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Abstrat

We present an inferene system for translating programs in a PCF-like soure

language into a variant of Moggi's omputational lambda alulus. This translation

ombines a simple stritness analysis with its assoiated optimising transformations

into a single system. The orretness of the translation is established using a logial

relation between the denotational semantis of the soure and target languages.

1 Introdution

1.1 Bakground

Stritness analysis of lazy funtional programs has been studied extensively during the

the last 15 years or so, usually with the justi�ation that the results of the analysis an

be used in an optimising ompiler [My81, BHA86, Ben92℄. There has, however, been

surprisingly little serious work on just how the results of stritness analysis an be used

as the basis for optimising transformations. This is probably beause it turns out to be

rather more diÆult to express and justify these optimisations than one might at �rst

imagine. Roughly speaking, it seems we have to deide

1. What optimisations we wish to perform.

2. How to express these optimisations in some formal framework.

3. Exatly what information has to be gathered to enable eah optimisation.

4. How to prove the orretness of the optimisations.

The next few paragraphs attempt to sketh the range of possible answers to eah of these

questions and to indiate whih hoies were made in some of the previous work on the

subjet.
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1.1.1 Whih optimisations?

The most basi optimisation we ould want to perform is to evaluate some funtion argu-

ments to weak head normal form before the funtion all [Bur91, NN90, DH93, Amt93℄.

If our language inludes datatypes suh as pairs or lists, then we might wish to evalu-

ate some arguments beyond WHNF (evaluating all the spine ells of a list, for example)

[Bur91, NN90℄. These optimisations then naturally suggest a further lass of omplemen-

tary optimsations in whih, for example, funtions are ompiled to expet arguments whih

have already been evaluated to a ertain degree. This an then be extended to higher or-

der { a funtion an be ompiled to expet as its argument a strit funtion, whih in

turn will expet its argument to be already evaluated. Evaluated arguments to monomor-

phi funtions an be passed unboxed, whih improves both spae and time eÆieny. In

all-by-need implementations, knowing that a ertain value is already evaluated an save

unneessary graph update operations as well as evaluations.

In addition to all these levels of optimisation, we also have to deide whether or not to

ompile multiple versions of funtions for use in di�erent ontexts (we might, for example,

ompile one version of map whih expets a strit funtion as its �rst argument and one

version whih doesn't). And if we deide to opt for multiple versions, we then have to

deide whether or not the hoie of versions should be stati (determined at ompile-time),

dynami (determined at run-time) or some mixture of the two. Multiple ode versions also

raise the more pragmati questions of how to ontrol the exponential blowup in ode size

whih an result and how to deal with the potential loss of sharing (whih an atually

lead to slower ode by dupliating evaluations unneessarily).

On parallel hardware, stritness analysis an also be used to deide whih expressions

should be evaluated in parallel. In this paper we will only expliitly onsider optimisations

for sequential implementations, though muh of the disussion is appliable to parallel

ones too. In passing, however, we remark that in a parallel system, ompiling funtions

to expet evaluated arguments does not seem to be partiularly useful. This is beause a

funtion body annot be ompiled simply to assume that an argument is fully evaluated,

sine the thread whih is evaluating that argument may not have �nished (or even started)

when the body attempts to use the argument. Hene the body needs to make a run-time

examination of the argument, whih is just what we were trying to avoid, and be prepared

either to blok or possibly simply to do the evaluation itself.

1.1.2 Formalising the optimisations

There are two main approahes to expressing and reasoning about stritness-based opti-

misations, whih reet di�erent shools of thought about the foundations of funtional

languages. What we might all the `lambda alulus' approah [Bur91℄ starts from the idea

that leftmost redution is but one of many redution strategies for the lambda alulus,

and that what we wish to do is work out when it is safe to use some alternative strat-

egy. The Churh-Rosser theorem is entral to this approah, as it is this whih ensures

(roughly) that any hoie of strategy whih preserves termination is safe. The `program-

ming language' approah [NN90, Amt93℄ eshews all mention of redution strategies (and,

indeed, lassial results about the lambda alulus) and instead looks at di�erent trans-

lations of the soure programming language into some other target language with a �xed

operational semantis. The `programming language' approah has several advantages over

the `lambda alulus' approah. Firstly, the very notion of redution strategy is unnees-

sary, unrealisti and messy { not only are strategies ompliated things to reason about,
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but as they will ultimately be realised by di�erent translations of the soure language into

mahine ode, we might as well just work with translations diretly. Seondly, the `lambda

alulus' approah does not deal well with the optimisations whih involve knowing that

ertain things will already have been evaluated. Thirdly, the `programming language'

view is the only one whih makes sense for other kinds of programming languages and

optimisations. Hene we should be able to draw on, and ontribute to, work on other

ompile-time transformations whih do not seem to have any simple link with traditional

results about the lambda alulus, suh as the optimisation of data representations.

Of ourse, if we deide to use stritness information to hange the translation of our

soure language into some intermediate language, then we have to deide what that target

language should be. Nielson and Nielson [NN90℄ use stritness information to hange the

translation of a ombinatory soure language into a lazy variant of the ategorial abstrat

mahine. This has the advantage of being very lose to implementation pratie, but it is

probably slightly too low-level for orretness proofs to be omfortable and the struture

of optimisations an be rather hard to see amid the details of the ompiled ode. Danvy

and Hatli� [DH93℄ use stritness information to ontrol the translation of a all-by-name

soure language into ontinuation passing style. Amtoft [Amt93℄ hooses to translate his

all-by-name soure language into a all-by-value target language, using derivations in a

stritness type system to improve on the well-known naive translation. In this paper, we

shall take the target language to be a variant of Moggi's omputational lambda alulus.

1.1.3 Gathering the information

Deiding what information has to be gathered to enable optimisations is also rather triky.

Whatever analysis tehnique one uses (e.g. abstrat interpretation or type inferene),

there is a hoie to be made between performing a `stiky' analysis, whih analyses the

entire program �rst and produes some kind of annotated program as the input to a

subsequent transformation phase, or a `non-stiky' analysis in whih the transformation

or ode-generation phase alls the analyser on the y to establish partiular properties of

program fragments in order to justify partiular optimisations. As the Nielsons observe,

the orretness of the stiky analysis is hard to establish, as \the semanti ontent of suh

annotations is somewhat subtle" [NN90℄, essentially beause the stritness analyser gives

the stritness properties of an expression as a funtion of the stritness properties of its

free variables. It therefore seems, at least at �rst sight, neessary to ombine the stritness

analysis with some kind of `olleting interpretation' or `ow analysis' whih omputes (an

approximation to) the set of (stritness properties of) terms whih ould beome bound

to those variables during exeution [HY91℄. For this reason [NN90℄ uses a non-stiky

analysis. Burn [Bur91℄ does use a stiky analysis to annotate appliations with evaluation

transformer information derived by abstrat interpretation, but he appears to propose the

use of rather weak (`ontext free') annotations for higher-order funtions. Amtoft's system

is also stiky { the role of the annotated program is played by a derivation in his stritness

type system, though a single term an have many valid stritness derivations and hene

many annotations. Danvy and Hatli� assume that a stiky analysis has already supplied

them with an annotated program, and do not disuss how the information is gathered.

