two such pairs just when they behave
equivalently whenever they are started in states thakRarelated.
The notion of equivalent behaviour we use hemgsi-termination

defined using théerminategpredicate from Section 2:

de
=< (D), 0. 1) | ¥(5,5) € R,
terminatep s | < terminate’ s' I’}

RT

One can think of the elements &' as ‘test contexts’ foR. The
statement that a program fragmenboth expects and produces a
boolean in location 74 can now be expressed as:

Vp p’, program extendsfrag p M
= program_extendsfrag p’ M
= ((p,exit), (p/, exit)) € (74 ~— [bool]) "
= ((p, entry), (p, entry)) € (74 — [bool]) "

To be able to reason locally and modularly about relations on
stores, we also need some handle on whpelnt of the store a given
relation depends upon, which we formalize in terms of iraacie
under change. I. C N andso and s; are states, then define
so ~r1 s1tomeanvx € L, spx = s1z. (In Coq, we represent
subsets by maps interop and defineequpto: (nat — Prop) —
state — state — Prop to mean~.) Now, though we shall refine
this definition shortly, say that a pair of sets of locatidiis L")
supports a relatiof® C statex statewhen

Y(s0,50) € R, V5157, (so ~1 s1)A(sy ~r 81) = (s1,51) € R

In other words, if one starts with two states in the relatioentany
modifications outside the support yield another pair ofestat the
relation. If Ry is supported by L1, L)) and R by (L2, L3), then
define a form of separating conjunction [24] by

def RiNRy if Ly ﬂng(Z)andL’lﬂL’Q:(D
Riohk = { 0 otherwise
So two states are iR; ® R» when they are in botlk; and R, and
the supports are disjoinR; ® R is supported byL; U Lo, L] U
L5). The separating conjunction allows concise specificatiamt
abbreviates many ‘absence of aliasing’ conditions thativbe ex-
plicitin a first-order assertion language. It proves evememseful
when we reason about modules: the private invariants of faedu
will be captured by existentially quantifying over supmattrela-
tions about which clients know nothirexceptthat their support is
disjoint from that of the client’s own store.

Unfortunately, the above notion of support is slightly toeak.
Consider a relationfList74) expressing that two states have equal
linked lists of integers starting from location 74. Assumithe
usual representation, this will relakeand s’ when either s 74
and s’ 74 are both zeropr they are both non-zerg; (s 74)
s’ (s’ 74), and (inductively) there are equal linked lists starting at
(s 74)+1and(s’ 74)+1. Thus the sets of locations that get looked
at depend on the contents of those stores. So we have toeeaiac
of locationsL C N with functionsA : state— P(N). We restrict
attention toaccessibility map§l2], thoseA for which

Vss', 8 ~A(s) s = As=As

Intuitively, this says thatd ‘supports itself’, and makes relation
~a, defined bys ~4 s’ & s ~4() s’ an equivalence relation.
We will build our specifications out of state relations suped by
pairs of accessibility maps, making much use of (a genextiz
of) the separating conjunction.

5.2 Relations for specifications, formally

In this section we present the formal definitions of the iefat and
operations on relations with which we will be working. Thesfir
extra complexity compared with the semi-formal accountvabo
is that relations orstates and naturals will both generally depend
on a pair of programs, because they will involve sets of code
pointers that have particular behaviours, which only maersse

relative to some program. The second bit of structure wd sbatl

is an admissibility property, to justify recursive reasaniabout
program fragments and definitions of relations. We get tlyis b
working with relations that are the limits of sequences-afidexed
approximants, where the natural numberepresents a number of
steps in the operational semantics [7, 3, 9]. Thus our nstian
‘equivalent’ are expressed as the limit of ‘indistinguisteafor up

to k steps’ ask goes tow. As more steps allow more distinctions
to be made, it is natural to work with indexed relations that a
antimonotonic irk.

Here is the program- and step-indexed definition of relatiam
natural numbers. ANatrel is a record containing two fields. The
first, NRrel is the carrier: the relation itself. The secohRcond
is aproof that the relation is antimonotonic in the indiex

Record Natrel : Type:=
mKNR{NRrel:> program — program — nat — nat — nat —
Prop;
NRcond: Vpp jkxx,j<k— NRrelpp kxx —
NRrelp p'j x x}.

