
Semantic Equivalence Checking for HHVM Bytecode
Nick Benton

Facebook
London

pnb@fb.com

ABSTRACT
We describe a semantic differencing tool used to compare the byte-
codes generated by two different compilers for Hack/PHP at Face-
book. The tool is a prover for a simple relational Hoare logic for
low-level code and is used in testing, allowing the developers to
focus on semantically significant differences between the outputs
of the two compilers.

CCS CONCEPTS
• Theory of computation → Logic and verification; Hoare
logic; Invariants; Pre- and post-conditions; • Software and
its engineering → Software verification; Automated static
analysis; Compilers; Software testing and debugging; Object
oriented languages;
ACM Reference Format:
Nick Benton. 2018. Semantic Equivalence Checking for HHVM Bytecode.
In The 20th International Symposium on Principles and Practice of Declarative
Programming (PPDP ’18), September 3–5, 2018, Frankfurt am Main, Germany.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3236950.3236975

1 INTRODUCTION
HHVM, the HipHop Virtual Machine [14], is a high performance,
JIT-compiled implementation of PHP. HHVM generates the Face-
book site, as well as being used by Wikipedia, Slack, and others.
Most of the code running on HHVM at Facebook is now written
in Hack, a new language based on PHP, whose features include an
expressive gradual type system, improved collections, lambdas, and
support for asynchronous programming [16]. Hack was originally
implemented using a combination of an independent typechecker
plus some extensions to HHVM’s PHP front-end. We have now
built HackC, a new compiler for Hack. HackC emits HHAS, which
is a textual form of HHBC, the HipHop ByteCode already used as
an intermediate language inside HHVM.

Moving to an entirely new compiler for Hack code is not some-
thing to be undertaken lightly. The existing HHVM implementation
is mature and well-tested, and we needed to have a similar level
of confidence in the new compiler. A conservative decision was
therefore taken that, in the first instance, the new compiler should
produce the same target code as the old one for our existing code-
base and tests.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6441-6/18/09. . . $15.00
https://doi.org/10.1145/3236950.3236975

But what do we mean by ‘the same’? Just running diff on the
output of the two compilers requires literal textual equality, which
is too strict a requirement. Two compilers for the same language
will naturally produce code that varies in inessential details, such
as the use of local variables, ordering of basic blocks, etc. Trying to
make a new code generator (written in OCaml) agree on all such
details with an existing one (written in C++) would both be unnec-
essary work and create technical debt in the form of contorted code.
The unappealing alternative is manually checking huge diff out-
puts and attempting to classify individual differences as significant
or unimportant. What we really wanted was a mechanical way to
check that the two compilers produce code that is behaviourally
equivalent, i.e. produces the same observable behaviour in all con-
texts. (We also do not want performance regressions, but ignore
that aspect of testing here.) This paper describes an automated
tool, semdiff, that we built to check HHAS files for behavioural
equivalence.

Behavioural equivalence is obviously undecidable, and writing a
sound-but-incomplete fully automatic analysis that can cope with
significant equivalence-preserving differences, such as those be-
tween optimized and unoptimized code, is generally extremely hard.
However, in our case, the two compilers already produced (or were
supposed to produce) ‘essentially’ the same code. Thus we were
able to get good results with a fairly simple, fast analysis, that
concentrates on ‘trivial’ differences.

semdiff is essentially a prover for a restricted version of Rela-
tional Hoare Logic (RHL) for low-level code. It was integrated into
the test process for HackC, running over the compiled code from
millions of lines of Hack and PHP, and freed the HackC team to
concentrate on eliminating significant differences in the output of
the two compilers.

1.1 semdiff architecture
semdiff takes two hhas files as input. These are each parsed in
an unsurprising way into the representation of hhbc that is used
by HackC. There are around 20 OCaml record types defining the
nested structure of an bytecode file. For example, a program has a
list of literal array constants, a list of top-level function definitions, a
list of class definitions, a list of type definitions, and a distinguished
main function. A function has a list of attributes, a name, a body,
and a collection of boolean flags saying if it is async, a generator,
and so on. Some of the record types have a non-trivial number of
fields (e.g. a class currently has 24) and for nearly all of them, we
just want to check for literal equality, set equality, or map equality.
We reduce the pain of writing the associated boilerplate by using
combinators:

type 'a compare = {
comparer : 'a -> 'a -> int * (int * edit_sequence);

https://doi.org/10.1145/3236950.3236975
https://doi.org/10.1145/3236950.3236975

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Nick Benton

size_of : 'a -> int;
string_of : 'a -> string

}

An 'a compare comprises a comparison function for values of
type 'a, a function that computes a rough indication of the size
of values of type 'a, and a string_of function. The comparison
function returns an edit distance (which is zero if the two values
are appropriately equal), a size, and an edit sequence, which can
be thought of as a string representation of the delta between the
two values. Values of type 'a compare are built compositionally
according to the structure of 'a and the desired notion of equality.
For example, there is a generic comparer for 'a lists that takes a
comparer for 'a as argument, and computes the Levenshtein edit
distance between the two lists. There is also a join combinator
that takes two (independent) comparers for the same type and
combines them into one that does both comparisons, and so on. The
combinators are used to build up a value of type program compare,
and it is the result of the associated comparer that is returned by
semdiff.