A further ompliation of stiky analyses is that some thought must be given to main-

taining the orretness of the annotations as the program is transformed or ompiled. A

related disadvantage of non-stiky analyses is that if they are implemented naively then

they may require the properties of expressions to be repeatedly reomputed { to ompile a
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ompound expression, some property is omputed whih involves omputing properties of

subexpressions. One then reursively ompiles the subexpressions, whih involves omput-

ing their properties all over again. Whilst it seems simple to �x this by returning stritness

properties and a ode stream together in a bottom-up fashion, it should be noted that

we probably do not wish to ompute all the stritness properties of the subexpressions

before ompiling a ompound expression. Furthermore, we wish the subexpressions to be

ompiled in di�erent ways aording to the properties dedued of the larger expression.

1

1.1.4 Proving orretness

Burn approahes the orretness of his optimisations using a mixture of tehniques, ap-

pealing to denotational semantis and omputational adequay for the orretness of the

abstrat interpretation and to the Churh-Rosser and head-normalisation theorems, to-

gether with a ertain amount of informal English argument for the orretness of the idea

of evaluation transformers. The �nal stage, ompiling di�erent redution strategies into

di�erent ode sequenes for the Spineless G-Mahine, is not justi�ed.

Danvy and Hatli� show that their CPS transformation of annotated programs is

orret by deriving it from the omposition of a translation of annotated programs to a

all-by-value language with delay and fore onstruts and a CPS translation of this

extended all-by-value language. The orretness of eah of these omponent translations

is established from a denotational semantis.

Amtoft proves the orretness of his translation by establishing diretly from the oper-

ational semantis that the all-by-value evaluation of the translation of a program termi-

nates with a value i� the all-by-name evaluation of the original program terminates with

that value. A partiularly pleasant feature of this proof is that the analysis is not �rst

proved orret in isolation { the orretness property of the analysis is simply that the

assoiated transformations are orret (f. [Wan93℄). Nielson and Nielson do not address

the question of orretness at all, though their paper does onsider more sophistiated

optimisations than the other works ited. In this paper we shall establish orretness by

purely denotational tehniques.

1.2 This paper

This paper takes a similar approah to that of Amtoft. We essentially use a stritness

type system to improve the translation of a simply typed lambda alulus with onstants,

�

T

, into a variant of the omputational lambda alulus [Mog89, Mog91℄, alled �

op

.

The target language �

op

, whih was �rst proposed as a language for expressing stritness

optimisations in [Ben92℄, has a type system whih makes an expliit distintion between

omputations, whih are expressions whih are potentially unevaluated, and values, whih

are expressions in WHNF. This appears to be just the level of extra re�nement whih we

need to express both the eager evaluation of funtion arguments and the omplementary

optimisations whih are based on knowing that ertain expressions will already have been

evaluated. �

op

is in many respets similar to languages with expliit boxed and unboxed

types presented by Peyton Jones and Launhbury in [PJL91℄ and by Leroy in [Ler92℄, and

indeed many of the same issues arise in the optimisation of data representations (passing

1

Of ourse, this is just the sort of situation in whih one might hope that writing the ompiler itself in a

lazy language might alleviate the problem, but one an hardly expet to get exatly the desired behaviour

for free.
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arguments boxed or unboxed) as in stritness-based optimisations (passing arguments

unevaluated or evaluated).

A major di�erene between the translation presented here and previous work is that

although there is morally a stritness type system underlying the translation, it is om-

pletely integrated with a transformation phase. Thus the only `stritness properties' whih

are ever visible are in the types of the optimised translations of �

T

terms and we remove

the distintion between what optimisations we wish to perform and what information has

to be gathered. We manage to obtain muh of the bene�t of using a olleting interpre-

tation just from the way in whih types are used in the translation; we an, for example,

often disover that a higher-order funtion is only ever alled with a strit funtion as

argument and ompile it aordingly.

2

The translation is nondeterministi, in that it spei�es a set of valid translations of

a single soure language program. We do not examine it detail the problem of how to

de�ne and �nd the `best' translation, though seems likely that some relatively straighfor-

ward heuristis should give fast analysis and good results. The version of the translation

presented here does not generate multiple ode versions and only treats ground types and

funtion spaes. The analysis inherent in the translation is not a partiularly powerful

one and we disuss some possible improvements in Setion 6.

2 The soure language �

T

The soure language �

T

is a onventional simply-typed lambda alulus with onstruts

for arithmeti, onditionals and reursion, i.e. an inessential variant of Plotkin's language

PCF [Plo77℄. The syntax and typing rules of �

T

are shown in Figure 1. The all-by-name

types A;B ::= nat j A! B

ontexts �;� ::= a

1

:A

1

; : : : ; a

n

:A

n

arithmeti op ::= + j � j �

Id

�; a:A ` a:A

Abs

�; a:A ` e:B

� ` �a:A:e:A! B

App

� ` e:A! B � ` f :A

� ` e f :B

Re

�; a:A ` e:A

� ` re(a:A: e):A

Nat

� ` n: nat

Arith

� ` e: nat � ` f : nat

� ` e op f : nat

Cond

� ` e: nat � ` f

1

:A � ` f

2

:A

� ` if e then f

1

else f

2

:A

Figure 1: Syntax and type rules of �

T

2

It should be intuitively lear that types are ideally suited to obtaining the kind of information gathered

by a olleting interpretation. For example, the fat that a variable has a partiular type is a restrition

on the set of terms whih may end up bound to that variable during exeution.
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operational semantis of �

T

is given by a big-step evaluation relation +, whih relates

losed terms of type A to weak head normal forms (anonials) of type A. The de�nition

of + is shown in Figure 2.

