
A Uni�ed Approa
h to Stri
tness Analysis

and Optimising Transformations

P. N. Benton

University of Cambridge

�

Ni
k.Benton�
l.
am.a
.uk

Abstra
t

We present an inferen
e system for translating programs in a PCF-like sour
e

language into a variant of Moggi's
omputational lambda
al
ulus. This translation

ombines a simple stri
tness analysis with its asso
iated optimising transformations

into a single system. The
orre
tness of the translation is established using a logi
al

relation between the denotational semanti
s of the sour
e and target languages.

1 Introdu
tion

1.1 Ba
kground

Stri
tness analysis of lazy fun
tional programs has been studied extensively during the

the last 15 years or so, usually with the justi�
ation that the results of the analysis
an

be used in an optimising
ompiler [My
81, BHA86, Ben92℄. There has, however, been

surprisingly little serious work on just how the results of stri
tness analysis
an be used

as the basis for optimising transformations. This is probably be
ause it turns out to be

rather more diÆ
ult to express and justify these optimisations than one might at �rst

imagine. Roughly speaking, it seems we have to de
ide

1. What optimisations we wish to perform.

2. How to express these optimisations in some formal framework.

3. Exa
tly what information has to be gathered to enable ea
h optimisation.

4. How to prove the
orre
tness of the optimisations.

The next few paragraphs attempt to sket
h the range of possible answers to ea
h of these

questions and to indi
ate whi
h
hoi
es were made in some of the previous work on the

subje
t.

�

University of Cambridge, Computer Laboratory, New Museums Site, Pembroke Street, Cambridge

CB2 3QG, UK. Resear
h supported by the EU BRA 8130 LOMAPS.

1

1.1.1 Whi
h optimisations?

The most basi
 optimisation we
ould want to perform is to evaluate some fun
tion argu-

ments to weak head normal form before the fun
tion
all [Bur91, NN90, DH93, Amt93℄.

If our language in
ludes datatypes su
h as pairs or lists, then we might wish to evalu-

ate some arguments beyond WHNF (evaluating all the spine
ells of a list, for example)

[Bur91, NN90℄. These optimisations then naturally suggest a further
lass of
omplemen-

tary optimsations in whi
h, for example, fun
tions are
ompiled to expe
t arguments whi
h

have already been evaluated to a
ertain degree. This
an then be extended to higher or-

der { a fun
tion
an be
ompiled to expe
t as its argument a stri
t fun
tion, whi
h in

turn will expe
t its argument to be already evaluated. Evaluated arguments to monomor-

phi
 fun
tions
an be passed unboxed, whi
h improves both spa
e and time eÆ
ien
y. In

all-by-need implementations, knowing that a
ertain value is already evaluated
an save

unne
essary graph update operations as well as evaluations.

In addition to all these levels of optimisation, we also have to de
ide whether or not to

ompile multiple versions of fun
tions for use in di�erent
ontexts (we might, for example,

ompile one version of map whi
h expe
ts a stri
t fun
tion as its �rst argument and one

version whi
h doesn't). And if we de
ide to opt for multiple versions, we then have to

de
ide whether or not the
hoi
e of versions should be stati
 (determined at
ompile-time),

dynami
 (determined at run-time) or some mixture of the two. Multiple
ode versions also

raise the more pragmati
 questions of how to
ontrol the exponential blowup in
ode size

whi
h
an result and how to deal with the potential loss of sharing (whi
h
an a
tually

lead to slower
ode by dupli
ating evaluations unne
essarily).

On parallel hardware, stri
tness analysis
an also be used to de
ide whi
h expressions

should be evaluated in parallel. In this paper we will only expli
itly
onsider optimisations

for sequential implementations, though mu
h of the dis
ussion is appli
able to parallel

ones too. In passing, however, we remark that in a parallel system,
ompiling fun
tions

to expe
t evaluated arguments does not seem to be parti
ularly useful. This is be
ause a

fun
tion body
annot be
ompiled simply to assume that an argument is fully evaluated,

sin
e the thread whi
h is evaluating that argument may not have �nished (or even started)

when the body attempts to use the argument. Hen
e the body needs to make a run-time

examination of the argument, whi
h is just what we were trying to avoid, and be prepared

either to blo
k or possibly simply to do the evaluation itself.

