
Relational Semantics for Effect-Based Program Transformations
with Dynamic Allocation

Nick Benton Andrew Kennedy
Microsoft Research, Cambridge
{nick,akenn}@microsoft.com

Lennart Beringer Martin Hofmann
LMU, Munich

{beringer,mhofmann}@tcs.ifi.lmu.de

Abstract
We give a denotational semantics to a region-based effect system
tracking reading, writing and allocation in a higher-order language
with dynamically allocated integer references.

Effects are interpreted in terms of the preservation of certain bi-
nary relations on the store, parameterized by region-indexed partial
bijections on locations.

The semantics validates a number of effect-dependent program
equivalences and can thus serve as a foundation for effect-based
compiler transformations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Dynamic storage
management; F.3.2 [Logic and Meanings of Programs]: Seman-
tics of Programming Languages – Denotational semantics, Pro-
gram analysis; F.3.2 [Logic and Meanings of Programs]: Studies
of Program Constructs – Type structure

General Terms Languages, Theory

Keywords Type and effect systems, region analysis, logical rela-
tions, parametricity, program transformation

1. Introduction
Many analyses and logics for imperative programs are concerned
with establishing whether particular mutable variables may be read
or written by a phrase. For example, the equivalence of while-
programs

C ; if B then C’ else C’’ =
if B then (C;C’) else (C;C’’)

is valid when B does not read any variable which C might write.
Hoare-style programming logics often have rules with side condi-
tions on possibly-read and possibly-written variable sets, and rea-
soning about concurrent processes is dramatically simplified if one
can establish that none of them may write a variable which another
may read.

Effect systems [13, 17] are static analyses that compute upper
bounds on the possible side-effects of computations. The literature
contains many effect systems that analyse which storage cells may
be read and which storage cells may be written (as well as many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’07 July 14–16, 2007, Wroclaw, Poland.
Copyright c© 2007 ACM 978-1-59593-769-8/07/0007. . . $5.00

other properties), but few satisfactory accounts of the semantics
of this information, or of the uses to which it may be put. Note
that because effect systems over-estimate the possible side-effects
of expressions, the information they capture is of the form that
particular variables will definitely not be read or will definitely not
be written. But what does that mean?

Thinking operationally, it may seem entirely obvious what is
meant by saying that a variable X will not be read (written) by
a command C, viz. no execution trace of C contains a read (resp.
write) operation toX . But, as we have argued before [4, 7], such in-
tensional interpretations of program properties are over-restrictive,
cannot be interpreted in a standard semantics, do not behave well
with respect to program equivalence or contextual reasoning and
are hard to maintain during transformations. Thus we seek exten-
sional properties that are more liberal than the intensional ones yet
still validate the transformations or reasoning principles we wish to
apply.

In a previous paper [8] we successfully solved this problem for
a simple imperative language with global references. The main idea
of that work was that a computationM preserves a store relationR
provided this relation is preserved by all the side-effecting opera-
tions thatM may possibly invoke. In particular, the operation “read
fromX” preserves all store relationsR with the property that sRs′

implies s(X) = s′(X). The operation “write to Y ”, on the other
hand, preserves all store relations R with the property that sRs′

implies s[Y :=n]Rs′[Y :=n] for all n ∈ Z. Thus, if an effect sys-
tem ascribes only the effects “read from X” and “write to Y ” to a
computation M then M should preserve all the relations that en-
joy both of those properties. This idea extends to a compositional
semantics which validates a list of effect-based program transfor-
mations, among them lifting semantically pure computations out of
functions, and eliminating dead code.

In the present work we substantially extend this idea by allow-
ing dynamic allocation of references. Accordingly, effects can no
longer refer to explicit references (“read from X”) but abstract
from individual references using the concept of regions as first in-
troduced by Lucassen and Gifford [17]. A major motivation in that
work was in parallelizing compilation, though such optimizations
were not presented, still less formalized. In our work we validate
program equivalences for sequential programs that depend on fine-
grained effect information, as in the rule for commuting computa-
tions (in C-style notation):

x=m1();y=m2();m3(x,y); ≡
y=m2();x=m1();m3(x,y);

which requires that m1 does not read from or write to a region that
m2 writes to and vice versa. Notice that the values x, y that are
computed in different order may themselves be functions possibly
embodying (freshly allocated) references.

Notice that the equivalences we prove are generic, in that they
hold for all terms with a particular effect-annotated type. Many
interesting concrete instances can be shown using existing tech-
niques, but devising schematic equational principles, driven by
types rather than terms, is more challenging.

Another important addition to our earlier work is the inclusion
of Lucassen-Gifford’s “masking rule” which under certain circum-
stances allows one to remove manifestly present effect information.
Effect masking was used later by Tofte and Talpin in region-based
memory management [28] in order to statically infer sound deallo-
cations. Here, we are not interested in such intensional properties
of programs; rather, the masking rule merely hides non-observable
side-effects, validating more program equivalences than would oth-
erwise hold.

Our approach to the soundness of the effect analysis and to the
correctness of effect-dependent program equivalences is to inter-
pret program properties (which may be expressed as points in an
abstract domain, or as non-standard types) as binary relations over
a standard, non-instrumented (operational or denotational) seman-
tics of the language. Unlike in our earlier work on global store these
binary relations are now parameterized over a partially-ordered set
of region layouts (“parameters”); a Kripke-style quantification over
parameters is used in the definition of the relation for function
types.

We stress that the contribution of this paper is not merely
methodological; as far as we are aware the program equivalences
in Section 7 are genuinely new results. Note that these results are
phrased in terms of observational equivalences and effect typing,
thus do not refer in their statement to concepts introduced here.
Of course, the relational semantics which is the main technical
contribution plays a crucial role in the proofs of these statements.

Acknowledgements: Support by MS Research Cambridge, EU
grant EmBounded IST-FET 510255 (Hofmann), EU grant MO-
BIUS IST-FET-15905 (Beringer, Hofmann) is gratefully acknowl-
edged.

2. Base Language
We study a monadically-typed, normalizing, call-by-value lambda
calculus with dynamically allocated integer references. We thus ex-
tend the language from [8] but do not include recursion, references
to types other than integers, etc. The use of monadic types, making
an explicit distinction between values and computations, simplifies
the presentation of the effect system and cleans up the equational
theory of the language. A more conventionally-typed impure cal-
culus may be translated into the monadic one via the usual ‘call-
by-value translation’ [6], and this extends to the usual style of pre-
senting effect systems in which every judgement has an effect, and
function arrows are annotated with ‘latent effects’ [29].

We define value types (ranged over by A and B), computation
types TA and contexts Γ as follows:

A,B := unit | int | bool | ref | A×B | A→ TB

Γ := x1 : A1, . . . , xn : An

Variables are always given value types, as this is all we shall need
to interpret a CBV language. There are two forms of typing judge-
ment: value judgements Γ ` V : A and computation judgements
Γ ` M : TA, defined inductively by the rules in Figure 1. Note
that the types on λ-bound variables make typing derivations unique
and that addition and comparison are just representative primitive
operations. To save space we omit grammars for values V and com-
putations M as they can be inferred from the typing rules.

3. Denotational semantics
Since our simple language has no recursion, we can give it an el-
ementary denotational semantics in the category of sets and func-
tions.