The interesting comparer is that for the lists of instructions that
are part of the bodies of functions and methods. Here we do not
want to use our generic list comparer, as that would just yield a syn-
tactic, rather than a semantic, comparison. Instead, we implement
a comparer that tries to prove that two sequences of instructions
have the same observable behaviour under the assumption that
they are started in equivalent contexts (comprising the rest of the
program, the parameters passed in, etc.). The intention is that this
comparison is sound: if it reports that two bodies are equivalent
then they really are according to the (intended) semantics of the
bytecode. If the comparison fails, then it might be that there is an
observable difference, or it might be that our analysis is too weak
to establish equivalence. In such a case, we report the state of the
prover when it got stuck and the syntactic difference between the
two sequences, and hand over to a human being to decide whether
this is a false positive or not.1

The comparer for instruction lists uses two different techniques.
The first is a generic prover for a simple relational logic (Section 3).
If that fails, then we try a collection of hardwired equivalence
patterns (Section 4).

2 HHVM BYTECODE
hhas is code for a stack-based virtual machine with around three
hundred opcodes, many of which are further parameterized by
modes or operations. One could use a rather smaller instruction set
but, for performance reasons, it is advantageous to have specialized
versions for different contexts. For example, values that are to be
used as the base for a later indexing operation are treated specially,
as are values that are to be passed as function parameters. PHP’s
somewhat irregular semantics also calls for, for example, variants
of instructions that differ in whether they throw exceptions or
return default values in error cases. Some comparatively high-level
features of hhas include direct support for asynchronous calls,

1We print a syntactic diff when the semantic equivalence check fails because it is hard
to knowwhat constitutes a ‘semantic diff’. Nevertheless, there is room for improvement
here: we could show symbolic traces leading up to the point of failure, for example.

iterators, and memo tables, two kinds of exception handler, and
instructions for dynamically loading classes and functions.

As well as the stacks, hhas allows the use of named locals, such
as $x, and ‘unnamed’ numbered temporaries, such as _3. If v is a
variable, then the instruction SetL v copies the value on the top
of the stack into v (without popping), PopC discards the value on
the top of the stack, and CGetL v pushes the contents of v onto
the evaluation stack. (We will describe other instructions as we
encounter them.)

Figure 1 shows an example of some rather artificial Hack source
code. Two different bytecode sequences that might correspond to
that source are shown in Figure 2.

One can see that the two target files differ in their control flow,
with simpler exception handling on the right, and different labels
and jumps. For example, if $pairs is empty then the iterator created
on the left on line 12 will jump to L0 and then to L2 before returning,
whereas the corresponding one on the right will just jump to L4
and return. The uses of local variables are also different. Local _6 on
the left, which stores the current value of the iterator, corresponds
to local _8 on the right. More subtly, local _7 on the left, holding
the result of the call to $f, also corresponds to local _8 on the right.
Other differences include the reversal of the tests on line 50 on the
left and line 44 on the right, and the way UnsetL instructions on
the left are not matched on the right.

Nevertheless, most of the instructions do correspond in a fairly
simple way, and the two implementations are semantically equiva-
lent.

3 RELATIONAL HOARE LOGIC FOR
LOW-LEVEL CODE

Traditional Hoare logic for structured programs works with judge-
ments ⊢ {P} C {Q}, meaning that if commandC is started in a state
satisfying the precondition P then if it terminates, it does so in a
state satisfying postconditionQ . Relational Hoare Logic [5] instead
works with pairs of commands, and binary relations rather than
unary predicates. The RHL judgement ⊢ {Φ} C ∼ C ′ {Ψ} means
that if s and s ′ are states related by Φ, and we run C starting in s
and C ′ starting in s ′, then either both executions diverge, or they
both terminate, yielding final states that are related by Ψ. RHL can
express many classic program analyses as well as the validity of the
optimizing transformations they enable. It has also been profitably
applied and extended in security, for verifying crypto primitives
[3] and formalizing differential privacy [4].

To adapt RHL to unstructured, low-level code we move to a
continuation-passing variant, in which we work only with pre-
relations [6]. Suppose that l and l ′ are labels or program counters
in low-level programs p and p′, respectively, and that Φ is a binary
relation on program states. Then we’ll write |= (l , l ′) : Φ⊤ to mean
that for any states s ,s ′ that are related byΦ, runningp from program
counter l in state s yields the same observable behaviour as running
p′ from program counter l ′ in state s ′, where observable behaviour
encompasses termination and sequences of IO actions. We have
previously formulated a relational version of separation logic in this
style, and used it to specify a memory allocator and the semantics
of high-level types as relations on low-level code [7, 10].

