
Short Presentation:
Abstracting Allocation: The New new Thing

Nick Benton
Microsoft Research

nick@microsoft.com

Noah Torp-Smith
The IT University of Copenhagen

noah@itu.dk

ABSTRACT
We sketch some work in progress on using binary relations
for the modular specification and verification of low-level
code for memory allocators and their clients.

1. INTRODUCTION
Most logics and semantics for languages with dynamic

allocation treat the allocator, and a notion of what has
been allocated at a particular time, as part of their ba-
sic structure. For example, marked-store models, functor
categories and FM-cpos have special treatment of locations
baked in, as do operational semantics using partial stores,
where programs ‘go wrong’ when accessing unallocated loca-
tions. Even type systems and logics for low-level programs,
such as TAL, hardwire allocation as a primitive.

For high-level languages in which allocation is observable
but largely abstract (no address arithmetic or explicit deal-
location), building ‘well-behaved’ allocation into a model
seem reasonable. But even then, we typically obtain base
models that are far from fully abstract, and have to add a
second non-trivial relational quotient to validate even the
simplest facts about encapsulation.

For low-level languages, hardwiring allocation seems less
attractive. Firstly, and most importantly, we would like
to be able to reason about the low-level code that actually
implements the storage manager. Secondly, in languages
in which one can perform address arithmetic, such as the
while-language with pointers used in separation logic, one
is led to treat allocation as a non-deterministic operation,
which seems to involve unpleasant semantic complexities,
especially if one tries to reason about equivalences [6, 5].
Finally, it just doesn’t correspond to the reality that ‘ma-
chine code programs don’t go wrong’.

We instead start with a completely straightforward opera-
tional semantics for an idealized assembly language. There is
a single datatype, the natural numbers, though different in-
structions treat elements of that type as code pointers, heap
addresses, integers, etc. The heap is simply a total function
from naturals to naturals and the code heap is a total func-
tion from naturals to instructions. Computed branches and
address arithmetic are perfectly allowable. There is no built-
in notion of allocation and no notion of ‘going wrong’: the
only observable behaviours are termination and divergence.

Over this simple and permissive model, we aim to de-

SPACE 2006. Charleston, South Carolina.

velop semantic (defined in terms of observable behaviour)
safety properties, and ultimately a program logic, that are
rich enough to capture the equational semantics of high-
level types as properties of compiled code and also to ex-
press and verify the behavioural contracts of the runtime
systems, including memory managers, upon which compiled
code depends.

Our approach is based on four technical ideas. Firstly, we
work with (quantified) binary relations rather than unary
predicates. Program properties are expressed in terms of
equivalence of observable behaviour, rather than avoidance
of some artificial stuck states. Secondly, we use ‘perping’
operations, taking relations on states to relations on code
addresses (and vice-versa) to reason about first-class code
pointers. Thirdly, we reason modularly about the heap in
a style similar to separation logic, but using an explicit no-
tion of the portion of the heap on which a relation depends.
Finally, we reason modularly about mutually-recursive pro-
gram fragments in an assume/guarantee style, using a step-
indexing technique to establish soundness. The hope is that
this basic framework can provide a unified treatment of
many type systems, static analyses and program transfor-
mations. Here, we merely present some preliminary ideas
on how one might use it to specify and verify the implemen-
tation and clients of a very basic memory allocator. This is
elementary, and very much work in progress, but we believe
it is a fresh approach to freshness.

2. THE MACHINE
Our idealized sequential machine model looks like:

s ∈ S def
= N→ N states

l, m, n, b ∈ N naturals in different roles

p ∈ Programs
def
= N→ Instr programs

〈p|s|l〉 ∈ Configs
def
= Programs× S× N

The instruction set, Instr, includes halt, direct and indirect
stores and loads, some (total) arithmetic and logical oper-
ations, and conditional and unconditional branches. The
semantics is given by an obvious deterministic transition re-
lation 〈p|s|l〉 → 〈p|s′|l′〉 between configurations. We write
〈p|s|l〉 ⇓ if there exists n,l′,s′ such that 〈p|s|l〉 →n 〈p|s′|l′〉
with p(l′) = halt, and 〈p|s|l〉 ⇑ if 〈p|s|l〉 →ω. Omitting reg-
isters was a misguided attempt at simplification; we intend
to add them. The other major idealizations are the use of
unbounded natural numbers and the separation of code and
data memory.