The carrier of d\Natrelis a (curried) relation on pairs of programs
and triples of naturals. The first two arguments are the reftraght
programsp andp’. The third argument is the step indésyat. The
fourth and fifth arguments are the naturals on the left andigjne,
xandx’. There is an order and an equality Natrels:

Definition Natrelleq(R1 R2: Natrel) :=
Vpp'knn,Rlpp knn'—R2ppknn:

Definition Natreleq Nal Na2= Natrelleq Nal Na2A Natrelleq
Na2 Nal

We can also lift non-indexed relations on natural$lairels:

Definition Natrel_lift (R: nat—nat — Prop) : Natrel.
intro R.
refine(MkNR(funp p’ k= R)).
tauto,

Defined.

The definition ofNatrellift makes use of the interactive proof
language of Coq: theefinetactic is used to define the carrier of
the lifted relation, leaving a hole (the underscore) for fecond
proof component that is needed to show that the monotonicity
requirement is satisfied. Rather than being constructeticakp

the proof is then filled in interactively, in this simple casest

by calling the automatic tactimuta We will henceforth elide the
proof components of applications wffine

Here is the definition of the typéccrel of supported, indexed
relations onstates. An Accrelis a record comprising the relation
itself (ARrel), two accessibility mapsARaccandARacc), a proof
(ARcond that the accessibility maps are accessibility maps and do
support the relation, and a proohRindexell that the relation is
antimonotonic in the step index:

Record Accrel: Type:= mkAR{
ARret>program—program— nat— state—state—Prop;
ARacc: state— state— nat — Prop;

ARacc'’: state— state— nat — Prop;
ARcond Vpp' ks0s0 sl1sl’
(ARrel p p’ k sO s — equpto(ARacc sO sQ's0 s1
— equpto(ARacc’ s0 sOQ's0’ s1’
— (ARrelpp’'ks1s A
(¥ n, ARacc s0 s0’ R~ ARacc s1 s1'hA
(¥ n, ARacc’ sO sO’' n— ARacc’ s1s1' iy
ARindexedVpp'jkss)
j<k— ARrelpp ' kss— ARrelpp’jss’}.

The carrier relates two programg @n the left,p’ on the right), a
step index and two states ¢n the left,s’ on the right).ARaccis

the accessibility map giving the locations that are relewamthe
left (i.e. in states), whilst ARacc'is associated with the state on the
right. Note that these are actually dependent on two steddser
than one as in our earlier overview; this turns out to be teecthy
smoother, though we won't really exploit the extra gengydiere.
ARcondcombines conditions on accessibility maps and on the
relation. Ignoring the program and index dependence itsead
follows: if we start with two statesOands0Q’ in the relation, and
slandsl’ are two other states, withl equal tosO up to the left
hand accessibility map (applied to the states we started) vand
s1’ equal tosO’ up to the right hand accessibility map, then three
things happen. Firstlglandsl’ are also in the relation - this says
that the accessibility maps do support the relation. Sedhedeft
hand accessibility map yields the same set of locations \ghem
sOands0’ as arguments as it does when giwdnandsl’ - this is
the accessibility map condition. Finally, the same holdhefother
accessibility map. Compared with our informal account weeha
tied the maps and the relations closer together by only rieqgui
the accessibility map condition on states in the relation.

Accrek also have an equality and a partial order, involving
implication between the carrier relatiomsd a containment the
other way between the accessibility maps:

Definition Accrelleq(Arl Ar2: Accre)) :=
Vpp kss,Arlpp kss'—
((Ar2pp'kss) A
(Vn, ARacc Ar2s s’ n— ARacc Arlss’'p A
(V¥ n, ARacc’ Ar2 s s’ n— ARacc’ Arls s’ n)).

Definition Accreleq Arl Ar2= Accrelleq Arl Ar2A Accrelleq Ar2
Arl.

We defineEmptyrel(q : Prop) to be theAccrel with empty sup-
ports and a constant relation determinecdgbin particular, Toprel
:= Emptyrel Trueis the constant true relatioRelConjis the (or-
dinary) additive conjunction oAccrek, which allows sharing, so
does not require disjoint supports:

Definition nunion(al a2: nat—Prop) n :=
(@lnv(azn.
Definition RelConj(Arl Ar2: Accre) : Accrel
intros. refine(mkAR
(funpp’ kss'= (Arlpp kss) A
(Ar2pp’kss))
(fun s s’= (nunion(ARacc Arl s g’
(ARacc Ar2s 9))
(fun s s’= (nunion(ARacc’ Arl s §
(ARacc’ Ar2s 9)) - .)....
Defined.