We axiomatise states as follows, assuming a set L of locations
and a set S of states. There is a constant ∅ ∈ S, the empty state.
If s ∈ S then dom(s) ⊆ L and if ` ∈ dom(s) then s.` ∈ Z is a
value; if v ∈ Z, ` ∈ dom(s) then s[` 7→v] ∈ S; finally new(s, v)
yields a pair (`, s′) where ` ∈ L and s′ ∈ S. These operations are
subject to the following axioms:

dom(∅) = ∅
dom(s[` 7→v]) = dom(s)
(s[` 7→v]).`′ = if ` = `′ then v else s.`′

new(s, v) = (`, s′) ⇒ dom(s′) = dom(s) ∪ {`}∧
` 6∈ dom(s) ∧ s′.` = v

This abstract datatype can be implemented in a number of ways,
e.g., as finite maps.1

If L is a set of locations, typically finite, and s, s′ ∈ S then we
define

s ∼L s′ ⇔ dom(s) ⊇ L ∧ dom(s′) ⊇ L ∧ ∀`∈L.s.` = s′.`

The semantics of types is now given as follows:

[[unit]] = {?} [[int]] = Z [[bool]] = B
[[ref]] = L [[A×B]] = [[A]]× [[B]]

[[A→ TB]] = [[A]] → [[TB]] [[TA]] = S → S× [[A]]

The interpretation of the computation type constructor is the
usual state monad. The meaning of contexts is given by [[Γ]] =
Πx∈dom(Γ)[[Γ(x)]], and we can then give the semantics of judge-
ments

[[Γ ` V : A]] : [[Γ]] → [[A]]

and [[Γ `M : TA]] : [[Γ]] → [[TA]]

inductively, though we omit the completely standard details.
Figure 2 defines sequential composition as syntactic sugar and

contains a few example programs with their types. The first, Vsum

computes the sum of its three arguments using a reference to store
an intermediate result. Here int3 abbreviates int × (int × int)
and we use an obvious pattern-matching notation to avoid accumu-
lation of projections. The second example generates a counter ob-
ject initialised at zero. Note that each evaluation of Mcnt produces
a different counter. The next, Mmem is a memoised version of the
successor function. It should be clear how to extend this example
to a memo-functional that can memoise an argument function. The
last example,Mbuf is a function that returns the previous argument
it has been called with, or zero on first invocation.

4. Effect system
We now present our effect analysis as a type system that refines the
simple type system by annotating the computation type constructor
with information about whether a computation may read, write, or
allocate within a region.

Formally, we assume a (possibly infinite) set Regs of region
identifiers (regions for short) ranged over by r. Types and typing
judgements will involve only finitely many regions. Such finite sets
are ranged over by Π. Primitive effects are al r (allocation in region
r), wr r (write access to region r), and rd r (read access to region r).
An effect, ranged over by ε, is a finite set of primitive effects. If ε
is an effect, we define the reads of ε by rds(ε) = {r | rd r ∈ ε} and
similarly its writes wrs(ε) and its allocations als(ε).

1 This is not quite the free implementation because of the new operation.

Γ ` n : int Γ ` b : bool Γ ` () : unit Γ, x : A ` x : A

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 + V2 : int

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 > V2 : bool

Γ ` V1 : A Γ ` V2 : B

Γ ` (V1, V2) : A×B

Γ ` V : A1 ×A2

Γ ` πi V : Ai

Γ, x : A `M : TB

Γ ` λx : A.M : A→ TB

Γ ` V1 : A→ TB Γ ` V2 : A

Γ ` V1 V2 : TB

Γ ` V : A

Γ ` val V : TA

Γ `M : TA Γ, x : A ` N : TB

Γ ` let x⇐M inN : TB

Γ ` V : bool Γ `M : TA Γ ` N : TA

Γ ` if V thenM else N : TA

Γ ` V : ref

Γ ` read(V) : Tint

Γ ` V1 : ref V2 : int

Γ ` write(V1, V2) : Tunit

Γ ` V : int

Γ ` ref(V) : Tref

Figure 1. Simple computation type system

M1;M2 := let ⇐M1 inM2 (sequential composition)

Vsum := λ(x, y, z):int3.let x⇐ref(x+ y) in read(x) + z : int3 → Tint

Mcnt := let x⇐ref(0) in (λ : unit.read(x), λ : unit.write(x, read(x) + 1)) :

T ((unit→Tint)× (unit→Tunit))

Mmem := let x⇐ref(0) in let y⇐ref(1) in

λa:int.if a = read(x) then read(y) else write(x, a); write(y, a+ 1); read(y) : T (int→ Tint)

Mbuf := let x⇐ref(0) in λa:int.let o⇐read(x) in write(x, a); o : T (int→ Tint)

Figure 2. Example programs

We define refined value types ranged over by X and Y :

X,Y := unit | int | bool | refr | X × Y | X → Tε Y

A refined computation type takes the form TεX with X a refined
value type. A refined typing context Θ is a finite map from variables
to refined value types. The well-formedness judgements Π ` ε ok ,
Π ` X ok and Π ` Θ ok mean that only regions declared in Π
appear in ε,X and Θ. There is a subtyping relation on refined types,
axiomatised in Figure 3. The erasure map, U(·), takes refined types
to simple types (and contexts) by forgetting the effect annotations.
We omit its obvious definition.

The refined type assignment system is shown in Figure 4. Note
that the subject terms are the same (we still only have simple types
on λ-bound variables).

Lemma 1. If Π;Θ ` V : X then U(Θ) ` V : U(X), and
similarly for computations.

The last rule in Fig. 4 is called the masking rule which allows
one to remove all reference to a region r in the effect of a computa-
tion provided this region is mentioned neither in the result type X
of that computation nor in the type of any of its free variables. In
the original work on region-based memory management [28] such
regions could be safely deallocated upon completion of that com-
putation. We do not consider deallocation in our system, and indeed
the refined type system does not affect the semantics of computa-
tions in any way. Instead we use the masking rule to enhance appli-
cability of effect-based program equivalences.

Note that any term typable in the original language can be typed
in the refined system using a single region r and all effects set, i.e.,
Π = {r} and ε = {rd r,wr r, al r} throughout. Of course, in order to
maximise applicability of program equivalences and of the masking
rule it is in the interest of the programmer or of an automatic type
inference (which we do not consider here) to seek refined typings
that use more than one region.

4.1 Example programs
Recall the example programs from Figure 2. These can be typed as
follows.

Vsum : int
3 → T{al r,rd r} int

Mcnt : T{al r} ((unit→T{rd r} int)× (unit→T{wr r} unit))

Mmem : T{al r} (int→ T{wr r,rd r} int)

Mbuf : T{al r} (int→ T{wr r,rd r} int)

The function Vsum can even be typed as

Vsum : int
3 → T∅ int

Thus will be (correctly) regarded as pure by our analysis. Unfor-
tunately, the masking rule does not apply to the type of the pure
computation Mmem. Indeed, if it did, the impure Mbuf which has
the same type as Mmem would be falsely given a pure typing.

X ≤ X

X ≤ Y Y ≤ Z

X ≤ Z

X ≤ X ′ Y ≤ Y ′

X × Y ≤ X ′ × Y ′

X ′ ≤ X Tε Y ≤ Tε′ Y
′

(X → Tε Y) ≤ (X ′ → Tε′ Y
′)

ε ⊆ ε′ X ≤ X ′

TεX ≤ Tε′ X
′

Figure 3. Subtyping refined types

Π;Θ ` n : int Π;Θ ` b : bool Π;Θ ` () : unit

Π ` X ok

Π;Θ, x:X ` x : X

Π;Θ ` V1 : int Π;Θ ` V2 : int

Π;Θ ` V1 + V2 : int

Π;Θ ` V1 : int Π;Θ ` V2 : int

Π;Θ ` V1 > V2 : bool

Π;Θ ` V1 : X Π;Θ ` V2 : Y

Π;Θ ` (V1, V2) : X × Y

Π;Θ ` V : X1 ×X2

Π;Θ ` πi V : Xi

Π;Θ, x : X `M : Tε Y

Π;Θ ` λx : U(X).M : X → Tε Y

Π;Θ ` V1 : X → Tε Y Π;Θ ` V2 : X

Π;Θ ` V1 V2 : Tε Y

Π;Θ ` V : X

Π;Θ ` val V : T∅X

Π;Θ `M : TεX Π;Θ, x : X ` N : Tε′ Y

Π;Θ ` let x⇐M inN : Tε∪ε′ Y

Π;Θ ` V : bool Π;Θ `M : TεX Π;Θ ` N : TεX

Π;Θ ` if V thenM else N : TεX

Π;Θ ` V : refr

Π;Θ ` read(V) : T{rd r} (int)

Π;Θ ` V1 : refr Π;Θ ` V2 : int

Π;Θ ` write(V1, V2) : T{wr r} (unit)

Π;Θ ` V : int r ∈ Π

Π;Θ ` ref(V) : T{al r} (refr)

Π;Θ ` V : X X ≤ X ′

Π;Θ ` V : X ′

Π;Θ `M : TεX TεX ≤ Tε′ X
′

Π;Θ `M : Tε′ X
′

Π, r; Θ `M : TεX Π ` X ok Π ` Θ ok

Π;Θ `M : Tε\{rd r,wr r,al r}X

Figure 4. Refined type system

A schematic example for the use of the masking rule in the
spirit of Haskell’s “runST” [10] is as follows. Suppose that M is
a computation of an end result of type int employing on its way
a number of counters, i.e., invocations of Mcnt (and possibly other
stateful operations). We then get a type Tε int for M which can
then be improved to T∅ int assuming that no reference is made
to externally visible portions of the store (formally: the regions
mentioned in ε are disjoint from regions mentioned in the types
of free variables in M).