3. RELATIONS
We work with binary relations on the state, R ⊆ S×S and

an explicit notion [4] of the ‘support’ of a relation, i.e. which
locations it depends upon. These supports are in general
themselves functions of the state, but should not depend on
locations not in their results. More formally:

• If L ⊆ N and s, s′ ∈ S then we write s ∼L s′ to mean
∀l ∈ L.s(l) = s′(l).

• If A : S → P(N) then A is an accessibility map if for
all s, s′, s ∼A(s) s′ =⇒ A(s′) = A(s).

• A supported state relation R is a pair (|R|, AR) where
|R| ⊆ S × S, AR is an accessibility map and for all
s1 ∼AR(s1) s′1, s2 ∼AR(s2) s′2, if (s1, s2) ∈ |R| then
(s′1, s

′
2) ∈ |R|. We often elide the | · |.

Note that accessibility maps do not necessarily correspond
to sets of ‘reachable’ locations. The separating product of
supported relations is given by R⊗R′ = (|R⊗R′|, λs.AR(s)∪
AR′(s)) where

|R⊗R′| = |R|∩|R′|∩{(s1, s2) | AR(si)∩AR′(si) = ∅, i = 1, 2}

If R is a (supported) state relation, and p a program, we
define R>(p) ⊆ N× N by

R>(p)
def
= {(l, l′) | ∀(s, s′) ∈ R.〈p|s|l〉 ⇓ ⇐⇒ 〈p|s′|l′〉 ⇓}

In other words, R> relates two labels if jumping to those
labels gives equivalent termination behaviour whenever the
two initial states are related by R.

4. SPECIFICATION OF ALLOCATION
An allocator is just a piece of sequential machine code,

which we can specify and verify using the same relational
methods that we will use for its clients. There are entry
points for initialization, allocation and deallocation, though
we only discuss the first two here.

We arbitrarily choose to use locations 0-4 for arguments
and results, and designate locations 5-9 as being callee-saves.
The code at label init sets up the internal data structures
of the allocator. It takes a return address in location 0, to
which it will jump once initialization is complete. The code
at label alloc expects a return address in location 0 and
the size of the requested block in location 1. The address of
the new block will be returned in location 0.

After initialization, the allocator owns some storage in
which it maintains its internal state, and from which it hands
out (transfers ownership of) chunks to clients. The allocator
depends upon clients not interfering with, and behaving in-
dependently of, both the location and contents of its private
state. In particular, clients should be insensitive to the ad-
dresses and the initial contents of chunks returned by calls
to alloc. In return, the allocator promises not to change
or depend upon the contents of store owned by the client.
All of these independence, non-interference and ownership
conditions can be expressed using supported relations. Fur-
thermore, we do so extensionally, rather than in terms of
which locations are read, written or reachable.

There will be some supported relation (Ra, Aa) for the
private invariant of the allocator. Aa captures the store
owned by the allocator; this has to be a function of the
store because it varies. Ra says which internal states are
valid and equivalent.

When init is called, the allocator takes ownership of some
(infinite) part of the store, which we only specify to be dis-
joint from locations 0-9. On return, locations 0-4 may have
been changed, 5-9 will be preserved, and none of 1-9 will
observably have been read. So two calls to init yield equiv-
alent behaviour when the return addresses passed in loca-
tion 0 yield equivalent behaviour whenever the states they’re
started in are as related as init guarantees to make them.
How related is that? Well, there are no guarantees on 0-4,
we’ll preserve any relation involving 5-9 and we’ll establish
Ra on a disjoint portion of the heap. Thus for any program p
extending the allocator module, and for any supported rela-
tion (Rpres, Apres) where Apres is the constant accessibility
map λs.{5, . . . , 9},