RelTensois the multiplicative, separating conjunction:

Definition ndisj (al a2: nat—Prop) :=
vn,“(@lnAa2n).
Definition RelTenso Arl Ar2: Accre) : Accrel
intros. refine(mkAR
(funpp kss'=
(Arlpp kss)A(Ar2pp' kss) A
(ndisj(ARacc Arl s §'(ARacc Ar2 s 9) A
(ndisj (ARacc’ Arl s §f (ARacc’ Ar2 s g)))
(fun s s’= (nunion(ARacc Arlsg' (ARacc Ar2s9))
(fun s s’= (nunion(ARacc’ Arl s §f (ARacc’ Ar2 s g))) -).

Defined.

Both RelConjandRelTensoare associative and commutative with

stored in location in sand in location’ in s’ are related by the
Natrel, r.

Definition ptsto(l I :nat) (r : Natrel) : Accrel
intros.
refine(MkAR(funpp’' kss'=rpp k(sl) (s'I'))
(fun s s’ n=n=l)
(funss'n=n=I") _). ...
Defined.

Notation "[m, n]|=>r":= (ptsto m n j (at level80).
Notation "m|->r" := (ptsto m m (at level80).

The definition of the ‘perp’ operation is the place where wekena
careful use of the step-indexing.

Definition Perp(R:Accrel) : Natrel.
intros. refingd mkNR
(funpp kll'=Vjss,j<k—Rppjss—
(((kstepterm j p s)l— (terminates p’ s’)) A
((kstepterm j p’ s’ I) — (terminates p s))))

Defined.

Note the way in which the indices are used: two laligl$ are in
Perp Rat indexk just when for any strictly smallef, and states
related byR at indexj, if jumping to! terminates withinj steps,
then jumping tol’ terminates insomenumber of steps, and vice
versa. The limit ofPerp Rask goes tav can be seen to agree with
the definition of R that we gave earlier. As one would expect,
Perpis contravariant:

Lemma Accrelleq Perp: V R1 R2
Accrelleqg R1 R2- Natrelleq(Perp R2 (Perp R).

We define ‘#' as Coq notation fdelTensarand ‘!’ as notation for
Perp

6. Specification of Allocation

We briefly recall the specification of a memory allocator rmedu
from our previous work [10]. There are three entry points: fo
initialization, forallocation, and fordealloation. We concentrate
on allocation here, as we will not be using the other routines

After the allocator is initialized, the heap will, like Gade di-
vided into three parts: the pseudo-registers 0 to 9, theopéohging
to the allocator, and the part belonging to the rest of thgnam.
Ownership of blocks is transferred between the allocatar its
clients by calls talloc anddealloc The allocator promises not to
(observably) read or write the part belonging to the cliewtsilst
the clients promise not to read or write the part belonginghe
allocatorandnot to care about either the location or the initial con-
tents of the blocks they are given.

We capture this intent by saying that a modulewith entry
point alloc meets the specification of an allocator if there exists
a supported relatioRa— the allocator’s private invariant — such
that for all programg, p’ extendingM,,, for all k, for all Rc(client
invariants) and for ath (block sizes),

(R-al Ran Re) pp’ k alloc alloc,

where

Definition R_aret (n:nat) : Accrel
intro. refine(mkAR
(funpp' kss'=s0>9As'0>9)
(funss'l=(1=0)v(>s0Al<n+s0))
(funss’'l=(1=0vV(I>s'0Al<n+s'0))__)....

Toprel as unit (amongst other properties whose formal statements Defined.

we elide). Theptsto relation is like the ‘points to’ predicate of
separation logic. It relates two stateands’ just when the values

Definition R_al (RaAccrel) n (RcAccre)) :=
1((0|->(R_aret n# T_rel (1to4) (1to 4) #Rc# Ra))

(1 |-> Natrel_lift (fun Il =1=nAT =n))) equal as values of typEPair a bin statess ands’ when the cons
#T_rel (2to4) (2to 4) #Rc# Ra). cells pointed to by in s and by!’ in s’ have first components that
are equal as values of typeand second components that are equal
as values of typ®. The use of the additive conjunctioRelConj
allows the storage used by the values pointed to in the firdt an
second components to share with one another, but note thzwee
not allowed sharing with the cell itself (because of the safien
built into the definition ofpexists.

The support part of théccrel returned bytyperefsenfollows
pointers to capture what parts of the two heaps are looked at i
judging relatedness; this is a function of both the actualeain
the heap and the type at which we are comparing them.