Semantic Equivalence Checking for HHVM Bytecode PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

f u n c t i o n s i l l y <Ta , Tb , Tc >(T r av e r s a b l e < (Ta , Tb) > $pa i r s , (f u n c t i o n (Ta , Tb) : Tc) $ f) : vec < (Ta , Tc) > {
$ r e s u l t = vec [] ;
t r y {

foreach ($ p a i r s as l i s t ($a , $b)) {
$ r e s u l t [] = $ f ($a , $b) | > t u p l e ($a , $$) ;

}
}
c a t ch (Excep t i on $e) { }
r e t u r n $ r e s u l t ;

}

Figure 1: Example Hack source

The core of semdiff is a version of RHL in which the relations
Φ are restricted to conjunctions of equalities between variables on
the two sides. (This will be refined in subsequent sections.) We
actually only consider equalities between unnamed locals, because
PHP features ‘variable variables’, which allow runtime strings to
be treated as variable names. Thus, for example,
$a = ' b ' ;
$$a = ' x ' ;
echo $b

prints ’x’. Variable variables introduce the possibility of aliasing for
named locals, the static tracking of which would be complex.2 The
intended meaning of

(_1 = _1) ∧ (_2 = _3) ∧ (_4 = _3)

is the relation between program states that holds when local 1 on
the left has the same value as local 1 on the right, locals 2 and 4
on the left both have the same value as local 3 on the right, and
the unmentioned components of the state (named locals, stacks,
heap, etc.) are the same.3 We write true for the empty conjunction,
which places no constraints on locals, but does still require the other
components of the state to match. If we fix p and p′ to be the bodies
of two functions or methods with matching parameter lists, then
we wish to show |= (pc, pc′) : true⊤ for each matching pair of entry
points pc and pc′. In other words, assuming that the parameters,
etc. are equal on the two sides, then executions starting at pc and
at pc′ yield the same behaviour. These pairs of entry points will
always include pc = pc′ = 0, corresponding to an ordinary call,
but there are others if the functions have optional arguments with
default values. When some arguments are not supplied in a call,
execution begins at a later point in the body, which initializes the
omitted arguments and then jumps back to the top.

Rather than a traditional program logic, we choose to describe
directly an abstract version of the analysis algorithm implemented
in semdiff. This algorithmmaintains two sets of assertions: Γ is the
assumed assertions, while Θ is the assertions left to prove. Initially,
Γ0 is empty and

Θ0 = (pc1, pc
′
1) : true⊤, . . . , (pcn , pc

′
n) : true⊤

for matching entry points pci , pc′i . The algorithm takes steps Γi |
Θi → Γi+1 | Θi+1 until there’s nothing left to do (Θk is empty), in

2Hack forbids variable variables, but semdiff has to work on legacy PHP code too.
3Actually, for compositionality, we want the assumed equivalence on the context to
be a little weaker than literal equality. That can be made precise using biorthogonality
[8], but we do not go into details here.

which case we report equivalence, or no transition is possible, in
which case we report failure.

One transition rule allows us to use assumptions, with appropri-
ate weakening of the relation:

Φ2 ≤ Φ1

Γ, (pc, pc′) :Φ1
⊤ | Θ, (pc,pc ′) :Φ2

⊤ → Γ, (pc, pc′) :Φ1
⊤ | Θ

another says that if we’ve reached a return instruction on both sides,
then there’s nothing more to prove. Recall that the interpretation
of any Φ includes equivalence of the evaluation and call stacks on
the two sides, so the values that are returned, and the contexts into
which they’ll be returned, will be equal:

p.pc = p′.pc′ = RetC

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ

Note that we also add (pc, pc′) :Φ⊤ to the assumption set so that
we can use it directly in future (though that doesn’t achieve much
in this particular case, as we could just as cheaply apply the rule
again). Here’s a more typical rule:

p.pc = p′.pc′ = Dup

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ⊤

There is a Dup instruction on both sides, so we’ll get the same
behaviour in Φ-related states provided we get the same behaviour
from the successor instructions in Φ-related states. The relation
Φ does not change because duplicating the top of the stack does
not affect any local variables. Again, what we were trying to show,
(pc, pc′) :Φ⊤, is added to the assumptions in the new configuration.
We discuss the soundness of this form of circular reasoning in
Section 3.1.

For instructions that read (possibly different) local variables, we
require the relation to imply that their values will be equal on the
two sides:

p.pc = CGetL l p′.pc′ = CGetL l ′ Φ ≤ l = l ′

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ⊤

Whilst for those that write locals, we add an equation between
variables to the relation associated with the successor states:

p.pc = SetL l p′.pc′ = SetL l ′ Φ2 = Φ[l = l ′]

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ2
⊤

where the notation Φ[l = l ′] means Φ with any existing equalities
involving l on the left or l ′ on the right removed, and the equality
l = l ′ added. This relational treatment of reading and writing is