1.1.2 Formalising the optimisations

There are two main approa
hes to expressing and reasoning about stri
tness-based opti-

misations, whi
h re
e
t di�erent s
hools of thought about the foundations of fun
tional

languages. What we might
all the `lambda
al
ulus' approa
h [Bur91℄ starts from the idea

that leftmost redu
tion is but one of many redu
tion strategies for the lambda
al
ulus,

and that what we wish to do is work out when it is safe to use some alternative strat-

egy. The Chur
h-Rosser theorem is
entral to this approa
h, as it is this whi
h ensures

(roughly) that any
hoi
e of strategy whi
h preserves termination is safe. The `program-

ming language' approa
h [NN90, Amt93℄ es
hews all mention of redu
tion strategies (and,

indeed,
lassi
al results about the lambda
al
ulus) and instead looks at di�erent trans-

lations of the sour
e programming language into some other target language with a �xed

operational semanti
s. The `programming language' approa
h has several advantages over

the `lambda
al
ulus' approa
h. Firstly, the very notion of redu
tion strategy is unne
es-

sary, unrealisti
 and messy { not only are strategies
ompli
ated things to reason about,

2

but as they will ultimately be realised by di�erent translations of the sour
e language into

ma
hine
ode, we might as well just work with translations dire
tly. Se
ondly, the `lambda

al
ulus' approa
h does not deal well with the optimisations whi
h involve knowing that

ertain things will already have been evaluated. Thirdly, the `programming language'

view is the only one whi
h makes sense for other kinds of programming languages and

optimisations. Hen
e we should be able to draw on, and
ontribute to, work on other

ompile-time transformations whi
h do not seem to have any simple link with traditional

results about the lambda
al
ulus, su
h as the optimisation of data representations.

Of
ourse, if we de
ide to use stri
tness information to
hange the translation of our

sour
e language into some intermediate language, then we have to de
ide what that target

language should be. Nielson and Nielson [NN90℄ use stri
tness information to
hange the

translation of a
ombinatory sour
e language into a lazy variant of the
ategori
al abstra
t

ma
hine. This has the advantage of being very
lose to implementation pra
ti
e, but it is

probably slightly too low-level for
orre
tness proofs to be
omfortable and the stru
ture

of optimisations
an be rather hard to see amid the details of the
ompiled
ode. Danvy

and Hat
li� [DH93℄ use stri
tness information to
ontrol the translation of a
all-by-name

sour
e language into
ontinuation passing style. Amtoft [Amt93℄
hooses to translate his

all-by-name sour
e language into a
all-by-value target language, using derivations in a

stri
tness type system to improve on the well-known naive translation. In this paper, we

shall take the target language to be a variant of Moggi's
omputational lambda
al
ulus.

1.1.3 Gathering the information

De
iding what information has to be gathered to enable optimisations is also rather tri
ky.

Whatever analysis te
hnique one uses (e.g. abstra
t interpretation or type inferen
e),

there is a
hoi
e to be made between performing a `sti
ky' analysis, whi
h analyses the

entire program �rst and produ
es some kind of annotated program as the input to a

subsequent transformation phase, or a `non-sti
ky' analysis in whi
h the transformation

or
ode-generation phase
alls the analyser on the
y to establish parti
ular properties of

program fragments in order to justify parti
ular optimisations. As the Nielsons observe,

the
orre
tness of the sti
ky analysis is hard to establish, as \the semanti

ontent of su
h

annotations is somewhat subtle" [NN90℄, essentially be
ause the stri
tness analyser gives

the stri
tness properties of an expression as a fun
tion of the stri
tness properties of its

free variables. It therefore seems, at least at �rst sight, ne
essary to
ombine the stri
tness

analysis with some kind of `
olle
ting interpretation' or `
ow analysis' whi
h
omputes (an

approximation to) the set of (stri
tness properties of) terms whi
h
ould be
ome bound

to those variables during exe
ution [HY91℄. For this reason [NN90℄ uses a non-sti
ky

analysis. Burn [Bur91℄ does use a sti
ky analysis to annotate appli
ations with evaluation

transformer information derived by abstra
t interpretation, but he appears to propose the

use of rather weak (`
ontext free') annotations for higher-order fun
tions. Amtoft's system

is also sti
ky { the role of the annotated program is played by a derivation in his stri
tness

type system, though a single term
an have many valid stri
tness derivations and hen
e

many annotations. Danvy and Hat
li� assume that a sti
ky analysis has already supplied

them with an annotated program, and do not dis
uss how the information is gathered.