�a:A:e + �a:A:e n + n

e + �a:A:e

0

e

0

[f=a℄ + k

e f + k

e[re(a:A: e)=a℄ + k

re(a:A: e) + k

e +m f + n

e op f + m op n

e + 0 f

1

+ k

if e then f

1

else f

2

+ k

e + n+ 1 f

2

+ k

if e then f

1

else f

2

+ k

Figure 2: Operational semantis of �

T

�

T

also an also be given the usual denotational semantis using pointed !-pos (do-

mains) and ontinuous maps, as shown in Figure 3. We assume the usual notational on-

ventions onerning environments, �, and standard results onerning the well-de�nedness

of the denotational semantis, substitution and so on. One piee of notation whih may

not be familiar is that if � = a

1

:A

1

; : : : ; a

n

:A

n

and � is an environment, then we write

�: � to mean that the domain of � is fa

1

; : : : ; a

n

g and that for all i, �(a

i

) 2 [[A

i

℄℄.

Types

[[nat℄℄ = IN

?

[[A! B℄℄ = [[A℄℄! [[B℄℄

Terms

[[a℄℄� = �(a)

[[�a:A:e℄℄� = �d 2 [[A℄℄:[[e℄℄�[a 7! d℄

[[e f ℄℄� = ([[e℄℄�) ([[f ℄℄�)

[[n℄℄� = [n℄

[[re(a:A: e)℄℄� =

F

i2!

d

i

where d

0

= ?

[[A℄℄

, d

n+1

= [[e℄℄�[a 7! d

n

℄

[[e op f ℄℄� =

(

[m op n℄ if [[e℄℄� = [m℄ and [[f ℄℄� = [n℄

?

IN

?

otherwise

[[if e then f

1

else f

2

℄℄� =

8

>

<

>

:

[[f

1

℄℄� if [[e℄℄� = [0℄

[[f

2

℄℄� if [[e℄℄� = [n+ 1℄

? otherwise

Figure 3: Denotational semantis of �

T
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Proposition 1 (Computational adequay for �

T

) For any program (losed term of

type nat), e in �

T

[[e℄℄ = [n℄ , e + n

Proof. Standard. See, for example, [Plo77, Ben92, Win93℄ 2

3 The target language �

op

�

op

is based on Moggi's omputational lambda alulus, but has a more syntati, oper-

ational avour. It is intended as a ompiler intermediate language whih has just enough

extra struture to express the kinds of optimisations whih we wish to perform as a result

of stritness analysis, but whih is suÆiently high-level not to be tied to a partiular

implementation tehnique and for denotational reasoning to be straightforward. The type

system of �

op

separates omputations from values in a rather literal way { values are ex-

pressions in weak head normal form, whereas omputations are unevaluated expressions.

The syntax and typing rules of �

op

are shown in Figure 4. We use Greek letters for �

op

types, to distinguish them from the types of �

T

and it is important to note that we use

di�erent metavariables (�,�) for value types and arbitrary types (Æ,). Types of the form

value types �; � ::= � j Æ ! 

types Æ;  ::= � j �

?

ontexts � ::= a

1

: Æ

1

; : : : ; a

n

: Æ

n

Id

�; a: Æ ` a: Æ

Abs

�; a: Æ ` e:�

?

� ` �a: Æ:e: Æ ! �

?

App

� ` e: Æ ! �

?

� ` f : Æ

� ` e f :�

?

Abs

0

�; a: Æ ` e:�

� ` �a: Æ:e: Æ ! �

App

0

� ` e: Æ ! � � ` f : Æ

� ` e f :�

?

Val

� ` e:�

� ` [e℄:�

?

Let

� ` e:�

?

�; a:� ` f : �

?

� ` let a e in f : �

?

Re

�; a:�

?

` e:�

?

� ` re(a:�

?

: e):�

?

Cond

� ` e: � � ` f

1

:�

?

� ` f

2

:�

?

� ` if e then f

1

else f

2

:�

?

Nat

� ` n: �

Arith

� ` e: � � ` f : �

� ` e op f : �

?

Figure 4: Syntax and type rules of �

op

�

?

will be referred to as omputation types or lifted types. The version of �

op

used here

varies slightly from that originally proposed in [Ben92℄ in that it inludes a variant form

of lambda abstration �a:e in whih the body is a value. This is slightly inelegant and not
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really neessary, but has been inluded �rstly beause it orresponds more losely to what

one would wish to do in an implementation (as it saves some uneessary evaluations), and

seondly beause it makes translated terms somewhat smaller.

The operational semantis of �

op

is de�ned by big-step evaluation relation + whih

relates (losed) omputations of type �

?

to values of type �. The operational semantis is

shown in Figure 5. There are no rules in the operational semantis of �

op

whih say that

e[f=a℄ + v

(�a: Æ:e) f + v (�a: Æ:e) f + e[f=a℄

[v℄ + v

e + v f [v=a℄ + v

0

let a e in f + v

0

m op n + m op n

e[re(a:�

?

: e)=a℄ + v

re(a:�

?

: e) + v

f

1

+ v

if 0 then f

1

else f

2

+ v

f

2

+ v

if n+ 1 then f

1

else f

2

+ v

Figure 5: Operational semantis of �

op

anonials evaluate to themselves, as there were for �

T

, beause the type system makes

the fat that they are already in WHNF expliit.

�

op

has a denotational semantis whih uses !-pos whih are not neessarily pointed

(predomains) and ontinuous maps. This semantis is shown in Figure 6. We use %

for �

op

envinronments, and again assume trivial standard results about the denotational

semantis. Note that the only denotational di�erene between the two kinds of lambda-

abstration is in the types and that as we have not syntatially distinguished the two

kinds of appliation, we have not distinguished them in the denotational semantis.

Proposition 2 (Computational adequay for �

op

) If e is a losed �

op

term of type

�

?

then

[[e℄℄ = [d℄ , e + v & [[v℄℄ = d

Proof. This is a slight variant on the logial relations argument used to prove Proposi-

tion 1. 2

Note that we have adequay at all types for �

op

, but only at the ground type for �

T

.

The semantis validates various equational laws, but the three important ones involving

omputational types are:

let a [e℄ in f = f [e=a℄ (1)

let a (let b e in f) in g = let b e in (let a f in g) (2)

let a e in [a℄ = e (3)

where Equation 2 arries the side-ondition that b is not free in g.

3

3

A proof-theoreti aount of the the omputational lambda alulus, inluding these rules, an be

found in [BBdP95℄.
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Types

[[�℄℄ = IN

[[ ! Æ℄℄ = [[℄℄! [[Æ℄℄

[[�

?

℄℄ = [[�℄℄

?

Terms

[[a℄℄% = %(a)

[[�a: Æ:e℄℄% = �d 2 [[Æ℄℄:[[e℄℄%[a 7! d℄

[[�a: Æ:e℄℄% = �d 2 [[Æ℄℄:[[e℄℄%[a 7! d℄

[[e f ℄℄% = ([[e℄℄%) ([[f ℄℄%)

[[[e℄℄℄% = [[[e℄℄%℄

[[let a e in f ℄℄% =

(

[[f ℄℄%[a 7! d℄ if [[e℄℄% = [d℄

? otherwise

[[re(a:�

?