All these typings only use a single region which, however, is
arbitrary and can thus be chosen differently from regions used in
the context. For example, we have

let x1⇐Mbuf in let x2⇐Mbuf in (x1, x2) :

T{al r1 ,al r2} (J(r1)× J(r2))

where J(r) = int→ T{wr r,rd r} int.

Remark on polymorphism It would be natural to assign a region-
polymorphic type such as ∀r.T{al r} J(r) to Mbuf . In this paper we
refrain from considering polymorphism (at the level of regions,
effects or types) for the sake of simplicity. Our proof of type
soundness can be extended to the effect-polymorphic case quite
straightforwardly by interpreting polymorphic types as (possibly
infinite) families of monomorphic types, as in [5]. We expand this
a bit further in Remark 1 below.

5. Formal preliminaries
In our previous work [8] we approximated contextual equivalence
by a partial equivalence relation JXK for each refined typeX . In the
presence of dynamic allocation such a simple-minded setup will no
longer work and we move to a Kripke logical relation indexed by
store layouts which we refer to as parameters. Parameters introduce
(a) a ‘representation independence’ for state, capturing the fact that
behaviour is invariant under permutation of locations; and (b) a
distinction between observable and non-observable locations, as
expressed syntactically by the masking rule.

5.1 Partial bijections
Aspect (a) of parameters is expressed by assigning to each region
identifier a partial bijection between locations in the store.

Definition 1 (partial bijection). A partial bijection is a triple
(L,L′, f) where L,L′ are finite subsets of L and f ⊆ L × L′

such that (l1, l
′
1) ∈ f and (l2, l

′
2) ∈ f imply l1 = l2 ⇔ l′1 = l′2.

If t = (L,L′, f) is a partial bijection, we write dom(t) =
L,dom′(t) = L′ and refer to f simply by t itself. We let (`, `′)
denote the partial bijection ({`}, {`′}, {(`, `′)}), and let ∅ denote
the empty partial bijection.

Two partial bijections t1, t2 are disjoint if dom(t1)∩dom(t2) =
∅ and dom′(t1) ∩ dom′(t2) = ∅. In this case, we write t1 ⊗ t2 for

the partial bijection given by

t1 ⊗ t2 = (dom(t1) ∪ dom(t2),
dom′(t1) ∪ dom′(t2),
t1 ∪ t2)

Partial bijections are ordered as follows: t′ ≥ t if and only if
t′ = t⊗ t′′ for some (uniquely determined) t′′.

5.2 Parameters
For aspect (b) of parameters we introduce a special symbol τ 6∈
Regs to represent the part of the store arising from regions “masked
out” by the masking rule. Commands must not alter this portion
of the store at all. We will thus sometimes refer to τ as the silent
region. This intended meaning will become clear subsequently; for
now, τ is just a symbol.

We are now ready to give a formal definition of parameters.

Definition 2 (parameter). A parameter ϕ is a pair (Π, f) where

• Π is a finite set of regions,
• f is a function assigning to each region r ∈ Π ∪ {τ} a partial

bijection f(r) such that distinct regions map to disjoint partial
bijections.

• f(τ) = (L,L′, ∅) for some L,L′.

A parameter is meant to lay out regions in pairwise disjoint
parts of the store in two related computations. The partial bijections
relate corresponding locations and are used to interpret equality of
locations. Note that ϕ(τ) merely contains two sets of locations and
no “links” at all. The silent region represents a store portion that
must not be modified at all.

If ϕ = (Π, f) is a parameter, we refer to its components as
follows:

regs(ϕ) = Π

ϕ(r) =

�
f(r) when defined
∅ otherwise

dom(ϕ) =
S

r∈Π∪{τ} dom(ϕ(r))

dom′(ϕ) =
S

r∈Π∪{τ} dom′(ϕ(r))

Note that dom(ϕ) and dom′(ϕ) are both finite. We define Par(Π) =
{ϕ | regs(ϕ) ⊆ Π}. We also use the notation Π ` ϕ ok to mean
ϕ ∈ Par(Π). If ϕ and ϕ′ are parameters such that

dom(ϕ) ∩ dom(ϕ′) = dom′(ϕ) ∩ dom′(ϕ′) = ∅
then ϕ,ϕ′ are called disjoint and we write ϕ ⊗ ϕ′ for the obvious
juxtaposition of ϕ and ϕ′. Formally,

(Π, f)⊗ (Π′, f ′) = (Π ∪Π′, λr.(f r)⊗ (f ′r)) ∈ Par(Π ∪Π′)

Whenever we write ϕ ⊗ ψ then ϕ and ψ are presumed to be
disjoint from each other so, a statement like ∃ψ. . . . ϕ ⊗ ψ . . . is
understood as “there exists ψ disjoint from ϕ such that . . .ϕ ⊗
ψ. . . ”.

Each set Par(Π) is partially ordered by ϕ′ ≥Π ϕ ⇐⇒ ϕ′ =
ϕ⊗ ψ for some ψ.

If t is a partial bijection then [r 7→t] is the parameter ϕ ∈
Par({r}) such that ϕ(r) = t, ϕ(r′) = ∅ when r′ 6= r.

Thus, if ` 6∈ dom(ψ) and `′ /∈ dom′(ψ) then we can form
ψ⊗[r 7→(`, `′)] to add the link (`, `′) to r in ψ. Similarly, if r 6∈ Π,
we can form ϕ⊗ [r 7→∅] to initialise a new region r with ∅.

If Π, r ` ϕ ok then ϕ−r denotes the parameter such that
Π ` ϕ−r ok and

(ϕ−r)(r′) = ϕ(r′) when r′ 6= r
(ϕ−r)(τ) = ϕ(τ)⊗ (dom(ϕ(r)),dom′(ϕ(r)), ∅)

5.3 Store relations
The main ingredient of our semantics for effects is the preservation
of certain sets of relations on stores. We start by introducing the

notion of relations on stores that depend only on particular subsets
of locations in their domain and codomain.

Definition 3 (store relations). If L,L′ are sets of locations, a store
relation on L,L′ is defined as a nonempty relation R ⊆ S × S
such that whenever (s, s′) ∈ R and s ∼L s1 and s′ ∼L′ s′1 then
(s1, s

′
1) ∈ R, too. We write StRel(L,L′) for the set of all store

relations on L,L′.

Given such a relation, we now formalize what it means to
‘respect’ an effect ε under some parameter ϕ.

Definition 4 (relations and effects). Suppose Π ` ϕ ok and
Π ` ε ok . Let R be a store relation on dom(ϕ), dom′(ϕ). We
say that R respects ε at ϕ if it is preserved by all commands that
exhibit only ε on the store layout delineated by ϕ. Formally, we
define:

• R respects {rd r} at ϕ if (s, s′) ∈ R implies s.` = s′.`′ for all
(`, `′) ∈ ϕ(r);

• R respects {wr r} at ϕ if for all (s, s′) ∈ R and for all
(`, `′) ∈ ϕ(r) and v ∈ Z, we have (s[` 7→v], s′[`′ 7→v]) ∈ R;

• R respects {al r} always.

We then define the set RΠ
ε (ϕ) of all store relations that respect ε

at ϕ as follows:

RΠ
ε (ϕ) = {R ∈ StRel(dom(ϕ),dom′(ϕ)) | ∀e ∈ ε,R resp. e at ϕ}.

Unfortunately, we cannot track the allocation effect with rela-
tions; this will be done separately in the definition of the monad.