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Nick Benton

1 .function <"HH\\vec<(Ta, Tc)>">
2 silly(<"HH\\Traversable<(Ta, Tb)>"> $pairs,
3 <"(function (Ta, Tb): Tc)" N > $f) {
4 .numiters 1;
5 .declvars $result $a $b $e;
6 VerifyParamType $pairs
7 Vec @A_0
8 SetL $result
9 PopC
10 .try {
11 CGetL $pairs
12 IterInit 0 L0 _6
13 .try_fault F4 {
14 .try_fault F5 {
15 L1:
16 BaseL _6 Warn
17 QueryM 0 CGet EI:1
18 SetL $b
19 PopC
20 BaseL _6 Warn
21 QueryM 0 CGet EI:0
22 SetL $a
23 PopC
24 UnsetL _6
25 }
26 CGetL $f
27 FPushFunc 2
28 FPassL 0 $a Cell
29 FPassL 1 $b Cell
30 FCall 2
31 UnboxR
32 SetL _7
33 PopC
34 .try_fault F6 {
35 CGetL $a
36 CGetL _7
37 NewPackedArray 2
38 }
39 UnsetL _7
40 BaseL $result Define
41 SetM 0 W
42 PopC
43 IterNext 0 L1 _6
44 }
45 L0:
46 Jmp L2
47 } .catch {
48 Dup
49 InstanceOfD "Exception"
50 JmpZ L3
51 SetL $e
52 PopC
53 Jmp L2
54 L3:
55 Throw
56 }
57 L2:
58 CGetL $result
59 VerifyRetTypeC
60 RetC
61 F5:
62 UnsetL _6
63 Unwind
64 F6:
65 UnsetL _7
66 Unwind
67 F4:
68 IterFree 0
69 Unwind
70 }

1 .function <"HH\\vec<(Ta, Tc)>">
2 silly(<"HH\\Traversable<(Ta, Tb)>"> $pairs,
3 <"(function (Ta, Tb): Tc)" N > $f) {
4 .numiters 1;
5 .declvars $result $a $b $e;
6 VerifyParamType $pairs
7 Vec @A_0
8 SetL $result
9 PopC
10 .try {
11 CGetL $pairs
12 IterInit 0 L4 _8
13 .try_fault F1 {
14 L0:
15 BaseL _8 Warn
16 QueryM 0 CGet EI:1
17 SetL $b
18 PopC
19 BaseL _8 Warn
20 QueryM 0 CGet EI:0
21 SetL $a
22 PopC
23 CGetL $f
24 FPushFunc 2
25 FPassL 0 $a Cell
26 FPassL 1 $b Cell
27 FCall 2
28 UnboxR
29 SetL _8
30 PopC
31 CGetL $a
32 CGetL _8
33 NewPackedArray 2
34 UnsetL _8
35 BaseL $result Define
36 SetM 0 W
37 PopC
38 IterNext 0 L0 _8
39 }
40 Jmp L4
41 } .catch {
42 Dup
43 InstanceOfD "Exception"
44 JmpNZ L1
45 Throw
46 L1:
47 SetL $e
48 PopC
49 }
50 L4:
51 CGetL $result
52 VerifyRetTypeC
53 RetC
54 F1:
55 IterFree 0
56 Unwind
57 }

Figure 2: Different hhas corresponding to Figure 1

essentially that of our earlier work with Hofmann on effect systems
[9].

Some instructions both read and write:
p.pc = IncDecL l op

p′.pc′ = IncDecL l ′ op Φ ≤ l = l ′ Φ2 = Φ[l = l ′]

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ2
⊤

For conditional branches and switches, our simple form of rela-
tion will ensure that the value being switched on will be the same,

so we have to check both that the two successor instructions are
related and that the two branched-to instructions are related:

p.pc = JmpZ L p′.pc′ = JmpZ L′

Γ | Θ, (pc, pc′) :Φ⊤

→ Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ⊤, (L,L′) :Φ⊤

where we identify labels with the program counters to which they
refer.

Semantic Equivalence Checking for HHVM Bytecode PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

So far, we have only considered cases where we have similar
instructions on both sides. We also allow some instructions, such
as unconditional branches, to make moves on one side only, which
allows for some differences in control flow on the two sides. We
define a left-move relation (pc0, pc

′
1) :Φ0⊤

L
→ (pc1, pc

′
1) :Φ1⊤ using

rules like this:

p.pc = Jmp L

(pc, pc′) :Φ⊤ L
→ (L, pc′) :Φ⊤

with matching rules for the right-move relation
R
→. We then add a

rule that allows steps on the left and steps on the right to combine
to yield steps on both sides:

(pc0, pc
′
0) :Φ0

⊤ L
→
+

(pcm , pc
′
0) :Φ1

⊤ R
→
+

(pcm , pc
′
n) :Φ2

⊤

Γ | Θ, (pc0, pc
′
0) :Φ0

⊤ → Γ, (pc0, pc
′
0) :Φ0

⊤ | Θ, (pcm , pc
′
n) :Φ2

⊤

Note that this rule requires that the numbers of steps on each side
(m and n) to be greater than 0, though they need not be the same.
We can also allow steps on one side only, provided they are followed
by a two-sided step:

(pc, pc′) :Φ⊤ L
→
+

(pcm , pc
′) :Φ1

⊤

Γ | Θ, (pcm , pc
′) :Φ1

⊤ → Γ, (pcm , pc
′) :Φ1

⊤ | Θ2

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤, (pcm , pc
′) :Φ1

⊤ | Θ2

and similarly for moves on the right. Note that we only introduce
the assumption (pc, pc′) :Φ⊤ after we have checked the two-sided
move without it: to ensure the soundness of our reasoning about
loops, goals can only become assumptions once both sides have
taken at least one step.