: e)℄℄% =

F

i2!

d

i

where d

0

= ?

[[�

?

℄℄

and d

n+1

= [[e℄℄%[a 7! d

n

℄

[[if e then f

1

else f

2

℄℄% =

(

[[f

1

℄℄% if [[e℄℄% = 0

[[f

2

℄℄% if [[e℄℄% = n+ 1

[[n℄℄% = n

[[e op f ℄℄% = [([[e℄℄%) op ([[f ℄℄%)℄

Figure 6: Denotational semantis of �

op

4 Translating �

T

into �

op

There is a well-known all-by-name translation of the lambda alulus into the omputa-

tional lambda alulus due to Moggi [Mog89℄ whih gives a natural default translation of

�

T

into �

op

. Under this default translation, a typing judgement of the form � ` e:A in

�

T

is translated to a judgement �

n

?

` e

n

:A

n

?

in �

op

, where A

n

is de�ned indutively as:

nat

n

= � (A! B)

n

= (A

n

?

! B

n

?

)

In partiular, a soure term of funtional type is translated into a target term whih is (a

omputation of) a funtion from omputations to omputations. There is also a all-by-

value translation, also due to Moggi, in whih terms of funtional type are translated into

(omputations of) funtions from values to omputations.

4

The default translation of �

T

into �

op

makes evaluation order very plain by using the

let onstrut to evaluate omputations of funtional or ground type prior to their use in

appliations or arithmeti operations. Apart from the fat that there is no treatment of

updating, the default translation produes results whih orrespond very losely to the

real ode that is produed by naive ompilers for lazy funtional languages. Our aim is

to produe a better translation, whih, rudely, means one whih introdues fewer liftings

(i.e. omputations rather than values) in the types of translated programs. For example,

the default translation of the following �

T

program:

(�a: nat:a+ a) (3 + 4)

4

These translations an also be found in, for example, [Ben92, Cro92℄. Their intimate onnetion with

various translations into a language based on linear logi is the subjet of [BW95℄.
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is

let f  [�a: �

?

:let b a in let  a in b+ ℄

in f (let x [3℄ in let y  [4℄ in x+ y)

whih is rather verbose, but we an use Equation 1 from the previous setion to make

some `administrative redutions' and obtain:

(�a: �

?

:let b a in let  a in b+ ) (3 + 4)

However, beause the funtion is strit we should prefer a translation in whih the ar-

gument is evaluated before the all and in whih the funtion is ompiled to expet an

evaluated argument:

let b 3 + 4 in (�a: �:a+ a) b

whih will be derivable using the improved translation. Note that the improvement is not

just that we save building a losure, but also that the repeated evaluation of that losure is

avoided. Of ourse, real lazy implementations avoid this kind of re-evaluation by updating,

but the updates themselves still have a ost and it is still neessary to perform a ontext

swith to evaluate the losure for the seond time, even though the evaluation will return

immediately with the updated value.

We now desribe the improved translation in more detail. To begin with, notie that

for eah �

T

term e of type A, there are several �

op

types Æ of roughly the same `shape'

as A whih we might hoose as the type of the translation of e. Eah of these types an

be regarded as a `deoration' of the type A. We formalise this notion by de�ning a map

U (for underlying) from �

op

types to �

T

types:

U(�) = nat

U( ! Æ) = U()! U(Æ)

U(�

?

) = U(�)

The translation is de�ned by a set of inferene rules for deduing translation judgements

of the form

(a

1

:A

1

; : : : ; a

n

:A

n

` e:B) > (a

1

: Æ

1

; : : : ; a

n

: Æ

n

` e

0

: )

where

� a

1

:A

1

; : : : ; a

n

:A

n

` e:B is a valid typing judgement in �

T

� a

1

: Æ

1

; : : : ; a

n

: Æ

n

` e

0

:  is a valid typing judgement in �

op

� For all i, U(Æ

i

) = A

i

� U() = B

Roughly speaking, the basi idea behind the translation is that in any derivable translation

judgement, Æ

i

is a value type � only if e is strit in a

i

. Similarly, a soure language funtion

will only be translated into a target language funtion with a value type as argument if

it is strit. As we have already noted, however, the stritness of e in a

i

may depend on

the stritness properties of some other free variable a

j

, so the translation has to be able

to ope with suh onditional information too. For example, suppose that the following is

a derivable translation judgement:

f : nat! nat; a: nat ` e: nat! nat > f : (�! �

?

)

?

; a: � ` e

0

: �! �

?

10



The intuitive reading of this in terms of stritness properties of e is that e is not neessarily

strit in f (sine the translated type of f is lifted), but that if f is itself a strit funtion

(the translated type of f is a omputation of a funtion from values to omputations)

then e is strit in a (the translated type of a is unlifted) and, moreover, e is then itself

a WHNF of a strit funtion (it translates as a value whih is a funtion from values to

omputations). The target term e

0

is a translation of e whih assumes that f will evaluate

to a strit funtion expeting an evaluated argument and that a will already be evaluated.

Finally, e

0

itself expets an evaluated argument.

As the preeding explanation shows, giving a lear, intuitive de�nition of preisely

whih translations we regard as orret is slightly triky. It should be stressed, however,

that we an give a preise formal de�nition of orretness, and that we do so in the next

setion.

Beause translated terms will, in general, ontain administrative redexes, there is some

hoie about exatly how to present the inferene rules whih de�ne the translation. One

way is to try to build as muh peephole optimisation as possible into the translation proess

itself. This, however, has the e�et of inreasing onsiderably the number of translation

rules. Whilst this an be alleviated by the use of auxiliary maros, it still ompliates the

translation and gives more ases for the orretness proof. Sine it does not seem easy to

remove all the administrative redexes by ompliating the translation in this way, we have

instead opted for a presentation whih keeps the inferene rules simple at the expense of

introduing more administrative redexes. The removal of administrative redexes is then

performed by repeatedly applying Equations 1, 2 and 3 as rewrite rules (orienting them

from left to right) until no further simpli�ation is possible.

5

Note that one advantage

of our separation of omputations from values is that the distintion between what we

regard as an administrative redex, to be removed at ompile-time, and what we regard as

a `real' redex, to be evaluated at run-time, is a very natural one. This is in ontrast to the

situation for CPS transformations, for whih some authors have suggested an extra level of

labelling on terms to distinguish those appliations and abstrations whih are introdued

by the transformation itself from those present in the original soure program so that

redexes introdued by the transformation an be removed at ompile-time. When giving

examples of derivable translations, we will usually perform the removal of administrative

redexes without expliitly mentioning it.