(init, init) ∈ (Riret ⊗Rpres)
>(p) (1)

where Riret is the supported relation

({(s, s′) | (s(0), s′(0)) ∈ (T04 ⊗Rpres ⊗Ra)>(p)}, λs.{0})

and T04 is (S× S, λs.{0, . . . , 4}).
When alloc is called, the client will already have owner-

ship of some disjoint part of the heap and its own invariant
thereon, Rc. Calls to alloc behave equivalently provided
they are passed return continuations that behave the same
whenever their start states are related by Rc, Ra and in
each state location 0 points to a block of memory of the ap-
propriate size and disjoint from Rc and Ra. More formally,
for any p extending the allocator, for any Rc, for any n

(alloc, alloc) ∈ (Raparms(n)⊗Rc ⊗Ra)>(p) (2)

where Aaparms(n) = λs.{0, . . . , 4}, |Raparms(n)| is

{(s, s′) | (s(0), s′(0)) ∈ (Raret(n)⊗Rc ⊗Ra)>(p)
∧ s(1) = n ∧ s′(1) = n}

and Raret(n) = (S× S, λs.{0} ∪ {s(0), . . . , s(0) + n− 1}).
|Raret(n)| being simply S× S is what requires the return

addresses to behave equivalently whatever chunk of store
they’re given. Abbreviating the notation somewhat, the
specification of the allocator module might be written as

Γa
def
= ∃Ra.(init : ∀Rpres : Apres.(Riret ⊗Rpres)

> ∧
alloc : ∀Rc.∀n.(Raparms(n)⊗Rc ⊗Ra)>)

Note that Ra is scoped across both labels.

5. VERIFICATION OF ALLOCATION
We now consider verifying the simplest (useful) allocation

module, defined by the following code fragment Ma:

init : [10]← 11
init + 1 : jmp [0]

alloc : [2]← [0]
alloc + 1 : [0]← [10]
alloc + 2 : [10]← [10] + [1]
alloc + 3 : jmp [2]

Location 10 points to the base of an infinite contiguous
chunk of free memory. The allocator owns location 10 and
all the locations whose addresses are greater than or equal
to the current contents of location 10. Initialization sets the
contents of 10 to 11, claiming everything above 10 to be un-
allocated, and returns. Allocation saves the return address
in location 2, copies a pointer to the next currently free lo-
cation (the start of the chunk to be returned) into 0, bumps

location 10 up by the number of locations to be allocated
and returns to the saved address.

The witness for the implementation Ma is just

|Ra|
def
= {(s, s′) | (s(10) > 10) ∧ (s′(10) > 10)}

where Aa is λs.{10} ∪ {m|m ≥ s(10)}. The only invariant
this allocator needs is that the next free location pointer
is strictly greater than 10, so memory handed out never
overlaps either the pseudo registers 0-9 or the allocator’s
sole bit of interesting state, location 10 itself.

We then show that for any program p extending Ma, the
properties (1) and (2) actually hold. This is essentially re-
lational Hoare-style verification, using separation assump-
tions. In particular, the prerelation for alloc lets us assume
that the support Ac of Rc is disjoint from both Aaparms and
Aa in each of the related states (s, s′) in which we make the
initial call. Since the code only writes to locations coming
from those latter two accessibility maps, we know that Ac is
unchanged in the two return states, and that they are still
related by Rc, even though we do not know anything more
about Rc or Ac.

We can also verify client programs under the assumption
that the allocator satisfies its specification. If C is a client
fragment and Γ is a relational specification on labels occur-
ing in C, then what we will need to show is that for any
p extending C, if p satisfies Γa then p satisfies Γ. Then if
C is disjoint from Ma, we’ll be able to deduce that any ex-
tension of C linked with Ma satisfies both Γ and Γa. Client
specifications have to mention Ra, even though they treat
it abstractly, so we prove that for every Ra, if p extends C

and satisfies (1) and (2), then p satisfies Γ. In judgemental
form, this would look like

Ra; init : ∀Rpres.(. . .)
>, alloc : ∀Rc.(. . .)

> ` C � Γ

where Ra is universally quantified over the whole judgement.