In the actual implementation, the non-determinism involved in
choosing how many one-sided steps to take is resolved by making
as many one-sided steps as possible, whilst checking explicitly for
loops.

3.1 Soundness
Wedo not have a formal semantics of hhaswith respect to whichwe
could do a full proof of soundness. However, the semi-formal argu-
ment for the correctness of our treatment of loops is slightly delicate
and deserves some comment. The argument can be seen as a transla-
tion into a step-indexed logic [1] with a Gödel-Löb stylemodality for
recursion [2, 10]. Let the operational semantics of HHVM be given
by a transition relation ⟨p, pc0, s0⟩ 7→ ⟨p, pc1, s1⟩, write ⟨p, pc, s⟩ ↓k
to mean that program p started at program counter pc and state
s ∈ S halts within k steps, and ⟨p, pc, s⟩ ↑ to mean it diverges. (For
simplicity, we just consider termination behaviour; the extension
to IO and errors is not fundamentally different.)

Given an interpretation of our state relations Φ ⊆ S × S , we
define our relations on program counters Φ⊤ ∈ N→ P(N ×N) in a
step-indexed way:

Φ⊤(k) = {(pc, pc′) | ∀(s, s ′) ∈ Φ,∀j ≤ k,

⟨p, pc, s⟩ ↓k =⇒ ⟨p′, pc′, s ′⟩ ↓ω ∧

⟨p′, pc′, s ′⟩ ↓k =⇒ ⟨p, pc, s⟩ ↓ω }.

Note that if Φ0 ⊆ Φ1 then Φ1⊤(k) ⊆ Φ0⊤(k) and that Φ⊤(k) ⊇

Φ⊤(k + 1). Now, given R ∈ N→ P(N × N), define ▷R by

▷R(0) = N × N

▷R(k + 1) = R(k)

If R decreases with k , so does ▷R. We can define a logic that works
with decreasing step-indexed relations, with conjunction defined
pointwise and judgements being implicitly universally quantified
over step indices. The ▷modality then distributes over conjunction
and satisfies R ≤ ▷R. It also validates a Löb rule, justifying guarded
circular reasoning:

∆, (pc, pc′) : ▷R |= (pc, pc′) : R
∆ |= (pc, pc′) : R

which follows by simple mathematical induction on step indices.
We interpret configurations of the algorithm via (the semantics

of) judgements in the modal logic

⟦Γ | Θ⟧ = Γ,▷Θ |= Θ

where the commas in Γ and Θ are treated as conjunctions. We then
check that each transition is semantically valid, in the sense that
Γ0 | Θ0 → Γ1 | Θ1 implies

⟦Γ1 | Θ1⟧
⟦Γ0 | Θ0⟧

If the algorithm succeeds, the semantics of the terminal configura-
tion ⟦Γn | −⟧ is Γn |= t, which is certainly valid, so by induction we
get the validity of ▷Θ0 |= Θ0, which is the semantics of the initial
configuration (where Θ0 is the set of (pci , pc′i) : true⊤ for each pair
of matching entry points). Finally, we can apply the Löb rule above
to conclude |= Θ0 as required.

3.2 Unset variables
Separate from the presence of null values, variables in PHP can be
set or unset. All variables are initially unset, assigning to a variable
makes it set, and it is also possible to explicitly unset them, and
to test their set status. Some code explicitly tests this status on
unnamed variables that may not yet have been assigned to, for
example to use the status of a local as a boolean flag that is implicitly
set to false at the start of a function. In order to check equivalence
of such code, we enhance our conjunction-of-equalities relations
with two sets of variables, recording which variables on each side
may be set. So now we have

Φ ::= (l1 = l
′
1 ∧ · · · ∧ lm = l

′
m ; {l̄1, . . . , l̄n }; {l̄ ′1, . . . , l̄ ′n′})

which we’ll sometimes abbreviate as Φ = (ϕ;L;R). The initial re-
lations that are used at entry points have both L and R empty,
corresponding to the fact that on entry we know that all vari-
ables are unset on both sides. We refine entailment between re-
lations accordingly; in particular, the Φ ≤ l = l ′ condition that
applies when variables are accessed (for example in the CGetL rule
above, and also in the rule for the Isset instruction) now means
(∃i, l = li ∧ l ′ = l ′i) ∨ (∀j, l , l̄j ∧ ∀j ′, l ′ , l̄ ′j′).

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Nick Benton

Corresponding assignments to variables now add to the two sets,
so the SetL rule becomes

p.pc = SetL l p′.pc′ = SetL l ′

Φ = (ϕ;L;R) Φ2 = (ϕ[l = l ′];L ∪ {l};R ∪ {l ′})

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ2
⊤

We remark that it is not the case that the sets L and R are always just
the sets of variables appearing on the left and right hand sides of
equalities in ϕ: the removal of equations that is part of the ϕ[l = l ′]
operation can leave variables possibly set but not involved in any
equation.