The rules de�ning the translation are shown in Figure 7. We use the notational onven-

tions that distint ontexts mention distint sets of variable names, that variable names

whih our in the onlusion of a rule but not in the hypotheses are always fresh, and

that �

?

stands for a �

op

ontext in whih every variable is given a lifted type. The trans-

lation has several interesting features, the most obvious of whih is that we have made

ontration expliit and used multipliative (disjoint) ontexts everywhere exept in the

two arms of the onditional. This is beause the subexpressions of ompound expressions

(suh as arithmeti expressions) will generally be strit in di�erent variables. We deal

with this by making the variables distint, onatenating the ontexts and then using the

ontration rules (C1,C2) to merge distint variables together in a ontrolled way. Weak-

ening is built into the (Id) and (Nat) rules, and is only allowed on lifted types, sine any

variable introdued by weakening is not one in whih the assoiated expression is strit.

Similarly, note that in the (AppNS) and (AppNS

0

) rules, all the variables used to derive

5

That this proess terminates follows from a small modi�ation to the strong normalisation proof of

[BBdP95℄
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Id

�; a:A ` a:A > �

0

?

; a: Æ ` a: Æ

(U(Æ) = A; U(�

0

?

) = �)

Nat

� ` n: nat > �

0

?

` n: �

(U(�

0

?

) = �)

Val

� ` e:A > �

0

` e

0

:�

� ` e:A > �

0

` [e

0

℄:�

?

Let

�; a:A ` e:B > �

0

; a:� ` e

0

: �

?

�; b:A ` e[b=a℄:B > �

0

; b:�

?

` let a b in e

0

: �

?

C1

�; a:A; b:A ` e:B > �

0

; a: Æ; b: Æ ` e

0

: 

�; :A ` e[=a; =b℄:B > �

0

; : Æ ` e

0

[=a; =b℄: 

C2

�; a:A; b:A ` e:B > �

0

; a:�; b:�

?

` e

0

: 

�; :A ` e[=a; =b℄:B > �

0

; :� ` e

0

[=a; [℄=b℄: 

Abs

�; a:A ` e:B > �

0

; a: Æ ` e

0

:�

?

� ` (�a:A:e):A ! B > �

0

` (�a: Æ:e

0

): Æ ! �

?

Abs

0

�; a:A ` e:B > �

0

; a: Æ ` e

0

:�

� ` (�a:A:e):A ! B > �

0

` (�a: Æ:e

0

): Æ ! �

AppS

� ` e:A! B > �

0

` e

0

: (� ! �

?

)

?

� ` f :A > �

0

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

` let x e

0

in let y  f

0

in x y: �

?

AppS

0

� ` e:A! B > �

0

` e

0

: (� ! �)

?

� ` f :A > �

0

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

` let x e

0

in let y  f

0

in x y: �

?

AppNS

� ` e:A! B > �

0

` e

0

: (�

?

! �

?

)

?

� ` f :A > �

0

?

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

?

` let x e

0

in x f

0

: �

?

AppNS

0

� ` e:A! B > �

0

` e

0

: (�

?

! �)

?

� ` f :A > �

0

?

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

?

` let x e

0

in x f

0

: �

?

Re

�; a:A ` e:A > �

0

; a:�

?

` e

0

:�

?

� ` re(a:A: e):A > �

0

` re(a:�

?

: e

0

):�

?

Arith

� ` e: nat > �

0

` e

0

: �

?

� ` f : nat > �

0

` f

0

: �

?

�;� ` e op f : nat > �

0

;�

0

` let x e

0

in let y  f

0

in x op y: �

?

Cond

� ` e: nat > �

0

` e

0

: �

?

� ` f :A > �

0

` f

0

:�

?

� ` g:A > �

0

` g

0

:�

?

�;� ` if e then f else g:A > �

0

;�

0

` let x e

0

in if x then f

0

else g

0

:�

?

Figure 7: Optimising translation of �

T

into �

op
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the typing of the argument must be lifted, sine they might not be used if the funtion

turns out not to need the argument.

The observant reader will notie that the stritness type system whih morally under-

lies the optimising translation is essentially based on intuitionisti relevane logi. The

basi idea of relevane logi is that in proving a sequent � ` A, all the assumptions in �

must atually be used at least one in proving A, whih is enfored by restriting the weak-

ing rule. This ontrasts with linear logi, whih restrits both weakening and ontration

so that all the assumptions must be used exatly one. Just as linear logi reintrodues

weakening and ontration in a ontrolled way, via the exponential modality !, so one an

add a modality to intuitionisti relevane logi to reintrodue, but ontrol, weakening. In

our system, the role of this modality is played by the lifting operator of �

op

: see the (Id)

and (Nat) rules of the translation. The language �

op

is, however, not the term alulus

whih arises by the Curry-Howard isomorphism from suh a relevane logi (though see

[BBdP95℄). �

op

allows unrestrited weakening and ontration, but the stritness trans-

lation prevents weakening being used to introdue variables of unlifted type. The idea

of relevane also lies behind Wright's work [Wri92℄ on `neededness analysis' and the on-

netion with relevane logi has been made more expliit by Baker-Finh [BF92℄. Their

work is onerned only with analysis and formulates orretness in terms of the syntati

notion of `neededness', whih is de�ned via a labelled redution system whih traks the

desendents of individual redexes through �-redution.

Clearly, we need to hek that for every �

T

term, there is some �

op

term to whih it

translates. But this is easy, as we an just use Moggi's all-by-name translation:

Lemma 3 If � ` e:A then � ` e:A > �

n

?

` e

n

:A

n

?

. 2

However, the point is that in general we an do rather better than Moggi's translation.

For example:

1. ` (�a: nat:a+ a) (3 + 4): nat > ` let b 3 + 4 in (�a: �:a + a) b: �

?

, whih was

the motivating example we gave earlier.

2. For the fatorial funtion, we obtain

` re(f : nat! nat: �n: nat:if n then 1 else n � (f (n� 1))): nat! nat >

` re(f : (�! �

?

)

?

: [�n: �:if n then [1℄ else let f

0

 f in

let n

1

 (n� 1) in

let n

2

 (f

0

n

1

) in n � n

2

℄): (�! �

?

)

?

whih, as we would hope, reognises that the funtion is strit and so ompiles it

to expet an evaluated argument. Note that the argument to the reursive all is

evaluated eagerly, just as it would be in a strit language.