Finally, we introduce two additional bits of notation. If s, s′ ∈ S
we define

s, s′ |= ϕ ⇐⇒
dom(s) = dom(ϕ) ∧ dom(s′) = dom′(ϕ)

We also define the following:

s ∼ϕ s′ ⇐⇒ ∀r ∈ Regs.∀(`, `′) ∈ ϕ(r). s.` = s′.`′

Note that this notation does not constrain the values in the silent
region.

6. Logical Relation
This section defines the relational semantics of refined types. It thus
contains the main technical contribution of the paper.

Definition 5 (logical relation). For Π ` X ok and Π ` ϕ ok we
define a relation JXKΠϕ ⊆ JU(X)K× JU(X)K by

JXKΠϕ ≡ ∆JU(X)K when X ∈ {int, bool, unit}
JrefrKΠϕ ≡ ϕ(r)

JX × Y KΠϕ ≡ JXKΠϕ × JY KΠϕ
JX → TεY KΠϕ ≡ {(f, f ′) | ∀ ϕ′ ≥Π ϕ.∀(x, x′) ∈ JXKΠϕ′ .

(f(x), f ′(x′)) ∈ JTεY KΠϕ′}
JTεXKΠϕ ≡ {(f, f ′) | s, s′ |= ϕ⇒

∀ R ∈ RΠ
ε (ϕ).s R s′ ⇒ s1 R s′1 ∧

∃ψ∈Par(als(ε)). s1, s
′
1 |= ϕ⊗ ψ ∧

s1 ∼ψ s′1 ∧ (v, v′) ∈ JXKΠϕ⊗ψ
where (s1, v)=f s and (s′1, v

′)=f ′ s′}

We define JΘKΠϕ by JΘKΠϕ ≡ {(γ, γ′) | ∀ i. (γ(xi), γ
′(xi)) ∈

JXiKΠϕ} where Θ = x1 : X1, . . . , xn : Xn.

The definition of the logical relation on computation types de-
serves some explanation. First, it says that the store behaviour of

two related computations must respect all relations that are com-
patible with the declared effect, cf. [8]. Since these relations are
completely unconstrained on the silent region τ , this implies in
particular that the silent region may neither be read nor modified.
The existential quantifier asserts a (disjoint) extension ψ of the cur-
rent parameter ϕ which is to hold all newly allocated references,
hence ψ ∈ Par(als(ε)), cf. Def. 2. The result values (v, v′) are
then required to be related with respect to the extended parameter
ϕ⊗ψ. Note that if v and v′ contain newly allocated references then
(v, v′) ∈ JXKΠϕ will in general not hold.

The semantics of value types is monotonic with respect to the
ordering on parameters.

Lemma 2 (Monotonicity). Suppose Π ` X ok . If ϕ′ ≥Π ϕ then
JXKΠϕ′ ⊇ JXKΠϕ .

Proof. By induction on X .

Lemma 3 (Masking). Suppose Π ` X ok and Π, r ` ϕ ok . Then
JXKΠ,rϕ = JXKΠϕ−r, and likewise JTεXKΠ,rϕ = JTεXKΠϕ−r.

Proof. By induction on X . The cases where X is a basic type or
a product type are trivial and hence omitted. Note, though, that if
X = refr′ then r′ 6= r.

CaseX = X1 → TεX2. Suppose that (f, f ′) ∈ JXKΠ,rϕ and that
ϕ′ ≥Π ϕ−r and that (x, x′) ∈ JX1KΠϕ′ . Write ϕ′ = (ϕ−r)⊗θ and
put ψ = ϕ ⊗ θ. We have ψ ≥Π,r ϕ and (x, x′) ∈ JX1KΠ,rψ by the
induction hypothesis since ψ − r = ϕ′. Note that als(ε) ⊆ Π and
so Π ` θ ok . The assumption then gives (f v, f ′ v′) ∈ JTεX2KΠ,rψ

and thence (f v, f ′ v′) ∈ JTεX2KΠϕ′ as required, again by the
induction hypothesis and ψ − r = ϕ′.

Conversely, assume that (f, f ′) ∈ JXKΠϕ−r and that ϕ′ ≥Π,r ϕ

and (x, x′) ∈ JX1KΠ,rϕ′ . We have ϕ′ − r ≥Π ϕ − r and (x, x′) ∈
JX1KΠϕ′−r by the induction hypothesis. Therefore, the assumption
gives us (f x, f ′ x′) ∈ JTεX2KΠϕ′−r whence (f x, f ′ x′) ∈
JTεX2KΠ,rϕ′ again by the induction hypothesis and we are done.

Case Tε(X). Suppose that (f, f ′) ∈ JTε(X)KΠ,rϕ and R ∈
RΠ
ε (ϕ−r) (note that Π ` ε ok) and s, s′ |= ϕ−r and (s, s′) ∈ R.

Write s1, v = f s and s′1, v′ = f ′ s′. We also have s, s′ |= ϕ
by definition of ϕ−r. Now, R ∈ RΠ,r

ε (ϕ) since the masked out
region r is not mentioned in ε; therefore the assumption provides
us with ψ ∈ Par(als(ε)) disjoint from s, s′ such that s1, s′1 |= ϕ′

and (s1, s
′
1) ∈ R and s1 ∼ψ s′1 and (v, v′) ∈ JXKΠ,rϕ′ where

ϕ′ = ϕ ⊗ ψ. Now put ϕ′′ = (ϕ−r) ⊗ ψ = ϕ′−r. We have
s1, s

′
1 |= ϕ′′ and (v, v′) ∈ JXKΠϕ′′ by the induction hypothesis and

we are done.
Conversely, suppose that (f, f ′) ∈ JTε(X)KΠϕ−r and R ∈

RΠ,r
ε (ϕ) and s, s′ |= ϕ and (s, s′) ∈ R. Again, write s1, v = f s

and s′1, v′ = f ′ s′. We also have s, s′ |= ϕ − r by definition of
ϕ− r.

Now, as before, R ∈ RΠ
ε (ϕ− r) and so the assumption pro-

vides us with ψ ∈ Par(als(ε)) such that s1, s′1 |= ϕ′ and
(s1, s

′
1) ∈ R and (v, v′) ∈ JXKΠϕ′ where ϕ′ = (ϕ−r)⊗ ψ.

Putting ϕ′′ = ϕ ⊗ ψ it follows that (v, v′) ∈ JXKΠ,rϕ′′ from the
induction hypothesis (note that ϕ′′−r = ϕ′).

Lemma 4 (Extension).

RΠ
ε−r(ϕ) = RΠ,r

ε (ϕ⊗ [r 7→ ∅])

Proof. The ⊇ direction is obvious. Conversely, if R respects ε − r
at ϕ then it also respects ε at ϕ ⊗ [r 7→∅] since the additional

restrictions imposed by possible occurrences of r in ε are vacuously
true at ϕ⊗ [r 7→ ∅].

The following establishes semantic soundness for our subtyping
relation.

Lemma 5 (Soundness of subtyping). If Π ` Xi ok and X1 ≤ X2

then for all ϕ ∈ Par(Π) one has JX1KΠϕ ⊆ JX2KΠϕ .

Proof. By induction on the subtyping derivation.

We can now prove the following ‘fundamental theorem’ of
logical relations, which states that terms are related to themselves.

Theorem 1 (Fundamental Theorem).

1. If Π ` ϕ ok , Π;Θ ` V : X and (γ, γ′) ∈ JΘKΠϕ , then

(JU(Θ) ` V : U(X)Kγ, JU(Θ) ` V : U(X)Kγ′) ∈ JXKΠϕ .

2. If Π ` ϕ ok , Π;Θ `M : Tε(X) and (γ, γ′) ∈ JΘKΠϕ , then

(JU(Θ) `M : T (U(X))Kγ, JU(Θ) `M : T (U(X))Kγ′)
∈ JTε(X)KΠϕ .

Proof. By induction on typing derivations. We give a selection of
representative cases.