Having defined the relational interpretation of e&otpTypewe
need to define the relational interpretation oEavType capturing
the notion of equality on the vector of globals, the evalhrastack
and the heap (as was illustrated in Figure 2). This is builbyp
induction over the length of the environment (globals-Hstatak-
ing care to maintain the separation between individualrenment
entries and between the environment and the heap, whibstialy
sharing within the heap. To this end, we first define a functia
builds anAccrel by folding pexistsover the vectors of length
(starting at locationg and!’, respectively) in the two states, ad-
L o ditively conjoining all the results of applying a functighto the
7. Formalizing and Verifying Type Soundness existentially quantified values stored in the correspopdilements
of the vectors.

This means two calls talloc must behave the same if they are
started in initial states, s’ that are related by all of the following
disjoint relations: FirstRa so the allocator’s invariant holds before
the call. SecondRg so the client’s invariant holds before the call.
Third, T_rel (2to 4) (2to 4). This is the ‘true’ relation with support
{2, 3,4} on bhoth sides, so these locations are not looked at by the
allocator. Fourth, location 1 holds the valuein both s and s’.
Fifth, the contents of location 0 on the two sides are codatpts
that promise to behave the samétiéyare started in states related
by all of the following: (i)Ra so the allocator invariant holdster

the call. (ii)Rc so the client invariant holds after the call. (ili)rel
(1to 4) (1to 4), so these locations are not looked at by the return
addresses, i.e. they may be modified by the allocatorR{i@yet n
which expresses that location 0 on each side points to a libck
sizen that doesn't overlap the pseudo-registers.

In previous work, we described a very naive allocation medul
that satisfies this specification; we have since verifiedalstightly
less trivial implementation that uses a free list satisfies same
spec.

This section presents the actual type soundness theoretheor

compiler. We start with a useful (if unusual-looking) camstion Fixpoint pexconj(n m | I' : nat) (f : nat — nat — nat — Accrel)
onAccrek: (r:Accre) {struct 1} : Accrel:=
Definition pex(l I' :naf) (h: nat — nat — Accre)) : Accrel match n with
intros. refine(mkAR |0=r _
(funpp' k(ss'statg = h(s)(s'I')pp' kss'A | Sn’= pex| I (fun(x1 x2: nat) = pexconj n'(Sm (S) (S
- (ARaccth(sl) (s'I'))ss') A I") f (RelConj(f x1 x2 mr))
= (ARacc'(h(sl) (s'I'))ss'I)) end
(funss’'n=(n=1) v (ARacch(sl) (s'I')) ss'n)])] _
(funss'n=(n=I")Vv (ARacc'(h(s) (s'I'))ss'N) _). ... Using pexconjto fold typerefsemwe can define the relational
Defined. interpretation of an environment tymv of lengthn, starting at

locationsbaseandbase!

Notation " pexists’(x,y) @ (I ,m),g":= . s

(pex | m(fun x y= g)) (at level200, ...). Defumtmn_typesem rienvEnvTypé base basel=
Thepexistsoperation captures a pattern of existential quantification __Pexconj r0base base(fun x1 x2 m=- typerefsenfenv m x1 x2
over values in the store that is common in definkagrek: Toprel

Sz, ([I,1] &> [1,27]) # g(x,). Figure 3 shows an example of two states related by

Statess ands’ are in this relation when locatiorisand!’ in s, s’ typesemt env20 22
respectively hold some valuesz’ andthe relationg(x, z’) holds

7 where we assumenvmaps offsets to types as follows:
on some disjoint part of the stofe.

— TBool
— (TInt** TBoo)**(TInt** TBoo))
— Tint
N

TInt** TBool

Now we define the semantics of types as relations over values
and stores of the low-level machine:

Fixpoint typerefsentt : ExpTypg (I I’ : naf) {struct § : Accrel:=
match t with
| TInt = Emptyrel(l =)