3. Here's a higher-order example:

` (�f : nat! nat:�n: nat:if n then 1 else f (n+ 1)) (�m: nat:m+ 1): nat! nat

>

` (�f : (�! �

?

)

?

:�n: �:if n then [1℄ else

let f

0

 f in

let n

0

 (n+ 1) in f

0

n

0

) [�m: �:m+ 1℄: (�! �

?

)

?

Here, although the higher-order funtion is not strit in f , it is ompiled to expet a

strit funtion as argument, so the appliation in the else branh of the onditional

13



has the argument passed by value. Note also that the higher-order funtion returns

a WHNF immediately (the use of �f : : : rather than �f : : :), but that the translation

annot exploit the fat that the argument to the higher-order funtion is itself already

a WHNF and so ould have been passed by value.

The following is a non-example, whih reveals a weakness of the analysis built into this

system:

x: nat; w: nat ` (�y: nat:�z: nat:if x then y + 1 else z + 2) w w: nat 6>

x: �; w: � ` let f  (�y: �:�z: �:if x then y + 1 else z + 2) w

in f w: �

?

The problem here is that the expression is strit in w, sine whihever branh of the

onditional is hosen, w will be evaluated; this annot be deteted in our system beause

the funtion ontaining the onditional is strit in neither of y or z alone. The fat that this

expression really is strit in w is detetable even in the stritness logi of [Ben92℄ without

onjuntion, a system whih is itself weaker than the standard abstrat interpretation of

[BHA86℄. There are, however, also examples whih are deteted by this system but are

missed by the onjuntion-free stritness logi, so these two systems are inomparable in

terms of auray. Both are stritly weaker than [BHA86℄, or the equivalent onjuntive

stritness logi.

5 Corretness of the translation

We now turn to the question of showing that our optimising translation is orret. The

riterion for orretness whih we naturally adopt is that for any soure program p and

for any translation p

0

of p, p evaluates to a result v i� p

0

evaluates to v. We shall establish

this result via a logial relation, indexed by �

op

types, between the domains used in the

semantis of �

T

and the predomains used in the semantis of �

op

. Thus for eah Æ, we

have

R

Æ

� [[U(Æ)℄℄ � [[Æ℄℄

(and we will often use in�x notation for R). The relation expresses the sense in whih

a soure term and its translation are `equivalent'. Unsurprisingly, the de�nition of the

relation has to make referene to some notion of stritness, but this has to be done with

some are in order for the proof to work. We make use of a family r

Æ

� [[U(Æ)℄℄ of

subsets of the soure language domains whih are de�ned simultaneously with the relations

R

Æ

. One should think of r

Æ

as, roughly, the olletion of elements of [[U(Æ)℄℄ whih are

indistinguishable from ? in all soure ontexts whih translate to target ontexts with a

hole of type Æ. We shall also use the abbreviation

I

Æ

= fx 2 [[U(Æ)℄℄ j 9y 2 [[Æ℄℄:(x; y) 2 R

Æ

g

The de�nitions of R and r are as follows:

R

�

= f([n℄; n) j n 2 INg

r

�

= f?g

R

�

?

= f(a; [d℄) j (a; d) 2 R

�

g [ f(x;?) j x 2 r

�

g

r

�

?

= r

�
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R

�!Æ

= f(f; g) j 8x 2 r

�

:f(x) 2 r

Æ

; 8(x; y) 2 R

�

:(f x; g y) 2 R

Æ

g

R

�

?

!Æ

= f(f; g) j 8(x; y) 2 R

�

?

:(f x; g y) 2 R

Æ

g

r

!Æ

= ff j 8x 2 I



[r



:f(x) 2 r

Æ

g

Note that the de�nition of R at funtion types is of the usual `takes related arguments to

related results' form, but that at types of the form � ! Æ there is an additional requirement

that f be strit, in a suitably generalised sense. It is a simple indution on types to show

that all the R

Æ

are inlusive and that all the r

Æ

are ideals, whih we shall need later:

Lemma 4 For all Æ

1. If d

0

v d

1

v � � � is an !-hain in [[U(Æ)℄℄ and e

0

v e

1

v � � � is an !-hain in [[Æ℄℄ suh

that for all i 2 !:(d

i

; e

i

) 2 R

Æ

then (

F

i

d

i

;

F

i

e

i

) 2 R

Æ

.

2. The set r

Æ

is non-empty, downwards losed and losed under limits of !-hains.

2

Now orretness follows from the following theorem, whih is in the spirit of the `funda-

mental theorem of logial relations':

Theorem 5 If the translation judgement

� ` e:B > �

0

` e

0

: Æ

is derivable, where

� = a

1

:A

1

; : : : ; a

n

:A

n

�

0

= a

1

:�

1

?

; : : : ; a

m

:�

m

?

; a

m+1

:�

m+1

; : : : ; a

n

:�

n

then

1. For all �: �, %: �

0

suh that �R % (pointwise), ([[e℄℄�) R

Æ

([[e

0

℄℄%):

2. If �: � satis�es the following three onditions:

(a) 81 � i � m: �(a

i

) 2 I

�

i

?

(b) 8m < j � n: �(a

j

) 2 I

�

j

[r

�

j

() 9m < j � n: �(a

j

) 2 r

�

j

then [[e℄℄� 2 r

Æ

.

Proof. This follows by an indution on the derivation of the translation judgement. We

give a few interesting ases:

Val For the �rst part we have to show that for any suitable � and %, [[e℄℄�R

�

?

[[[e

0

℄℄℄%. But

[[[e

0

℄℄℄% = [[[e℄℄%℄ so this is immediate from the indution hypothesis and the de�nition

of R

�

?

. For the seond part, if � satis�es the onditions given then it trivially

satis�es the the onditions for part 2 applied to the hypothesis of the rule. Hene

by indution [[e℄℄� 2 r

�

and sine r

�

?

= r

�

we are done.
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Let For part 1, assume that �: �, %: �

0

with �R% and that x 2 [[A℄℄, y 2 [[�

?

℄℄ with xR

�

?

y.

We want to show that

([[e[b=a℄℄℄�[b 7! x℄)R

�

?

([[let a b in e

0

℄℄%[b 7! y℄)

By the de�nition of R

�

?

, there are two ases to onsider: either x 2 r

�

and y = ?

or y = [y

0

℄ with xR

�

y

0

. In the �rst ase, �[a 7! x℄ satis�es the onditions for part 2

of the indution hypothesis, so that

[[e[b=a℄℄℄�[b 7! x℄ = [[e℄℄�[a 7! x℄ 2 r

�

?

and [[let a b in e

0

℄℄%[b 7! y℄ = ? and we are done by the de�nition of R

�

?