Case let. From the derivation we have

Π;Θ `M1 : Tε1(X1) (1)
Π;Θ, x:X1 `M2 : Tε2(X2) (2)

Assume Π ` ϕ ok and (γ, γ′) ∈ JΘKΠϕ . Suppose R ∈
RΠ
ε1∪ε2(ϕ) and s0Rs′0. Let

f1 := JU(Θ) `M1 : TUX1K,
and (s1, v1) = f1γs0 and (s′1, v

′
1) = f1γ

′s′0.

f2 := JU(Θ), x:U(X1) `M2 : TUX2K,

and (s2, v2) = f2 (γ, v1) s1 and (s′2, v
′
2) = f2 (γ′, v′1)s

′
1.

We then have JU(Θ) `M : TUX2Kγs0 = (s2, v2) and
JU(Θ) `M : TUX2Kγ′s′0 = (s′2, v

′
2).

Now R ∈ RΠ
εi

(ϕ) holds for i = 1, 2. The induction hypothesis
for (1), applied to ϕ, (γ, γ′) and (s0, s

′
0) therefore yields s1Rs′1

and also furnishes ψ1 ∈ Par(als(ε1)) such that s1, s′1 |= ϕ ⊗
ψ1 and s1 ∼ψ1 s

′
1 and (v1, v

′
1) ∈ JX1KΠϕ′ where ϕ′ = ϕ⊗ψ1.

We now define a relation R∗ by

sR∗s′ ⇐⇒ sRs′ ∧ s ∼ψ1 s
′

We then have R∗ ∈ RΠ
ε2(ϕ

′) and also s1R∗s′1. In particular,
R∗ respects rd r at ψ1 in view of the clause s ∼ψ1 s

′ that has
been added for that purpose.
The monotonicity of the interpretation of the value types
(Lemma 2) yields ((γ, v1), (γ

′, v′1)) ∈ JΘ, x:X1KΠϕ′ . We
can therefore apply the induction hypothesis for (2), with ϕ′,
((γ, v1), (γ

′, v′1)) and (s1, s
′
1), and obtain the existence of

some ψ2 ∈ Par(als(ε2)) such that s2, s′2 |= ϕ′ ⊗ ψ2 and
s2R

∗s′2 and s2 ∼ψ2 s
′
2 and (v2, v

′
2) ∈ JX2KΠϕ⊗ψ1⊗ψ2 . From

the definition of R∗ we then get s2Rs′2 and s2 ∼ψ1⊗ψ2 s
′
2.

Case ref. Suppose Π ` ϕ ok , (γ, γ′) ∈ JΘKΠϕ ,R ∈ RΠ
al r(ϕ), i.e.,

arbitrary and s0Rs′0. Writing

f := JUΘ ` ref(V) : T refK

we have
fγs = new(s, γ(x)) = (s1, `) and
fγ′s′ = new(s′, γ′(x)) = (s′1, `

′).

Now, since R is a store relation on dom(ϕ),dom′(ϕ) and
s0, s

′
0 |= ϕ we find s1Rs

′
1. We let ψ = [r 7→(`, `′)] and

have s1, s′1 |= ϕ ⊗ ψ. We have (`, `′) ∈ JrefrKΠϕ⊗ψ and
since JUΘ ` V : intKγ = JUΘ ` V : intKγ′ from (γ, γ′) ∈
JΘKΠϕ , we also have s1 ∼ψ s′1 and we are done.

Masking Rule Suppose Π ` Θ ok , Π ` X ok , Π, r; Θ ` M :
TεX , Π ` ϕ ok , and (γ, γ′) ∈ JΘKΠϕ and Π ` ϕ ok and
R ∈ RΠ

ε−r(ϕ) and s0Rs′0 and s0, s′0 |= ϕ.
Write g := JUΘ `M : TUXK and (s1, v1) = gγs0 and
(s′1, v

′
1) = gγs′0.

Let us write ψ = ϕ ⊗ [r 7→∅]. The masking lemma 3 shows
(γ, γ′) ∈ JΘKΠ,rψ and from the extension lemma 4 we have
R ∈ RΠ,r

ε (ψ). So the induction hypothesis furnishes θ ∈
Par(als(ε)) and disjoint from s0, s

′
0 such that s1, s′1 |= ψ′ and

s1 ∼θ s′1 and s1Rs′1 and (v1, v
′
1) ∈ JXKΠ,rψ′ where ψ′ = ψ⊗θ.

Now, ψ′−r = ϕ⊗ (θ−r) and so (v1, v
′
1) ∈ JXKΠϕ⊗(θ−r) again

by the masking lemma. The rest is clear from the definitions.

Remark 1 (on polymorphism). Let us now come back to the
aforementioned interpretation of polymorphism using intersec-
tions. Suppose that we augment our type syntax by ML-style type
schemes allowing toplevel quantification over types, regions, and
effects, and allowing us, e.g., to type “cps-ified” reading as

λx.λf.f(read(x)) : ∀A.∀r.∀ε.(int→ TεA) → Tε∪{rd r}A

We would semantically interpret this polymorphic type as

(f, f ′) ∈ J∀A.∀r.∀ε.(int→ TεA) → Tε∪{rd r}AKΠϕ ⇐⇒
(f, f ′) ∈ J(int→ TεA) → Tε∪{rd r}AKΠϕ
for each Π ` A ok and Π ` ε ok and Π ` r ok .

The obvious typing rules for these type schemes would then be
semantically justified. We concede though that this understanding
of polymorphism as quantification over simple types does not allow
a “semantic” instantiation of quantified type variables as arbitrary,
not necessarily denotable, semantic objects.

Definition 6 (contextual equivalence).

1. Suppose that Π; ∅ ` Vi : X for i = 1, 2 are two closed values.
They are contextually equivalent, written Π; ∅ ` V1 ≡ V2 : X ,
if for all values Π; ∅ ` V : X → Tε bool (“contexts”)
with ε arbitrary it holds that when (s1, v1) = JV V1K () ∅ and
(s2, v2) = JV V2K () ∅ then v1 = v2. Recall that ∅ is the initial,
empty state.

2. Contextual equivalence is extended to open values and compu-
tations by abstracting all free variables using a dummy abstrac-
tion of type unit in the case of a closed computation. We write
Π;Θ `M1 ≡M2 : A to mean that computations M1 and M2

are contextually equivalent.

Notice that the examining context V must itself be typable in
our effect system. This is important when, e.g., X = (int →
T∅ unit) → Tε unit and the equivalence of V1 and V2 relies on
their being fed a pure function as input. E.g., in this situation we
would want to consider V1 = λf.f(0) and V2 = λf.f(0); f(0) as
equivalent.

This definition coincides with the more standard yet more com-
plex one involving terms with holes as contexts, cf. [8]. This is due
to the fact that we use a monadic metalanguage rather than a lan-
guage with built-in side effects like ML.

We remark that the restriction to boolean observations is not
a severe one. Two contextually equivalent values also agree on
all observations of type int as is easily seen by wrapping the
observation into an appropriate equality test.

Proposition 1. Contextual equivalence is a congruence validating
the equational theory of the monadic metalanguage (in particular
beta reduction).

The following corollary to Theorem 1 now provides a powerful
method for establishing stronger contextual equivalences.

Corollary 1. Suppose that Π;Θ ` Mi : TεX for i = 1, 2 and
whenever Π ` ϕ ok and (γ, γ′) ∈ JΘKΠϕ then

(JU(Θ) `M1 : T (U(X))Kγ, JU(Θ) `M2 : T (U(X))Kγ′)
∈ JTεXKΠϕ .

Then M1 and M2 are contextually equivalent.

Proof. Let λ(M1) and λ(M2) be the values obtained by lambda
abstracting all variables inM1,M2. Let us write Θ → TεA for the
common type of these values. It is easy to see from the definition
of the logical relation that

(Jλ(M1)K, Jλ(M2)K) ∈ JΘ → TεXKΠϕ
for all ϕ (we have omitted types and contexts here). Now let
V : (Θ → TεX) → Tε′ bool be a context. By applying the
fundamental lemma to V we conclude

(JV λ(M1)K, JV λ(M2)K) ∈ JTε′ boolK
Π
ϕ

Now, let ϕ be the parameter that assigns to each region the empty
partial bijection. We have ∅, ∅ |= ϕ where ∅ is the empty state. Let
R ∈ RΠ

ε′(ϕ) be arbitrary. Clearly, ∅R∅ no matter what ε′ is. Put
(si, vi) = JV (λ(Mi))K. By the definition of the logical relation we
then have v1 = v2 as required.