The two-sided rule for Unset removes any equations involving
the corresponding variables and also removes them from the sets:

p.pc = Unset l p′.pc′ = Unset l ′

Φ = (ϕ;L;R) Φ2 = (ϕ[l , l ′];L \ {l};R \ {l ′})

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ2
⊤

where we write ϕ[l , l ′] for the removal of equations involving l on
the left or l ′ on the right.

Unsetting a variable also has the effect of removing a reference
to its previous value, which may cause the associated storage to be
freed. And indeed, locals frequently are explicitly unset prior to the
end of a function. One might think (and we initially did think) that
deallocation is unobservable, so one does not need to insist that
Unsets on the two sides have to match up exactly. That led us to
add a one-sided rule

p.pc = Unset l

(l , l ′) : (ϕ;L;R)⊤
L
→ (l + 1, l ′) : (ϕ[l ,−];L \ {l};R)⊤

and similarly on the right. However, collecting an object can also
cause a finalizer to run. When using a reference counting collector,
the order in which finalizers execute is deterministic, and may be
observable. The Hack semantics is moving away from determin-
istic finalization, but for the moment we have put the one-sided
treatment of Unset behind a flag.

3.3 Exception handling
HHVM has a somewhat non-trivial model for exception handling.
As one can see in Figure 2, blocks of code can be wrapped like this:
.try {

// code...
} .catch {

// handler...
}

or like this:
.try_fault Fn {

// code...
}
...
Fn:

// fault handler...
Unwind

The first form is used in compiling try {...} catch {...} in
the source, while the latter is used for try {...} finally {...}
as well as to ensure that resources allocated during the compila-
tion of other language constructs (such as iterators) are freed. The

two forms can be nested, and what happens when an exception is
thrown depends on a mix of static and dynamic information. Each
program counter is mapped statically to a list of enclosing handlers,
which may be either catch blocks or fault handlers. The runtime
also maintains a dynamic stack of currently-active handlers. When
an exception is thrown, the static handlers are added to the dynamic
ones and the ‘unwinder’ is entered. If the topmost handler is a fault
handler then control is passed to it until an Unwind is encountered,
at which point we resume unwinding. If the topmost handler is a
catch block then control is passed to it, with the exception object
on the evaluation stack, maintaining the remainder of the dynamic
stack. If the handler stack is empty, then the exception is re-raised
in the calling frame.

To deal with this behaviour in semdiff, we refine the notion of
program counter from a simple integer to an integer (for the actual
program counter) paired with a list of handlers, each of which is an
integer and an indication of which kind of handler it refers to. We
allow one-sided transitions on Unwind instructions, which allows
for some variation in exceptional control flow between the two
sides.

As well as the explicit Throw instruction, a great many instruc-
tions potentially raise faults, including out of bounds accesses and
dynamic type violations. Precisely when faults are raised can also
depend on dynamic conditions. Rather than try to track the po-
tential for throwing accurately, we make the very conservative
assumption that most instructions can throw. Hence the two-sided
rules for almost all instructions actually generate two, rather than
one, subgoal in Θ: one for the next instruction and one for the
exception case.

One side-effect of the refinement of program counters is that it
adds a degree of ’polyvariance’ to our analysis: we can associated
different relations with the same location, provided the exception
stacks differ.

3.4 Disjunction
For program points that occur on many paths, the relation that is
assumed the first time the algorithm visits a point is quite likely
to be too strong to be a global invariant. This is especially true for
exception handlers, which (especially given our pessimistic assump-
tion that most instructions can throw) can be entered from many
different places, where different relations hold. Similar considera-
tions apply to loops: it is not uncommon for a loop to be entered
with an equation holding which the loop body invalidates, but
which is not necessary to establish equivalence. To deal with this
problem, we further enhance the form of our relations to include
finite disjunctions of relations:

Φ := (ϕ1;L1;R1) ∨ · · · ∨ (ϕn ;Ln ;Rn)

Formally, this is covered by our existing rules, if we treat the as-
sumptions Γ and todos Θ as sets rather than partial maps from
(pc, pc′) pairs. The reason that is the case is that for any relations
R1, R2 on states

(l , l ′) : (R1 ∨ R2)
⊤ ⇐⇒ ((l , l ′) :R1

⊤) ∧ ((l , l ′) :R2
⊤)

but, in practice, we do use a partial map from pairs to sets of re-
lations. The simple version of the algorithm would report failure

Semantic Equivalence Checking for HHVM Bytecode PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

when the Φ2 ≤ Φ1 condition of the assumption rule was not satis-
fied. Now we can alternatively just analyze the code again with the
prerelation Φ2 unioned in:

Γ, (pc, pc′) :Φ1
⊤ | Θ, (pc, pc′) :Φ2

⊤ →

Γ, (pc, pc′) : (Φ1 ∨ Φ2)
⊤ | Θ, (pc, pc′) :Φ2

⊤

In theory, the finite nature of the set of relations that could be
generated for a given function body means that this process should
converge to a fixed point. However, we do not check for this. Instead,
we simply limit the number of (semantically distinct) disjuncts
that may be considered before we report failure to an empirically-
determined hard bound, which is currently 7. (A much lower limit
would suffice for nearly all the real code we have encountered.)