WNEFO

Having defined relations accounting for the structure ofehei-
ronment and heap, we now need to define the contracts for the

| TBool= Emptyrel((I=0) A (I'=0) v (1720) A (I"#0)) pieces of compiled code that come from typed expressions and
,| TPair a b= pexistyva, va’) @ (, I'), pexist(vb, Vb,) @@© commands in the source language. These will invdtees, ex-
, ST), RelConj(typerefsem a va via(typerefsem b vb vp pressing that jumping to certain pairs of addresses wilthégui-
end termination provided that the initial states are in a certelation,
Two states are related byperefsem t | [justwhen and’ areequal ~ Which will involve atypesentor the heap plus something about the
as values of type in those states. So: (i) Two values are equal as PSeudo-registers being suitably related. _
natural numbers just when they are equal, independent dftivea Here is the formal definition of the prerelation for commands
states are. (i) Similarly, two values are equal as bool@asisvhen and expressions that expect to be entered @ii¥sizeglobal vari-
they are in[bool], again independent of the states. (iignd!’ are ables typed according to thénvType emand an empty stack
(which is allowed to grow up tenaxstackt+ 1 locations), assum-
2The reason for this definition, due to Matthew Parkinsorhas supported Ing all?cators related biraand starting addressesvbaseanden-
relations do not admit general existential quantificatipexistsis a form vbase'for the two environmentsRois an arbitrary relation on the
of quantification in which the witness is uniquely deterntinéixing the parts of memory which doot belong to either the allocator or the

support. compiled code:

Figure 3. Typesem Example

Definition R_comp(Ra Ro: Accre) envsize env envbase envbase’
maxstack=
let sp:= (envsizet envbasgin
let sp’:= (envsize+ envbas€' in
I (T_rel (Oto4) (Oto 4)
(envreg|-> (Natrel_lift (fun|1I' = | = envbaseA I' = en-
vbase)))
(spreg|-> (Natrel_lift (funIl' =1 =spA I =sp?)))
#typesem envsize env envbase envbase’
T_rel (sp to(maxstacksp)) (sp’ to (maxstacksp’))
#Ra# Ro).

As explained in Section 5.1, however, the entry point of theec

for a command or expression will only be in tlecompcorre-
sponding to the pretype under the assumption that the coiie at
exit point satisfies a suitable relation for the posttyper. ¢mm-
mands, which always expect to be entered with an empty staek,
assumption on the exit will just be another instanceRo€omp

For expressions, however, we expect a value of a particyperto

be left on the stack. That's expressed by the following vert
R_compwhich adds the requirement that there be values related by
the interpretation of typeon the stacks:

Definition R_comp exp_post(Ra Ro: Accrel) envsizelenv: En-
vType t envbase envbase’ maxstaek
let sp:= (envsizet envbasgin
let sp’:= (envsize+ envbas€' in
I (T_rel (Oto4) (Oto 4)
(envreg|-> (Natrel_lift (fun |’ = | = envbaseAn I' = en-
vbase)))
(spreg|-> (Natrel_lift (funIl' =1 =S spAl' =S sp)))
typesem(S envsize (envupdate env envsizg énvbase en-
vbase’
T_rel ((S sp to (maxstack- sp) ((S sp) to (maxstack- sp’))
#Ra# Ro).

Note the way in which the first stack location is treated atvifére
the(envsize-1)-th variable. At last, we can give the type soundness
theorems for our compiler. There is one for expressions aedar
commands. Here is the one for expressions:

Theorem comp expressionthm:
V (alloc alloc’ : naf) (Ra Ro: Accrel) (p p’ : program)
(envbase envbaseaiaf) (envsizenat)
(envEnvType (a:ExpType (EExp env

v (h_envenwv.ok_exp e envsige
(maxstacknat) (h_stackstack ok_exp e maxstagk
(k label label’ naf)

(codelist instruction) (code'list instruction
(hcode code= fst (compile_exp e label allo})
(hcode! code’=fst (compile_exp e label’ alloc)),

program.extendsfrag p (fragfromlist code labgl

— program_extendsfrag p’ (fragfromlist code’ label

— (VnRg (R.alRanR¢pp’ k alloc alloc’)

— (R_compexp_post Ra Ro envsize env a envbase envbase’
maxstackp p’ k (length codet label) (length code’+ label’)

— (R_comp Ra Ro envsize env envbase envbase’ makxgtack
(1 +K) label label'.

where the functiorfragfromlistgenerates program.frag from the
instruction list returned bgompile_exp placing the first instruction
at the giverlabel argument.