. In the

seond ase, �[a 7! x℄ and %[a 7! y

0

℄ satis�y the onditions for part 1 of the indution

hypothesis, so we an dedue

([[e[b=a℄℄℄�[b 7! x℄) = ([[e℄℄�[a 7! x℄)R

�

?

([[e

0

℄℄%[a 7! y

0

℄) = ([[let a b in e

0

℄℄%[b 7! [y

0

℄℄)

as required. For part 2, if �[b 7! x℄ satis�es the relevant onditions, then �[a 7! x℄

satis�es the onditions for part 2 of the indution hypothesis, so that

([[e[b=a℄℄℄�[b 7! x℄) = ([[e℄℄�[a 7! x℄) 2 r

�

?

as required.

C2 For part 1, assume �: �,%: �

0

with �R% and that x 2 [[A℄℄, y 2 [[�℄℄ with xR

�

y. Then

xR

�

?

[y℄ so that

[[e[=a; =b℄℄℄�[ 7! x℄ = [[e℄℄�[a 7! x; b 7! x℄

R



[[e

0

℄℄%[a 7! y; b 7! [y℄℄ by indution 1

= [[e

0

[=a; [℄=b℄℄℄%[ 7! y℄

as required. For part 2, it is easy to see that if �[ 7! x℄ satis�es the relevant

onditions then �[a 7! x; b 7! x℄ satis�es the onditions for part 2 of the indution

hypothesis, so

([[e[=a; =b℄℄℄�[ 7! x℄) = ([[e℄℄�[a 7! x; b 7! x℄) 2 r



Abs We onsider the ase where Æ = � , i.e. we are introduing a strit funtion. The ase

Æ = �

?

is similar. For part 1, assume that �R%. We have to show

(�x 2 [[A℄℄:[[e℄℄�[a 7! x℄) R

�!�

?

(�y 2 [[� ℄℄:[[e

0

℄℄%[a 7! y℄)

By the de�nition of R

�!�

?

, this means that we �rstly have to show that if x 2 r

�

,

then [[e℄℄�[a 7! x℄ 2 r

�

?

. But this follows from part 2 of the indution hypothesis,

sine it is easy to see that �[a 7! x℄ satis�es the appropriate onditions. Seondly,

we have to show that if xR

�

y then [[e℄℄�[a 7! x℄R

�

?

[[e

0

℄℄%[a 7! y℄, whih follows from

part 1 of the indution hypothesis.

For part 2, assume that � satis�es the three onditions, then we have to show that

[[�a:A:e℄℄� 2 r

�!�

?

. This means showing that if x 2 I

�

[ r

�

then [[e℄℄�[a 7! x℄ 2

r

�

?

. This follows by part 2 of the indution hypothesis, sine for any suh x,

�[a 7! x℄ satis�es the appropriate onditions.

16



AppS For part 1 we assume that �

1

: �,%

1

: �

0

, �

2

:�,%:�

0

with �

1

R%

1

and �

2

R%

2

. By

indution 1, we know that [[e℄℄�

1

R

(�!�

?

)

?

[[e

0

℄℄%

1

and [[f ℄℄�

2

R

�

?

[[f

0

℄℄%

2

.

Hene either (i) [[e℄℄�

1

2 r

�!�

?

and [[e

0

℄℄%

1

= ?

or (ii) [[e

0

℄℄%

1

= [x

0

℄ with [[e℄℄�

1

R

�!�

?

x

0

And either (a) [[f ℄℄�

2

2 r

�

and [[f

0

℄℄%

2

= ?

or (b) [[f

0

℄℄%

2

= [y

0

℄ with [[f ℄℄�

2

R

�

y

0

In ase (i), whihever of (a) or (b) holds, [[f ℄℄�

2

2 I

�

[r

�

so that by, the de�nition

of r

�!�

?

, ([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

. Hene

([[e℄℄�

1

)([[f ℄℄�

2

) R

�

?

([[let x e

0

in let y  f

0

in x y℄℄%

1

%

2

) = ?

In ase (ii), if (a) holds then the stritness part of the de�nition of R

�!�

?

gives that

([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

again, and beause [[f

0

℄℄%

2

= ? we an then onlude that the

relation holds as above. If (b) holds then by the logial relation part of the de�nition

of R

�!�

?

we get

([[e℄℄�

1

)([[f ℄℄�

2

) R

�

?

(x

0

y

0

) = ([[let x e

0

in let y  f

0

in x y℄℄%

1

%

2

)

as required.

For part 2, assume that �

1

: �,�

2

:� and that the onatenated environment �

1

�

2

satis�es the three onditions. Then at least one of �

1

and �

2

also satis�es the three

onditions on its own (there is at least one variable whih is assigned an unlifted type

in �

0

;�

0

whih is bound to an element of the appropriate r by �

1

�

2

). If �

1

satis�es

the onditions for part 2, then by indution 2, [[e℄℄�

1

2 r

�!�

?

. Now, if �

2

also satis�es

the onditions for part 2, we an apply indution 2 to dedue that [[f ℄℄�

2

2 r

�

and

hene ([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

as required. If, on the other hand �

2

does not satisfy

the three onditions, we must have that for all a

i

: Æ

i

2 �, �

2

(a

i

) 2 I

Æ

i

. And this

means that we an apply indution 1 to dedue that [[f ℄℄�

2

2 I

�

?

= I

�

[r

�

. Hene

([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

again.

If �

1

does not satisfy the three onditions for part 2 but �

2

does, then we an apply

indution 1 to dedue that [[e℄℄�

1

2 I

(�!�

?

)

?

= I

�!�

?

[ r

�!�

?

and we an use

indution 2 to dedue that [[f ℄℄�

2

2 r

�

. Hene, using either the stritness part of

the de�nition of R

�!�

?

or the de�nition of r

�!�

?

aording to whih part of the

union [[e℄℄�

1

lies in, we �nd that ([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

as required.

Re For part 1, given appropriate �,%, de�ne d

0

= ?

[[A℄℄

, d

n+1

= [[e℄℄�[a 7! d

n

℄ and

d

0

0

= ?

[[�

?

℄℄

, d

0

n+1

= [[e

0

℄℄%[a 7! d

n

℄. We laim that for all n, d

n

R

�

?

d

0

n

, whih follows

by a little indution. For the base ase, observe that by the seond part of Lemma 4,

?

[[A℄℄

2 r

�

?

and thus, by the de�nition of R

�

?