3.5 Dynamic loading
One question we have not yet addressed is how we decide which
classes, and which functions/methods within those classes, should
be compared by semdiff. This is not just a matter of matching up
the names, because PHP is very dynamic language. For example,
there can be more than one class with a given name in a file, and
which one is actually loaded into the runtime can depend on dy-
namic control flow. Thus semdiff starts by comparing the top-level
.main functions in each file, and dynamically schedules pairs of
classes for comparison when it finds a matching pair of DefCls
instructions (which refer to actual class definitions by integer index
into the file). Those comparisons can schedule others, and so on.
Similar considerations apply to functions (the DefFunc instruction)
and closures (the CreateCl instruction). In the latter case we allow
the two classes to store their free variables in a different order, so
we compare up to a permutation.

4 PEEPHOLE EQUIVALENCE PATTERNS
As we said in the introduction, the ‘logical’ part of semdiff is
backed up by a more ad hoc collection of equivalence patterns.
The two compilers often produce code that could not be shown
equivalent using the fairly simple rules we have described so far.
One naturally thinks of increasing the power of the logic to track
details of what’s on the stack, and so on. But that would involve
a detailed logical encoding of the semantics of each instruction,
and probably have to rely on an external solver (which, apart from
the complexity, would be comparatively slow). Since we were only
interested in two specific compilers, whose correct output was
likely to vary in a small number of predictable ways, we could get
away with a much cruder approach. Whenever semdiff reported
a discrepancy, we examined it and decided what to do:

• If we thought it was a real difference (which often involved
lengthy discussions) then we changed the new compiler.

• If we thought the two bits of code really were equivalent
then we chose between:
– Increasing the power of semdiff’s analysis algorithm (for
example, adding the treatment of unset variables),

– Adding a custom equivalence pattern, or
– Changing the new compiler anyway, as this was some-
times the simplest solution.

These custom equivalence patterns are written using another small
set of combinators, very like parser combinators. There are about
twenty patterns, ranging from trivial peephole equivalences to quite
subtle patterns that can span many instructions. Here’s an example
of a simple equivalence, which should be self-explanatory:

Not
JmpZ L = JmpNZ L

and here’s another, expressing the associativity of string con-
catenation (which shows up rather often in typical Hack code):

String "foo"
Concat
Concat

=
Concat
String "foo"
Concat

Here’s a slightly more complex example, expressed as a special
purpose rule:

p.pc = FPassL n l p′.pc′ = FPassL n l ′ safe(p, pc + 1)
safe(p′, pc′ + 1) Φ ≤ l = l ′ Φ2 = Φ[l = l ′]

Γ | Θ, (pc, pc′) :Φ⊤ → Γ, (pc, pc′) :Φ⊤ | Θ, (pc + 1, pc′ + 1) :Φ2
⊤

What’s going on here is that we are pushing local l (resp. l ′) onto
the stack as argument n of a function that will be called a bit later
on. The problem is that whether that local is passed by value or by
reference depends on the runtime signature of the function that
gets called, and we don’t always know statically what that will be.
If the call is by reference then the function call could potentially
invalidate some equations involving these locals. The predicate safe
checks that the following instructions just involve pushing some
more arguments, followed by a call that will consume them all. If
that’s the case then we can safely approximate the effect of the call
by deleting any other equations involving l on the left or l ′ on the
right (which we do earlier than strictly necessary).

An unexpected benefit of the pattern-matching combinators
was they were easy to understand, so team members could extend
semdiff without having to understand the details of the logical
analysis.

5 DISCUSSION
The experience of using semdiffwhile developing HackC was very
positive. We integrated the tool into our routine testing process
whilst both it and HackC were under development, running it
regularly over our test suites and, later on, over millions of lines of
real code.

It should, of course, be stressed that we also test by actually
running compiled code, but semdiff provided complimentary cov-
erage. Although it still relies on a collection of tests, it provides
coverage of all possible paths through each function, rather than
just those that are executed in a test run. Indeed, it works well
with tests that are not even runnable programs. We found and fixed
numerous issues in HackC by using semdiff, and once we reached
the point that semdiff validated the compilation of all our Hack
code, reports of code generation bugs became conspicuous by their
absence.

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Nick Benton

The choice of a simple, specialized prover combined with hard-
wired patterns was certainly the right one for the immediate prob-
lem we faced. But it does make the tool rather inflexible. In par-
ticular, it would be good to continue to use an automated tool for
regression testing between future versions of HackC, but if we were
to introduce any non-trivial optimizations then we would probably
need to move to using an external solver. It should also be noted
that coding the analysis from scratch in a deterministic language,
while resulting in a fast tool, was surprisingly awkward. Being able
to express rules directly in a more declarative style would be much
easier.