Here is the theorem for commands:

Theorem comp.thm:
V (alloc alloc’ : nat) (Ra Ro: Accre)) (p p’ : program)
(envbase envbasa&iaf) (envsizenat)
(envl envEnvTypg (c:Command envl eny,2

V (h_envenw.ok ¢ envsize
(maxstacknat) (h_stackstack ok ¢ maxstack
(label label’: nat)
(codelist instruction) (code'list instruction
(hcode: code= fst (compile c label alloy)
(hcode’: code’= fst (compile c label’ alloc)),

program_extendsfrag p (fragfromlist code labgl

— program.extendsfrag p’ (fragfromlist code’ label)

—Vk (WnRc (R.alRanRgp p’ kalloc alloc’)

— (R-comp Ra Ro envsize env2 envbase envbase’ makstack
p’ k (length coder label) (length code™ label’)

— (R-comp Ra Ro envsize envl envbase envbase’ makstack
p’ (1 +K) label label).

Let’s look at the theorem for commandsomp.thm first to see
what it says. Ignoring the checks thratixstacks sufficiently large
and that only variables numbered less tlemvsizeare used, the
essence is the following:

e For anyCommanglc, typeable with a pretypenvland a post-
typeenv2

¢ if we compilec twice, once starting dabeland once starting at
label’, linking the first with an allocator atlloc and the second
with an allocator aalloc’,

o then if we put those bits of code into contexts such tiktc
andalloc’ are equivalent memory allocators (according to the

specification of allocation) and the exit points of the twts loif
compiled code behave equivalently in all states relatechby t
interpretation of the posttypenv2

¢ then the entry points of the bits of compiled code behavevequi
alently in all states related by the interpretation of thetype
envl

The above captures lots of information about what the belavi
of the code compiled front can depend upon. For example, it
is independent of where the compiled code is placed, where th
allocator is, where the environment is stored, what addsetise
allocator returns and what their original contents are, hoaleans

or pairs are represented in the initial state, and so on.

We have a strong (extensional) form of memory safety, shgwin
that the compiled code doesmbservablyread or write any loca-
tions that it shouldn’t. The preservation of aRyp, for example,
means that storage disjoint from both the allocator’s peivstore
and the while-program’s heap neither affects the behawboode
compiled from a command, because the poststates will be-equi
alent forany initial Rg nor is affected by it, because aRo (in
particular extensions of singleton relations) will be greed. Note
that the notion of independence really is more liberal thaaige
intensional one: code that messes with unowned memoryidosat
but restores them before exit meets the specification, as e
that builds literally different, but equivalent accorditmthe types,
heap structures according to the contents of unowned meiBeey
[11] for more on how preservation of sets of relations carresp
not only complete independence, but also read-only an@erity
effects on particular storage locations.

The theorem for expressions is similar to that for commands,
except that the environments in the pre and post relatiaystbe
same and the postrelation assumes that there is a valueed typ
the stack.

The proofs of the above theorems are basically inductioes ov
the source language, with each case being dealt with by fdrwa
Hoare-style reasoning, similar to that of our previous work
allocation. The indexing structure on relations is used jjughe
case forCWhile which uses mathematical induction: we assume
that the label at the entry of the loop satisfies the desirkxdioa
at indexk, and then examine the loop body to show that the entry
then satisfies the same relation to index 1.

The total size of the Coq development is around 8500 lines,

which includes the low-level machine, metatheory of sufgabre-
lations, the language and compiler and the actual proofereTis
scope for significant simplification here though. We aré stim-
paratively inexperienced Coq users and were developindhmfic
the theoryin the prover, rather than doing post-hoc formalization
of a completed paper development, so there is a lot of juniADN
in those 8500 lines. We use little automation so far, but tlo®fp
scripts for particular segments of assembly code are ajfrabodut
an order of magnitude shorter than in our earlier efforteyaging
around 20 (instead of 200) lines of proof for each assemlily la
guage instruction.

8. Discussion

We have presented a semantic interpretation of the types of a[s]

high-level language as relations over configurations ofaalével
machine, and used that to formulate and prove type correxioie
a compiler.

A crucial feature of our approach is that the semantics of a

type is a relation on low-level stores that makes no furtieéerr
ence to the original source language type. One might hateads
defined a ‘represents’ relation between high-level valueslaw-
level stores; two low-level stores could then be said to héveg
lent at a type if there exists a high-level value such thal lstdres

represent that value. We do not take such a definition as tprémi
(though we used something like it in some of the intuitivelaxp
nations in Section 7) for a couple of reasons. Firstly, itsdnet
fit with our ‘foundational’ goal of compiling different higtevel
type systems to a common low-level assertion language in auc
way that we can justify cross-language linking and specifytime
systems. Secondly, for languages with features such asthagter
functions and references, the question of what equal mednigha
level types is about as hard, and addressed using the satienal
techniques, as what we do at the low-level. Rather than aarist
naive denotational semantics for the high-level languége re-
fine (quotient) it with a state-based logical relation [128Hdhen
construct a relation between the refined model and the losV, lexe
just construct low-level relations directly. This shoullfimately
prove simpler and more useful, since encapsulation prdvide
language features (e.g. local references) will be treat¢ie same
way as encapsulation used in implementing language feaerg.
environments of closures, memory management). But thhomly
be tested when we consider more complex source languages.