7. Applications
For Π ` ϕ ok and Π ` ε ok and s, s′ |= ϕ we introduce the
notation

s ∼rdsϕ(ε) s
′ ⇐⇒ ∀r∈rds(ε).∀(`, `′)∈ϕ(r).s.` = s′.`′

It expresses that s and s′ agree on those locations that are read given
effect ε.

We also define
nwrsϕ(ε) = dom(ϕ) \

S
r∈wrs(ε) dom(ϕ(r))

nwrs ′ϕ(ε) = dom′(ϕ) \
S

r∈wrs(ε) dom′(ϕ(r))

Thus nwrsϕ(ε) and nwrs ′ϕ(ε) comprise the locations on the left
(resp. right) side that are not written to given effect ε. This includes
the locations in the silent region.

Lemma 6. Suppose Π;Θ ` M : TεX and Π ` ϕ ok and
(γ, γ′) ∈ JΘKϕ and s0, s

′
0 |= ϕ and JMKγs0 = (s1, x) and

JMKγ′s′0 = (s′1, x
′).

If s0 ∼rdsϕ(ε) s
′
0 then there exists ψ ∈ Par(als(ε)) disjoint

from s0, s
′
0 such that

1. s1, s′1 |= ϕ⊗ ψ and (x, x′) ∈ JXKϕ⊗ψ and s1 ∼ψ s′1.
2. s0 ∼nwrsϕ(ε) s1 and s′0 ∼nwrs′ϕ(ε) s

′
1.

3. For each (`, `′) ∈ ϕ(r) where r ∈ Π we have either
• s0.` = s1.` and s′0.`

′ = s′1.`
′ (unchanged) or

• s1.` = s′1.`
′ (identically written).

4. Suppose that ` ∈ dom(ϕ) but there is no `′, r such that (`, `′) ∈
ϕ(r). Then s0.` = s1.`. A symmetric statement holds for s′0, s

′
1.

Notice that Part 2 asserts in particular that the contents of the
silent region do not change from s0 to s1.

Proof. Part 1 is direct from the definition.
For part 2 we define

(s, s′) ∈ R ⇐⇒ s ∼rdsϕ(ε) s
′ ∧ s ∼nwrsϕ(ε) s0

We now have s0Rs′0 (not necessarily s0Rs′0) and so s1Rs′1. The
claim about s1 follows. The proof for nwrs ′ϕ(ε) and s′1 is analo-
gous.

For part 3 we define

(s, s′) ∈ R ⇐⇒ s ∼rdsϕ(ε) s
′∧

∀r∈Π.∀(`, `′) ∈ ϕ(r). s.`=s0.` ∧ s′.`′=s′0.`′ ∨ s.`=s′.`′

and note that R ∈ RΠ
ε (ϕ). It follows s1, s′1 ∈ R and the claim

follows.
Part 4, finally, follows using the relation

sRs′ ⇐⇒ s ∼rdsϕε s
′ ∧ s.` = s0.`

Proposition 2 (duplicated computation). Suppose that Π;Θ `
M : Tε(X) and suppose that rds(ε)∩wrs(ε) = als(ε) = ∅. Thus,
M reads and writes on disjoint portions of the store and makes no
allocations except possibly in the silent region. Then the following
two terms are contextually equivalent:

M1 := let x⇐M in val (x, x)
M2 := let x⇐M in let y⇐M in val (x, y)

Formally, Π;Θ `M1 ≡M2 : Tε (X ×X).

Proof. We will use Cor. 1. Let f(γ) = JUΘ `M : TUXKγ.
Suppose that Π ` ϕ ok and (γ, γ′) ∈ JΘKΠϕ . Suppose that
s0, s

′
0 |= ϕ and define

s1, v1 = f(γ)(s0)
s2, v2 = f(γ)(s1)
s′1, v

′
1 = f(γ′)(s′0)

Suppose that s0Rs′0 for some R ∈ RΠ
ε (ϕ). We must exhibit some

ψ ∈ Par(∅) disjoint from s, s′ such that s2, s′1 |= ϕ ⊗ ψ and
(v2, v

′
1) ∈ JXKΠϕ⊗ψ and (v1, v

′
1) ∈ JXKΠϕ⊗ψ and s2 ∼ψ s′1 and

s2Rs
′
1. Notice that ψ contains allocations in the silent region only.

From s0Rs
′
0 it follows that s0 ∼rdsϕ(ε) s

′
0. Thus, Lemma 6

furnishes ψ1 ∈ Par(∅) disjoint from s0, s
′
0 such that s1, s′1 |=

ϕ ⊗ ψ1 and (v1, v
′
1) ∈ JXKΠϕ⊗ψ1 . Furthermore, since rds(ϕ) ∩

wrs(ϕ) = ∅ we have s1 ∼rdsϕ(ε) s
′
0. Decompose ψ1 as ψL1 ⊗ ψR1

where dom′(ψL1) = ∅ = dom(ψR1).
Now we have s1, s′0 |= ϕ ⊗ ψL1 and thus another application

of Lemma 6 furnishes ψ2 ∈ Par(∅) disjoint from s1, s
′
0 such that

s2, s
′
1 |= ϕ⊗ ψL1 ⊗ ψ2 and (v2, v

′
1) ∈ JXKΠ

ϕ⊗ψL
1 ⊗ψ2

.

Again decompose ψ2 as ψ2 = ψL2 ⊗ ψR2 where dom′(ψL2) =
∅ = dom(ψR2).

We already know from Part 2 of Lemma 6 that if location `
is not written (that includes locations in the silent region) then
s1.` = s2.`. We claim that s1 agrees with s2 on the other, written
to, locations as well. To see this, we define s∗0 by updating s0
in such a way that for all r ∈ Π and (`, `′) ∈ ϕ(r) one has
s∗0.`

′ = s0.` and s∗0 agrees with s′0 elsewhere. Then s1, s
∗
0 |=

ϕ ⊗ ψL1 and s1 ∼rdsϕ(ε) s∗0. Let s∗1 denote the successor state
of s∗0. Lemma 6,3 yields that for each (`, `′) ∈ ϕ(r) that either
s2.` = s1.` or s2.` = s∗1.`

′. On the other hand, s∗1.`′ = s1.` or
s1.` = s0.` and s∗1.`′ = s∗0.`

′. It follows s2.` = s1.`. We have
thus shown s1 ∼dom(ϕ) s2. Since s1Rs′1 and R is a store relation
on dom(ϕ),dom′(ϕ) we conclude s2Rs′1 and we are done.

Proposition 3 (commuting computations). Suppose that

Π;Θ `M1 : Tε1(X)
Π;Θ `M2 : Tε2(X)

and suppose that rds(ε1) ∩ wrs(ε2) = rds(ε2) ∩ wrs(ε1) =
wrs(ε1) ∩ wrs(ε2) = ∅.

Put
N1 := let y⇐M1 in let x⇐M2 in val (x, y)
N2 := let x⇐M2 in let y⇐M1 in val (x, y)

We have
Π;Θ ` N1 ≡ N2 : Tε (X ×X)

where ε = ε1 ∪ ε2.

Proof. We will use Cor. 1. Let fi(γ) = JUΘ `Mi : TUXKγ for
i = 1, 2.

Suppose that Π ` ϕ ok and (γ, γ′) ∈ JΘKΠϕ . Suppose that
s0, s

′
0 |= ϕ and define

s1, v1 = f1(γ)(s0)
s2, v2 = f2(γ)(s1)
s′1, v

′
1 = f2(γ

′)(s′0)
s′2, v

′
2 = f1(γ

′)(s′1)

Suppose that s0Rs′0 for some R ∈ RΠ
ε (ϕ).