An early example of a semantic diff is that of Jackson and Ladd
[11], which works by computing the dependence relation between
the inputs and outputs of a procedure in a compositional way, and
reporting and differences it finds between two versions. Notable
amongst a number of other automated provers for program equiv-
alence is SymDiff, by Lahiri et al. [12]. SymDiff is a tool that can
compare programs in the verification language Boogie for par-
tial (terminating) equivalence. There are translators from several
languages, including C and C♯ into Boogie. SymDiff works by com-
posing (appropriately renamed) versions of the two programs and
generates verification conditions to be discharged by the Z3 solver.
SymDiff can generate counterexample traces when verification fails.
It can also deal with equivalences that rely on much more complex
logical properties than semdiff, but is considerably slower and
relies on a rather larger infrastructure. Closer in spirit to semdiff
is the work of Rideau and Leroy on validating a register allocator
[15] in the context of the CompCert verified compiler project [13].
Verifying advanced spilling algorithms once and for all turns out to
be rather hard, so Rideau and Leroy present a translation validation
approach that generates a proof of equivalence for specific runs
of the allocator. Their dataflow analysis is very similar to that of
semdiff, with the notable difference that it is a backwards analysis,
which they found led to smaller verification conditions.

6 DEDICATION
This paper is dedicated to the memory of my dear friend and
longterm collaborator, Martin Hofmann. I am only one of many
people whomMartin taught much about life, beer, and mathematics.
He is deeply missed.

7 ACKNOWLEDGEMENTS
I’d like to thank CJ Bell, Paul Bissonnette, Catherine Gasnier, Philip
Hölzenspies, Andrew Kennedy, Arun Kumar, Vladimir Matveev,
Greg Nisbet, Oguz Ulgen, and Hugo Venturini for their contribu-
tions to the development, testing, and deployment of semdiff.

REFERENCES
[1] A. Appel and D. McAllester. An indexed model of recursive types for foundational

proof-carrying code. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(5), 2001.

[2] A.W. Appel, P.A. Melliès, C.D. Richards, and J. Vouillon. A very modal model
of a modern, major, general type system. Proceedings of the 34th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
109–122, 2007.

[3] G. Barthe, B. Grégoire, and S. Zanella. Formal certification of code-based cryp-
tographic proofs. In Proceedings of the 36th ACM Symposium on Principles of
Programming Languages (POPL ’09). ACM, 2009.

[4] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin. Probabilistic relational rea-
soning for differential privacy. ACM Trans. Program. Lang. Syst., 35(3), November
2013.

[5] N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of the 31st ACM Symposium on Principles of
Programming Languages (POPL), January 2004.

[6] N. Benton. A typed, compositional logic for a stack-based abstract machine. In
Proc. 3rd Asian Symposium on Programming Languages and Systems (APLAS),
volume 3780 of Lecture Notes in Computer Science, 2005.

[7] N. Benton. Abstracting allocation: The new new thing. In Proceedings of Computer
Science Logic (CSL ’06), number 4207 in Lecture Notes in Computer Science.
Springer-Verlag, September 2006.

[8] N. Benton and C-K. Hur. Biorthogonality, step-indexing and compiler correctness.
In ICFP, 2009.

[9] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, writing and
relations: Towards extensional semantics for effect analyses. In Proc. 4th Asian
Symposium on Programming Languages and Systems (APLAS ’06), 2006.

[10] N. Benton and N. Tabareau. Compiling functional types to relational specifica-
tions for low level imperative code. In Proceedings of the Fourth ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI ’09). ACM,
January 2009.

[11] D. Jackson and D. A. Ladd. Semantic diff: A tool for summarizing the effects
of modifications. In Proceedings of the International Conference on Software
Maintenance (ICSM ’94). IEEE, 1994.

[12] S. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebelo. SymDiff: A language-
agnostic semantic diff tool for imperative programs. In Proceedings of the 24th
International Conference on Computer Aided Verification (CAV ’12), number 7358
in Lecture Notes in Computer Science. Springer-Verlag, 2012.

[13] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7), 2009.

[14] G. Ottoni. HHVM JIT: A profile-guided, region-based compiler for PHP and Hack.
In Proceedings of the 39th ACM Conference on Programming Language Design and
Implementation (PLDI ’18). ACM, 2018.

[15] S. Rideau and X. Leroy. Validating register allocation and spilling. In Proceedings
of the 19th International Conference on Compiler Construction (CC ’10), number
6011 in Lecture Notes in Computer Science. Springer-Verlag, 2010.

[16] O. Yamuachi. Hack and HHVM: Programming Productivity Without Breaking
Things. O’Reilly, 2015.

	Abstract
	1 Introduction
	1.1 semdiff architecture

	2 HHVM Bytecode
	3 Relational Hoare Logic for Low-Level Code
	3.1 Soundness
	3.2 Unset variables
	3.3 Exception handling
	3.4 Disjunction
	3.5 Dynamic loading

	4 Peephole Equivalence Patterns
	5 Discussion
	6 Dedication
	7 Acknowledgements
	References