The treatment of termination in the current work could be im-
proved. Our use of perping means that an always-divergenmt pr
gram fragment satisfies any pre-post relation pair, irresge of
its effects on the store. This is normal for interpretatiohtypes in
languages with recursion or looping, but evaluatiorxpbressions
in this particular source language actually always terteimaOne
could make the low-level semantics closer to fully absttgctis-
ing relational total correctness judgements. There iscdediweak-
ness in the specification of allocation, which also allowsrfon-
termination. These differences do not substantially weake type
soundness result, but restrict our ability to prove progtansfor-
mations. Type soundness is about programs being in the mhago
part of the relational interpretations of their types, being re-
lated to themselves. But we also want to prove thifierentpieces
of machine code are equivalent modulo the contract of aquarti
lar type. If the allocator is assumed to be able to divergd,we
make different calls to the allocator in the two programentluch
proofs don’t go through. Our more recent work uses an altwcat
specification that does enforce totality, so that we canoreabout
equations on low-level code.

There is a much related work, of which we can only mention
a fraction. Compiler correctness has been studied for at fear
decades [20] with notable early formalizations in the Belyrore
prover [33]. More recent examples include Leroy’s verifiene
piler for a C-like language [19]. Full compiler correctnéssnore
ambitious than type safety, but these projects relate leghl-to
low-level without the explicit language-independent I@vel con-
tracts that we are formalizing here.

Reasoning directly about unstructured low-level code aE®
a long history, going right back to Floyd's original work. &dea
of developing type systems for low-level programs, andemgsg
typing through compilation, is more recent [21] and hasaated
much attention in the context of proof-carrying code [23] veell
as in more traditional compiler certification. That lowdéwypes
might be given a semantic interpretation using more primikbg-
ical assertions is the key idea fafundationalproof-carrying code

Modelling types by partial equivalence relations goes back
long way [28, 4, 18, 2, 17] and, amongst many other thingsa-par
metric logical relations have recently been used by maniyaasit
in reasoning about program equivalences in the presendgluét
order functions and dynamically allocated store [25, 27, R2la-
tional program logics have been developed by several retsee
[1, 8, 32].

The other great influence on this work is separation logic [24
29], though we work with relations rather than predicates| ase

explicit higher-order parameterization over frames ircplaf the
more usual ‘tight’ interpretation. Recent work on separmaiiogic
typing with higher order frame rules [15] and extensionswgiian-
tification [14, 16] are technically very close to the presamotk,
though working on paper and with slightly higher-level laages.
Hoare type theory (HTT) is a related mixture of polymorphisia-
pendent type theory and separation-logic style reasoitiogtaside
effects [22].

Thanks to Josh Berdine and Andrew Kennedy for useful discus-
sions and feedback on earlier drafts of this work.

References

[1] M. Abadi, L. Cardelli, and P.-L. Curien. Formal paranietr
polymorphism.Theoretical Computer Sciencg21, 1993.

[2] M. Abadi and G. D. Plotkin. A PER model of polymorphism and
recursive types. liProc. 5th IEEE Symposium on Logic in Computer
Science (LICS)1990.

[3] A. Ahmed. Semantics of Types for Mutable StatehD thesis,
Princeton University, 2004.

[4] R. M. Amadio. Recursion over realizability structurdsformation
and Computation91(1), 1991.

[5] A. Appel. Foundational proof-carrying code. Rroc. 16th IEEE
Symposium on Logic in Computer Science (LICBD1.

[6] A. Appel and A. Felty. A semantic model of types and maehin
instructions for proof-carrying code. Froc. 27th ACM Symposium
on Principles of Programming Languages (POP2000.

A. Appel and D. McAllester. An indexed model of recursive
types for foundational proof-carrying cod&CM Transactions on
Programming Languages and Systems (TOP|.2%}), 2001.

N. Benton. Simple relational correctness proofs fotistanalyses
and program transformations. Rroc. 31st ACM Symposium on
Principles of Programming Languages (PORI2004. Revised
version available fromhttp://research.microsoft.com/
“nick/publications.htm.