, d

0

R

�

?

d

0

0

. Now for the indution

step, we assume d

n

R

�

?

d

0

n

so that �[a 7! d

n

℄R%[a 7! d

0

n

℄ and we an apply indution

1 to dedue that

d

n+1

= ([[e℄℄�[a 7! d

n

℄) R

�

?

([[e

0

℄℄%[a 7! d

0

n

℄) = d

0

n+1

And so by the �rst part of Lemma 4

[[re(a:A: e)℄℄� =

G

i2!

d

i

R

�

?

G

i2!

d

0

i

= [[re(a:�

?

: e

0

)℄℄%

as required.
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For part 2, if � satis�es the three onditions, then with d

n

de�ned as above it is

another easy indution on n, using indution 2, to show that for all n, d

n

2 r

�

?

.

Then as r

�

?

is losed under limits of hains (Lemma 4),

[[re(a:A: e)℄℄� =

G

i2!

d

i

2 r

�

?

as required.

2

Corollary 6 For any program p, if the translation judgement ` p: nat > ` p

0

: �

?

is

derivable then for any n 2 IN , p + n i� p

0

+ n.

Proof. By Theorem 5, [[p℄℄R

�

?

[[p

0

℄℄. By the de�nition of R

�

?

, this means that [[p℄℄ = [n℄

i� [[p

0

℄℄ = [n℄ and the result then follows from Propositions 1 and 2. 2

Stritly speaking, a further orretness result holds as a orollary of Theorem 5. This

states that if ` p: nat > ` p

0

: � then p + n i� p

0

= n, but as this only happens when the

soure program is just a numeri literal, it has rather limited sope.

It is interesting to note that the proof of Theorem 5 reveals that the simple-minded

stritness analysis whih underlies the translation is orret, but surprisingly deliate. The

semantis of our soure language identi�es ? and �x:?, whih does not ause adequay to

fail beause we restrit our observations to whole programs, so that termination at higher

types is unobservable. We make use of this identi�ation in the de�nition of r

!Æ

and,

in fat, our translation would be unsound if we added termination testing at higher types

to the soure language. The problem is in the rules for abstrations, whih essentially

say that if an expression e is strit in some subset S of its free variables, then when we

�-abstrat on one of the free variables a, the resulting abstration �a:e is still strit in

S n fag. If we an observe termination at higher types, this is simply not true, as the

abstration is a weak head normal form and its evaluation therefore terminates whatever

is substituted for the remaining free variables. If we were to �x this problem by insisting

that the ontext �

0

in the abstration rules ontained only lifted types, then the resulting

analysis would be hopelessly weak. Other stritness analyses based on `relevane logi

style' type systems are similarly fragile.

6 Conlusions and further work

We have shown how a simple stritness analysis and its assoiated optimisations may

be expressed together in a single formal system whih gives an improved translation of

the soure language into a variant of Moggi's omputational metalanguage. Although

the analysis inherent in this translation is rather weak, the assoiated optimisations go

beyond those often onsidered in the literature in that, in addition to seletively passing

arguments by value, they also allow funtions to be ompiled to expet arguments whih

are, for example, already evaluated or known to be strit funtions. The orretness of the

translation was established by a fairly straightforward logial relations argument whih

onnets the domain-theoreti semantis of the soure and target languages.

One obvious piee of further work is to implement the system desribed here. This

will involve deiding what we mean by the `best' translation of a given soure term and
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then designing an algorithm to �nd that translation. The right way to do this seems to be

to design a non-standard type inferene algorithm whih assigns �

op

types to �

T

terms,

building up the translation �

op

term as a side-e�et of uni�ation. The fat that the rules

are very far from being syntax direted suggests that a good starting point would be to

de�ne a normal form for translation derivations, in whih the ontration, (Let) and (Val)

rules are only used in ertain restrited plaes. More fundamentally, however, there is

onsiderable sope for further work on improving the translation itself.

The simple system presented here does not in itself provide a pratial basis for strit-

ness analysis and optimisation in `realisti' funtional languages. This is beause there is

no treatment of pairs or other strutured datatypes and beause the treatment of funtions

is only valid for languages like PCF, in whih termination at higher type is unobservable.

It is, however, a natural �rst step in a line of researh whih aims to bring analyses and

optimisations loser together. The basi idea is that many ompiler optimisations an

be presented using a target language whih has a �xed operational semantis and a type

system making the properties of interest expliit. The purpose of analysing the soure

program is to validate an improved translation into the target language. Roughly speak-

ing, the types of the target language should orrespond to the properties used in the stati

analysis of the soure language. In general, however, there will be many properties whih

are useful in analysis but whih we would not wish to make types of the target language,

so there will be three kinds of judgement to relate: the typing judgement in the soure

language, the analysis judgement in the soure language and the typing judgement in

the target language. (Alternatively, one ould imagine a framework in whih the default

translation is applied �rst, and an analysis is then applied to the resulting target program

in order to justify target-to-target transformations.) The system presented here only in-

volves two kinds of judgement beause the only properties whih are used in the analysis

are those whih orrespond to target language types. This is why the system is simple,

but not partiularly powerful. The next step is to develop a better translation of �

T

into

�

op

whih exploits the results of a more powerful analysis, suh as those in [Ben92℄. Suh

analyses an also deal satisfatorily with languages for whih termination at higher type

is observable, so the fragility of the present system whih was desribed at the end of

the previous setion would be removed. It would also be interesting to look at de�ning

and justifying a `polyvariant' translation, in whih a single soure term may be ompiled

into multiple target terms for use in di�erent ontexts. Here again, there are onsiderable

omplexities and it would seem advantageous to separate the question of when, in pra-

tie, we wish to generate multiple ode versions from that of formally de�ning the spae

of theoretially valid polyvariant translations.

It is not yet lear how many di�erent analyses and optimisations an be presented using

these ideas, but there are already a number of losely related piees of work. One of these

is Leroy's work on boxing optimisations for ML [Ler92℄, whih we have already mentioned,

and another is Shellinx's work on deoration strategies for translating onventional logi

into linear logi [Sh94℄. The latter disusses improving the Girard translation so as

to introdue fewer ! types, whih is very similar to what we have done in this paper,

espeially in the light of the lose relationship between translations into linear logi and

translations into the omputational lambda alulus whih is explored in [BW95℄. There

is a mutually bene�ial relationship between theory and pratie here: not only does the

theory suggest pratially useful optimisation tehniques, but there appears to be sope

for applying ideas from stati analysis to, for example, the more theoretial study of

linear deoration strategies. Related ideas are behind Abramsky's proposal of `logi-based
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program analysis', based on optimising translations of standard funtional programs into

linear (or similar) term aluli, as a promising researh area [Abr90℄.
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