A further
ompli
ation of sti
ky analyses is that some thought must be given to main-

taining the
orre
tness of the annotations as the program is transformed or
ompiled. A

related disadvantage of non-sti
ky analyses is that if they are implemented naively then

they may require the properties of expressions to be repeatedly re
omputed { to
ompile a

3

ompound expression, some property is
omputed whi
h involves
omputing properties of

subexpressions. One then re
ursively
ompiles the subexpressions, whi
h involves
omput-

ing their properties all over again. Whilst it seems simple to �x this by returning stri
tness

properties and a
ode stream together in a bottom-up fashion, it should be noted that

we probably do not wish to
ompute all the stri
tness properties of the subexpressions

before
ompiling a
ompound expression. Furthermore, we wish the subexpressions to be

ompiled in di�erent ways a

ording to the properties dedu
ed of the larger expression.

1

1.1.4 Proving
orre
tness

Burn approa
hes the
orre
tness of his optimisations using a mixture of te
hniques, ap-

pealing to denotational semanti
s and
omputational adequa
y for the
orre
tness of the

abstra
t interpretation and to the Chur
h-Rosser and head-normalisation theorems, to-

gether with a
ertain amount of informal English argument for the
orre
tness of the idea

of evaluation transformers. The �nal stage,
ompiling di�erent redu
tion strategies into

di�erent
ode sequen
es for the Spineless G-Ma
hine, is not justi�ed.

Danvy and Hat
li� show that their CPS transformation of annotated programs is

orre
t by deriving it from the
omposition of a translation of annotated programs to a

all-by-value language with delay and for
e
onstru
ts and a CPS translation of this

extended
all-by-value language. The
orre
tness of ea
h of these
omponent translations

is established from a denotational semanti
s.

Amtoft proves the
orre
tness of his translation by establishing dire
tly from the oper-

ational semanti
s that the
all-by-value evaluation of the translation of a program termi-

nates with a value i� the
all-by-name evaluation of the original program terminates with

that value. A parti
ularly pleasant feature of this proof is that the analysis is not �rst

proved
orre
t in isolation { the
orre
tness property of the analysis is simply that the

asso
iated transformations are
orre
t (
f. [Wan93℄). Nielson and Nielson do not address

the question of
orre
tness at all, though their paper does
onsider more sophisti
ated

optimisations than the other works
ited. In this paper we shall establish
orre
tness by

purely denotational te
hniques.

1.2 This paper

This paper takes a similar approa
h to that of Amtoft. We essentially use a stri
tness

type system to improve the translation of a simply typed lambda
al
ulus with
onstants,

�

T

, into a variant of the
omputational lambda
al
ulus [Mog89, Mog91℄,
alled �

op

.

The target language �

op

, whi
h was �rst proposed as a language for expressing stri
tness

optimisations in [Ben92℄, has a type system whi
h makes an expli
it distin
tion between

omputations, whi
h are expressions whi
h are potentially unevaluated, and values, whi
h

are expressions in WHNF. This appears to be just the level of extra re�nement whi
h we

need to express both the eager evaluation of fun
tion arguments and the
omplementary

optimisations whi
h are based on knowing that
ertain expressions will already have been

evaluated. �

op

is in many respe
ts similar to languages with expli
it boxed and unboxed

types presented by Peyton Jones and Laun
hbury in [PJL91℄ and by Leroy in [Ler92℄, and

indeed many of the same issues arise in the optimisation of data representations (passing

1

Of
ourse, this is just the sort of situation in whi
h one might hope that writing the
ompiler itself in a

lazy language might alleviate the problem, but one
an hardly expe
t to get exa
tly the desired behaviour

for free.