We must exhibit ψ ∈ Par(als(ε)) disjoint from s0, s
′
0 such that

s2, s
′
2 |= ϕ′ and (v1, v

′
2) ∈ JXKϕ′ and (v2, v

′
1) ∈ JXKϕ′ where

ϕ′ = ϕ⊗ ψ and s2Rs′2.
Lemma 6 applied to M2 together with the fact that rds(ε1) ∩

wrs(ε2) = ∅ shows that s0 ∼rdsϕ(ε1) s
′
1. We also have s0, s′1 |= ϕ

so Lemma 6 applied to M1 furnishes ψ1 disjoint from s0, s
′
1 such

that (v1, v
′
2) ∈ JXKΠϕ⊗ψ1 and also s1, s

′
2 |= ϕ ⊗ ψ1. Argu-

ing symmetrically, we obtain ψ2 disjoint from s1, s
′
0 such that

(v2, v
′
1) ∈ JXKΠϕ⊗ψ2 and also s2, s

′
1 |= ϕ ⊗ ψ2. Now, since

dom(ψ2) is disjoint from dom(s1) ⊇ dom(ψ1) and analogously
on the right-hand side, we find that ψ1 and ψ2 are disjoint allow-
ing us to put ψ := ψ1 ⊗ ψ2 and (v2, v

′
1), (v1, v

′
2) ∈ JXKΠϕ⊗ψ by

monotonicity. We also have s2, s′2 |= ϕ⊗.
Since s0Rs′0 we can show s2Rs

′
2 by induction on the size of

domle/ri(ϕ) using the definition of RΠ
ε (ϕ).

Proposition 4 (dead computation). Suppose that

Π;Θ `M : Tε (unit)

and that wrs(ε) = ∅. Then M is contextually equivalent to val ().

Proof. Let ϕ ∈ Par(Π) and (γ, γ′) ∈ JΘKϕ. Let f = JMKγ
and suppose s0, s′0 |= ϕ. Let v, s1 = fs0. Of course, v = ?.
The fundamental lemma applied to M , ϕ, s0, s′0 furnishes ψ ∈
Par(als(ε)) disjoint from ϕ. Construct ψ1 by taking only the left
part of ψ; formally: ψ1(r) = (dom(ψ(r)), ∅, ∅). Now, s1, s′0 |=
ϕ⊗ ψ1 and, trivially, (v, ?) ∈ JunitKϕ⊗ψ1 .

If R ∈ RΠ
ε (ϕ) and s0Rs

′
0 then s1 agrees with s0 on all

locations that R depends upon, so s1Rs′0.

Proposition 5 (pure lambda hoist). Suppose that

Π;Θ `M : T∅ Z
Π;Θ, x:X, y:Z ` N : Tε Y

Put
M1 := val(λx:UX.let y⇐M in N)
M2 := let y⇐M in val(λx:UX.N)

Then Π;Θ `M1 ≡M2 : T∅ (X → Tε)

Proof. Let ϕ ∈ Par(Π) and (γ, γ′) ∈ JΘKϕ and define

f = JMKγ
f ′ = JMKγ′
g(vx, vy) = JNKγ[x7→vx, y 7→vy]
g′(vx, vy) = JNKγ′[x7→vx, y 7→vy]

Suppose that s0, s′0 |= ϕ. The fundamental theorem applied to M
yields ψ1 ∈ Par(∅) such that s1, s′1 |= ϕ ⊗ ψ where s1, v = fs0
and s′1, v′ = s′0.

Factor ψ1 as ψL1 ⊗ ψR1 such that s1, s′0 |= ϕ ⊗ ψL1 . We claim
that

(λvx.g(vx, v) , λvx.λs
′.let s′2, vy=f

′s′ in g′(vx, vy)s′2) ∈
JX → TεKϕ⊗ψL

1

Assume thus ϕ′ ≥Π ϕ ⊗ ψL1 and (vx, v
′
x) ∈ JXKϕ′ . Also assume

s, s′ |= ϕ′ and let s′2, vy = f ′s′. We would like to argue that
(v, vy) ∈ JZKϕ′⊗ψ2 for some ψ2.

Now s0, s
′ |= ϕ whence (v, vy) ∈ JZKϕ⊗ψL

1 ⊗θ
where θ

is on the right hand side only. We also know from s, s′ |= ϕ′

that θ is disjoint from ϕ′. Thus, we have (v, vx) ∈ JZKϕ′⊗θ by
monotonicity.

The rest is similar to earlier calculations.

Examples Suppose that the let bindings f1⇐Mbuf and f2⇐Mbuf

are in force. If we type them using two different region identifiers
Prop. 3 and Prop. 4 and Prop. 1 allow us to conclude that

let x⇐f1(5) in let y⇐f1(4) in let z⇐f2(6) in (x, z) ≡
let z⇐f2(6) in let x⇐f1(5) in (x, z)

Lambda hoist (Prop. 5) applies to the following code after using the
masking rule to give a pure typing to Vsum.

λx.let s⇐Vsum(a, b, c) in val (x+ s)

We remark that the program equivalences we get for pure compu-
tations are complete in the following sense:

Proposition 6. Let C be a cartesian closed category and T be a
strong monad on C. Suppose that in the Kleisli category CT the
laws of dead computation, commuting computations, duplicated
computations, lambda hoist are valid. ThenCT is cartesian closed.

In particular, the Kleisli category consisting of computations of
type T∅(A) modulo contextual equivalence is cartesian closed.

8. Conclusion and further work
We have given a relational semantics to a region-based effect
type system for a higher-order language with dynamically allo-
cated store. The relational semantics is shown sound for contextual
equivalence and thus provides a powerful proof principle for the
latter. We have used the semantics to establish the soundness of a
collection of useful effect-based program transformations. It would
probably be very hard to establish these directly from the definition
of contextual equivalence and no such proof appears to exist in the
literature.

There has been a great deal of previous work on the soundness
of region-based memory management and of its close cousin, en-
capsulated monadic state, as provided by runST in Haskell [15].
We mention some particularly relevant references. Banerjee et
al. [3] translate the region calculus into a variant of System F and
give a denotational model showing that references in masked re-
gions do not affect the rest of the computation. Moggi and Sabry
[20] prove syntactic type soundness for encapsulated lazy state.
Fluet and Morrisett [12] bring the two lines of work together by
giving a type- and behaviour-preserving translation from a variant
of the region calculus into an extension of System F with a region-
indexed family of monads. Naumann [21] uses simulation relations
to capture a notion of observational purity for boolean-valued spec-
ifications that allows mutation of encapsulated state.

The general problem of modelling and proving equivalences in
languages with dynamically allocated store and higher order fea-
tures is a difficult one, with a very long history [27]. The basic tech-
niques we use here, such as partial bijections and parametric logical
relations, have been developed and refined over the last 25 years or
so [14, 18, 22, 23, 24, 9]. The focus of much of this previous work

has been on showing tricky equivalences between particular pairs
of terms, such as the well-known Meyer-Sieber examples [18]. One
might expect that equivalences justified by simple program analy-
ses, such as those considered here, would generally be much easier
to establish than some of the more contorted examples from the lit-
erature. Whilst this is broadly true – our relational reasoning tech-
nique is far from complete, yet suffices for establishing the inter-
esting equational consequences of the effect system – completely
generic reasoning is surprisingly difficult. When proving concrete
equivalences one treats the context generically, but has two partic-
ular, literal terms in one’s hand, whose denotations one can work
with explicitly. In the case of purely type-based equivalences, on
the other hand, both the context and the terms are abstract; all one
knows are the types, and the semantics of those types has to capture
enough information to justify all instances of the transformation.

An alternative approach to proving ‘difficult’ contextual equiv-
alences is to use techniques based on bisimulation. Originally de-
veloped for process calculi by Park and Milner [19], bisimulation
was adapted for the untyped lambda calculus by Abramsky [2].
Other researchers, particularly Sumii and Pierce, subsequently de-
veloped notions of bisimulation for typed lambda calculi that could
deal with the kind of encapsulation (data abstraction) given by ex-
istential types [26]. These methods have recently been refined by
Koutavas and Wand, and applied to an untyped higher-order lan-
guage with storage [16] and to object-based calculi. It would be
extremely worthwhile to investigate whether bisimulation methods
can be applied to the typed (and, as discussed above, type-directed)
impure equivalences studied here.2

It has been suggested to us that our results might formally be
subsumed by our earlier work [8] via a translation that essentially
treats a region as a global variable. Reading / writing within a
region is then tracked as a read write from/to the corresponding
global variable. First, this handles neither masking nor the alloca-
tion effect. More importantly such a translation would at best allow
one to transfer a type inference for global variables to one for the
region calculus but it does not seem to help in any way with the
soundness proof.