(7]

[8

—_

[9

—

N. Benton. A typed, compositional logic for a stack-bdsdstract
machine. IrProc. 3rd Asian Symposium on Programming Languages
and Systems (APLAS)olume 3780 of_ecture Notes in Computer
Science2005.

N. Benton. Abstracting allocation: The new new thing Aroc.
Computer Science Logic (CShjolume 4207 ofLecture Notes in
Computer Science006.

[20]

[11] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Read
writing and relations: Towards extensional semantics féece
analyses. IProc. 4th Asian Symposium on Programming Languages
and Systems (APLAS)umber 4279 in Lecture Notes in Computer

Science, 2006.

N. Benton and B. Leperchey. Relational reasoning in minal
semantics for storage. IRroc. 7th International Conference on
Typed Lambda Calculi and Applications (TLCAplume 3461 of
Lecture Notes in Computer Scien@805.

[12]

[13] N. Benton and U. Zarfaty. Formalizing and verifying samtic type
soundness for a simple compiler (preliminary report). ekl

Report MSR-TR-2007-31, Microsoft Research, March 2007.

B. Biering, L. Birkedal, and N. Torp-Smith. Bl-hyperckines and
higher-order separation logic. Proc. 14th European Symposium on
Programming (ESORVolume 3444 ol ecture Notes in Computer
Science2005.

[14]

[15] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics opamation
logic typing and higher-order frame rules. Rroc. 20th IEEE
Symposium on Logic in Computer Science (LI@BP5.

[16] L. Birkedal and H. Yang. Relational parametricity areparation
logic. InProc. 10th Conference on Foundations of Software Science
and Computation Structures (FOSSAC®)lume 4423 ofLecture
Notes in Computer Scienc2007.

[17] L. Cardelli and G. Longo. A semantic basis for QuestPtoc. ACM
Conference on LISP and Functional Programming (LFE990.

[18] F. Cardone. Relational semantics for recursive types@ounded
guantification. InProc. International Colloquium on Automata,
Languages and Programming (ICALRplume 372 olLecture Notes
in Computer Scien¢el989.

[19] X. Leroy. Formal certification of a compiler back-end; program-
ming a compiler with a proof assistant. Broc. 33rd Symposium on
Principles of Programming Languages (PORRDO6.

[20] J. McCarthy and J. Painter. Correctness of a compileafithmetic
expressions. liMathematical Aspect of Computer Scieneglume 19
of Proceedings of Symposia in Applied MathemathslS, 1967.

[21] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sgst F
to typed assembly languagdCM Transactions on Programming
Languages and Systems (TOPLAXY3), 1999.

[22] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. stbact
predicates and mutable ADTs in Hoare type theoryPtac. 16th
European Symposium on Programming (ESORJume 4421 of
Lecture Notes in Computer Scien@907.

[23] G. Necula. Proof-carrying code. Froc. 24th ACM Symposium on
Principles of Programming Languages (POPRILY97.

[24] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasgmibout
programs that alter data structures.Piroc. 10th Annual Conference
of the European Association for Computer Science Logic JCSL
volume 2142 ol ecture Notes in Computer Scien@901.

[25] A. M. Pitts and I. D. B. Stark. Operational reasoning fienctions
with local state. InHigher Order Operational Techniques in
SemanticsCUP, 1998.

[26] G. D. Plotkin. Lambda definability and logical relat&anTechnical
report, Department of Al, University of Edinburgh, 1973.

[27] U. S. Reddy and H. Yang. Correctness of data represensat
involving heap data structure§cience of Computer Programming
50(1-3), 2004.

[28] J. C. Reynolds. Types, abstraction and parametricrpoiphism.
Information Processing '831983.

[29] J. C. Reynolds. Separation logic: A logic for shared able data
structures. InProc. 17th IEEE Symposium on Logic in Computer
Science (LICS)2002.

[30] G. Tan, A. Appel, K. Swadi, and D. Wu. Construction of ansmtic
model for a typed assembly language. FAroc. 5th Conference on
Verification, Model Checking, and Abstract InterpretatidMCAI),
2004.

[31] A. K. Wright and M. Felleisen. A syntactic approach tgéysound-
ness. Information and Computatignt15(1):38-94, 15 November
1994.

[32] H. Yang. Relational separation logitheoretical Computer Science
2004. Submitted.

[33] W. D. Young. A mechanically verified code generatdr. Autom.
Reason.5(4), 1989.