6. LINKING, RECURSION AND INDEXING
For proving properties of particular small program frag-

ments, one can work directly in the semantics. This deals
with mutual recursion on a case-by-case basis and involves
working explicitly with the inductive definition of termina-
tion every time. We need more generic reasoning principles,
such as a general linking rule [3]:

Θ; Γ2 `M1 � Γ1 Θ;Γ1 `M2 � Γ2

Θ;− `M1, M2 � Γ1 ∧ Γ2

Such rules require the Γs to be suitably admissible, which we
ensure by expressing each of them as the limit of a sequence
of finite approximations defined in terms of counting steps
in the semantics [2]. The k-step approximation of ‘equiva-
lent behaviour’ is ‘indistinguishable when tested for up to
k steps’, and ‘equivalent behaviour’ proper is then the in-
tersection of all its finite approximants. More formally, we
index all our relations by naturals and define

R>(k, p) = {(l, l′) | ∀j < k.∀(s, s′) ∈ R(j, p).

(〈p, s, l〉 ⇓j =⇒ 〈p, s′, l′〉 ⇓) ∧
(〈p, s′, l′〉 ⇓j =⇒ 〈p, s, l〉 ⇓)}

where ⇓j means ‘converges in j steps’. We then expect to
be able to justify rules like that above, provided that we
strengthen the semantics of the individual judgements we

prove so that Γ′ `M : Γ means that for all p extending M ,
for all k, if p satisfies Γ′(k, p) then p satisfies Γ(k + 1, p).
This is usually clear, since the code in M will take at least
one step before relying on any of the assumptions in Γ′.

7. DISCUSSION
This is part of a grander programme on low-level seman-

tics for high-level types that one might (not entirely accu-
rately) call ‘realistic realizability’. It should be apparent
that this builds on a great deal of earlier work on separation
logic, relational Hoare logic, models of dynamic allocation,
typed assembly language, proof-carrying code, PER mod-
els of types, and so on. Space precludes even beginning
to give proper references here, but we should mention the
Princeton FPCC project [1], which has a very similar vision
and from which we took (amongst other things) the step-
indexing idea. The distinctive features of our (much less de-
veloped) approach are the use of potentially very expressive,
extensional, binary relations, rather than unary predicates
built from a particular notion of memory safety, and our
approach to modular reasoning about the heap.

We are working in the Coq theorem prover to manage
changing definitions and the detail of proofs about particu-
lar low-level programs. We have no concrete program logic
yet, but envisage turning semantic definitions and lemmas
formalized in Coq into syntax and inference rules for a more
application-specific logic in due course.

Our next steps are to do more complex examples of allo-
cators and clients, develop the metatheory of indexing and
perping and to take steps towards a more convenient logic.
We then plan to look at more generic correctness proofs for
compilation schemes from a range of high-level languages
into low-level code, and at applications to program trans-
formation. We have so far concentrated on relational prop-
erties of a single program, and some parts of the framework
described here (e.g. working with a single program and sup-
porting relations by a single accessibility map) and of our
particular specifications (e.g. requiring the allocated block
size to be the same on both sides in the allocator spec) are
not quite general enough to deal with interesting transfor-
mations.

Finally, we thank Georges Gonthier for his invaluable ad-
vice and instruction regarding the use of Coq.

8. REFERENCES
[1] A. Appel. Foundational proof-carrying code. In

Symposium on Logic in Computer Science, 2001.

[2] A. Appel and D. McAllester. An indexed model of
recursive types for foundational proof-carrying code.
ACM TOPLAS, 23(5), 2001.

[3] N. Benton. A typed, compositional logic for a
stack-based abstract machine. In Proc. APLAS 2005,
LNCS 3780.

[4] N. Benton and B. Leperchey. Relational reasoning in a
nominal semantics for storage. In Proc. TLCA 2005,
LNCS 3461.

[5] N. Torp-Smith. Advances in Separation Logic. PhD
thesis, IT University of Copenhagen, 2005.

[6] H. Yang. Relational separation logic. Submitted to
TCS, 2004.