4

arguments boxed or unboxed) as in stri
tness-based optimisations (passing arguments

unevaluated or evaluated).

A major di�eren
e between the translation presented here and previous work is that

although there is morally a stri
tness type system underlying the translation, it is
om-

pletely integrated with a transformation phase. Thus the only `stri
tness properties' whi
h

are ever visible are in the types of the optimised translations of �

T

terms and we remove

the distin
tion between what optimisations we wish to perform and what information has

to be gathered. We manage to obtain mu
h of the bene�t of using a
olle
ting interpre-

tation just from the way in whi
h types are used in the translation; we
an, for example,

often dis
over that a higher-order fun
tion is only ever
alled with a stri
t fun
tion as

argument and
ompile it a

ordingly.

2

The translation is nondeterministi
, in that it spe
i�es a set of valid translations of

a single sour
e language program. We do not examine it detail the problem of how to

de�ne and �nd the `best' translation, though seems likely that some relatively straighfor-

ward heuristi
s should give fast analysis and good results. The version of the translation

presented here does not generate multiple
ode versions and only treats ground types and

fun
tion spa
es. The analysis inherent in the translation is not a parti
ularly powerful

one and we dis
uss some possible improvements in Se
tion 6.

2 The sour
e language �

T

The sour
e language �

T

is a
onventional simply-typed lambda
al
ulus with
onstru
ts

for arithmeti
,
onditionals and re
ursion, i.e. an inessential variant of Plotkin's language

PCF [Plo77℄. The syntax and typing rules of �

T

are shown in Figure 1. The
all-by-name

types A;B ::= nat j A! B

ontexts �;� ::= a

1

:A

1

; : : : ; a

n

:A

n

arithmeti
 op ::= + j � j �

Id

�; a:A ` a:A

Abs

�; a:A ` e:B

� ` �a:A:e:A! B

App

� ` e:A! B � ` f :A

� ` e f :B

Re

�; a:A ` e:A

� ` re
(a:A: e):A

Nat

� ` n: nat

Arith

� ` e: nat � ` f : nat

� ` e op f : nat

Cond

� ` e: nat � ` f

1

:A � ` f

2

:A

� ` if e then f

1

else f

2

:A

Figure 1: Syntax and type rules of �

T

2

It should be intuitively
lear that types are ideally suited to obtaining the kind of information gathered

by a
olle
ting interpretation. For example, the fa
t that a variable has a parti
ular type is a restri
tion

on the set of terms whi
h may end up bound to that variable during exe
ution.

5

operational semanti
s of �

T

is given by a big-step evaluation relation +, whi
h relates

losed terms of type A to weak head normal forms (
anoni
als) of type A. The de�nition

of + is shown in Figure 2.

�a:A:e + �a:A:e n + n

e + �a:A:e

0

e

0

[f=a℄ + k

e f + k

e[re
(a:A: e)=a℄ + k

re
(a:A: e) + k

e +m f + n

e op f + m op n

e + 0 f

1

+ k

if e then f

1

else f

2

+ k

e + n+ 1 f

2

+ k

if e then f

1

else f

2

+ k

Figure 2: Operational semanti
s of �

T

�

T

also
an also be given the usual denotational semanti
s using pointed !-
pos (do-

mains) and
ontinuous maps, as shown in Figure 3. We assume the usual notational
on-

ventions
on
erning environments, �, and standard results
on
erning the well-de�nedness

of the denotational semanti
s, substitution and so on. One pie
e of notation whi
h may

not be familiar is that if � = a

1

:A

1

; : : : ; a

n

:A

n

and � is an environment, then we write

�: � to mean that the domain of � is fa

1

; : : : ; a

n

g and that for all i, �(a

i

) 2 [[A

i

℄℄.

Types

[[nat℄℄ = IN

?

[[A! B℄℄ = [[A℄℄! [[B℄℄

Terms

[[a℄℄� = �(a)

[[�a:A:e℄℄� = �d 2 [[A℄℄:[[e℄℄�[a 7! d℄

[[e f ℄℄� = ([[e℄℄�) ([[f ℄℄�)

[[n℄℄� = [n℄

[[re
(a:A: e)℄℄� =

F

i2!

d

i

where d

0

= ?