Our base language is deliberately simple so as to allow us to
focus on the salient aspects of the semantics. Nevertheless, it would
be useful to extend it in various ways. We sketch how this can be
done and what difficulties might be faced.

Recursion To accommodate recursive functions, one needs to
phrase the denotational semantics in terms of cpos and partial func-
tions. A new ‘possible non-termination’ effect must also be intro-
duced (and attached to potentially-diverging recursive definitions),
which prevents “dead computation” from applying, see [5]. The
relations interpreting refined types must then be admissible in the
sense that suprema of componentwise related ascending chains are
related.

To enforce this condition, we must replace the current definition
of JTεXKΠϕ with the least admissible relation comprising it. This
is because the existential quantification in the definition of this
relation thwarts an attempt to show admissibility by induction on
types. The least admissible relation R† comprising a given relation
R on a cpo D is explicitly given by the set of all (d, d′) for which
there exist chains d = supi di, d

′ = supi d
′
i where (di, d

′
i) ∈ R

for all i. With this amended definition the cases go through at the
expense of a slightly more cluttered notation.

The notational messiness is considerably palliated by the fact
that when faced with a situation where one has an assumption of the

2 The more general relationship between logical relations and bisimulation
still seems slightly murky (at least to us) and clearly demands further study
as well.

form dR†d′ and one wants to show some propertyϕ(d, d′) whereϕ
is itself admissible then one can w.l.o.g. assume that one has dRd′.

An alternative route to admissibility consists of using a seman-
tics phrased in terms of a continuation-based termination judge-
ment [23, 9]. The existential quantifier in the monad then becomes
a universal quantifier and admissibility holds from the start.3 This
approach, however, yields an apparently coarser relation which
breaks our current proof of Prop 2. Writing M1 ' M2 to mean
that the denotations of M1 and M2 are in the continuation-based
logical relation, we are faced with the apparently simpler goal
(x=M;y=M;(x,y)) ' (x=M;(x,x)), however, we have to
prove it under the weaker assumption M ' M . This is an exam-
ple of the difference between proving particular and generic equiv-
alences discussed above: the problem does not arise in concrete
cases in which we know what M actually is.

Purity Certain valid program equivalences are not provable with
our proof method. For example, we would like the semantics to
justify the pure typing

Mmem : T∅ (int→ T∅ int)

forMmem and similar memoised functions on the grounds that they
behave just as a pure function. With such a typing, an instance of
Mmem could be hoisted out of an abstraction which it presently
cannot. One way to make our semantics believe that Mmem is
pure consists of including invariants on private portions of the store
again as in [23, 9]. This would allow one to justify a strengthened
masking rule with a semantically formulated side condition which
requires one to “manually” provide an invariant on privately allo-
cated store. In the case of the memo function Mmem one could use
read(y) = read(x) + 1 as invariant. One has to prove that this
invariant is maintained and moreover that the result value is inde-
pendent of the store so long as the invariant is satisfied. At present,
we cannot see a syntactic approximation to such a semantic mask-
ing rule, i.e., a non-contrived typing rule which would recognize
Mmem as pure yet of course reject Mbuf as impure.

General references Of course it would be interesting to include
references to types other than integers. References to product and
reference types which correspond to the usual Java/C heap model
should be relatively straightforward and quite useful. Treating ref-
erences to functions and values of general mixed-variance recursive
types ought to be possible using a simultaneous recursive defini-
tion of the logical relation and the sets RΠ

ε (ϕ). While doing this
is technically challenging, the principal feasibility of this approach
has been demonstrated in [25, 11].

References
[1] M. Abadi. >>-closed relations and admissibility. Mathematical

Structures in Computer Science, 10(3), 2000.

[2] S. Abramsky. The lazy lambda calculus. In D. Turner, editor,
Research Directions in Functional Programming, chapter 4, pages
65–116. Addison-Wesley, 1988.

[3] A. Banerjee, N. Heintze, and J. Riecke. Region analysis and the
polymorphic lambda calculus. In Proceedings of the 14th IEEE
Symposium on Logic in Computer Science (LICS), 1999.

[4] N. Benton. Simple relational correctness proofs for static analyses
and program transformations. In 31st ACM Symposium on Principles
of Programming Languages (POPL), 2004. Revised version
available from http://research.microsoft.com/∼nick/
publications.htm.

3 In fact, rather more holds: the continuation-based formulation uses a ‘>>-
closure’ operation that ‘extensionalizes’ the relations [1].

[5] N. Benton and P. Buchlovsky. Semantics of an effect analysis for
exceptions. In 3rd ACM-SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI), 2007.

[6] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In Applied
Semantics, Advanced Lectures, volume 2395 of LNCS. Springer-
Verlag, 2002.

[7] N. Benton and A. Kennedy. Monads, effects and transformations. In
3rd International Workshop on Higher Order Operational Techniques
in Semantics (HOOTS), volume 26 of ENTCS. Elsevier, 1999.

[8] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Reading,
writing, and relations: Towards extensional semantics for effect
analyses. In 4th Asian Symposium on Programming Languages
and Systems (APLAS), LNCS, 2006.

[9] N. Benton and B. Leperchey. Relational reasoning in a nominal
semantics for storage. In 7th International Conference on Typed
Lambda Calculi and Applications (TLCA), volume 3461 of LNCS,
2005.

[10] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects.
In Applied Semantics, International Summer School, Springer LNCS
2395, pages 42–122, 2000.

[11] N. Bohr and L. Birkedal. Relational reasoning for recursive types and
references. In APLAS, 2006.

[12] M. Fluet and G. Morrisett. Monadic regions. Journal of Functional
Programming, 2006. to appear.

[13] D. K. Gifford and J. M. Lucassen. Integrating functional and
imperative programming. In ACM Conference on LISP and
Functional Programming, Cambridge, Massachusetts, August 1986.

[14] J. Y. Halpern, A. R. Meyer, and B. A. Trakhtenbrot. The semantics
of local storage, or what makes the free-list free? In Proceedings of
the 11th ACM Symposium on Principles of Programming Languages
(POPL), 1984.

[15] S. Peyton Jones and J. Launchbury. State in Haskell. Lisp and
Symbolic Computation, 8(4), 1995.

[16] Vasileios Koutavas and Mitchell Wand. Small bisimulations for
reasoning about higher-order imperative programs. In POPL, pages
141–152, 2006.

[17] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
15th ACM Symposium on Principles of Programming Languages
(POPL), 1988.

[18] A. R. Meyer and K. Sieber. Towards a fully abstract semantics for
local variables: Preliminary report. In Proceedings of the 15th Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), January 1988.

[19] R. Milner. Communication and Concurrency. Prentice-Hall
International, 1989.

[20] E. Moggi and A. Sabry. Monadic encapsulation of effects: A revised
approach (extended version). Journal of Functional Programming,
11(6), 2001.

[21] D. Naumann. Observational purity and encapsulation. Theoretical
Computer Science, To appear.

[22] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables.
Journal of the ACM, 42(3):658–709, May 1995.

[23] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions
with local state. In Higher Order Operational Techniques in
Semantics. CUP, 1998.

[24] U. S. Reddy and H. Yang. Correctness of data representations
involving heap data structures. Science of Computer Programming,
50(1–3):129–160, March 2004.

[25] B. Reus and J. Schwinghammer. Denotational semantics for a
program logic of objects. Mathematical Structures in Computer
Science, 2006. in press.

[26] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and
recursion. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. ACM
Press, 2005.

[27] R. D. Tennent and D. R. Ghica. Abstract models of storage. Higher-
Order and Symbolic Computation, 13(1/2):119–129, 2000.

[28] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, 132(2):109–176, 1997.

[29] P. Wadler and P. Thiemann. The marriage of effects and monads.
ACM Trans. Comput. Logic, 4(1):1–32, 2003.