[[A℄℄

, d

n+1

= [[e℄℄�[a 7! d

n

℄

[[e op f ℄℄� =

(

[m op n℄ if [[e℄℄� = [m℄ and [[f ℄℄� = [n℄

?

IN

?

otherwise

[[if e then f

1

else f

2

℄℄� =

8

>

<

>

:

[[f

1

℄℄� if [[e℄℄� = [0℄

[[f

2

℄℄� if [[e℄℄� = [n+ 1℄

? otherwise

Figure 3: Denotational semanti
s of �

T

6

Proposition 1 (Computational adequa
y for �

T

) For any program (
losed term of

type nat), e in �

T

[[e℄℄ = [n℄ , e + n

Proof. Standard. See, for example, [Plo77, Ben92, Win93℄ 2

3 The target language �

op

�

op

is based on Moggi's
omputational lambda
al
ulus, but has a more synta
ti
, oper-

ational
avour. It is intended as a
ompiler intermediate language whi
h has just enough

extra stru
ture to express the kinds of optimisations whi
h we wish to perform as a result

of stri
tness analysis, but whi
h is suÆ
iently high-level not to be tied to a parti
ular

implementation te
hnique and for denotational reasoning to be straightforward. The type

system of �

op

separates
omputations from values in a rather literal way { values are ex-

pressions in weak head normal form, whereas
omputations are unevaluated expressions.

The syntax and typing rules of �

op

are shown in Figure 4. We use Greek letters for �

op

types, to distinguish them from the types of �

T

and it is important to note that we use

di�erent metavariables (�,�) for value types and arbitrary types (Æ,
). Types of the form

value types �; � ::= � j Æ !

types Æ;
 ::= � j �

?

ontexts � ::= a

1

: Æ

1

; : : : ; a

n

: Æ

n

Id

�; a: Æ ` a: Æ

Abs

�; a: Æ ` e:�

?

� ` �a: Æ:e: Æ ! �

?

App

� ` e: Æ ! �

?

� ` f : Æ

� ` e f :�

?

Abs

0

�; a: Æ ` e:�

� ` �a: Æ:e: Æ ! �

App

0

� ` e: Æ ! � � ` f : Æ

� ` e f :�

?

Val

� ` e:�

� ` [e℄:�

?

Let

� ` e:�

?

�; a:� ` f : �

?

� ` let a e in f : �

?

Re

�; a:�

?

` e:�

?

� ` re
(a:�

?

: e):�

?

Cond

� ` e: � � ` f

1

:�

?

� ` f

2

:�

?

� ` if e then f

1

else f

2

:�

?

Nat

� ` n: �

Arith

� ` e: � � ` f : �

� ` e op f : �

?

Figure 4: Syntax and type rules of �

op

�

?

will be referred to as
omputation types or lifted types. The version of �

op

used here

varies slightly from that originally proposed in [Ben92℄ in that it in
ludes a variant form

of lambda abstra
tion �a:e in whi
h the body is a value. This is slightly inelegant and not

7

really ne
essary, but has been in
luded �rstly be
ause it
orresponds more
losely to what

one would wish to do in an implementation (as it saves some une
essary evaluations), and

se
ondly be
ause it makes translated terms somewhat smaller.

The operational semanti
s of �

op

is de�ned by big-step evaluation relation + whi
h

relates (
losed)
omputations of type �

?

to values of type �. The operational semanti
s is

shown in Figure 5. There are no rules in the operational semanti
s of �

op

whi
h say that

e[f=a℄ + v

(�a: Æ:e) f + v (�a: Æ:e) f + e[f=a℄

[v℄ + v

e + v f [v=a℄ + v

0

let a e in f + v

0

m op n + m op n

e[re
(a:�

?

: e)=a℄ + v

re
(a:�

?

: e) + v

f

1

+ v

if 0 then f

1

else f

2

+ v

f

2

+ v

if n+ 1 then f

1

else f

2

+ v

Figure 5: Operational semanti
s of �

op

anoni
als evaluate to themselves, as there were for �

T

, be
ause the type system makes

the fa
t that they are already in WHNF expli
it.

�

op

has a denotational semanti
s whi
h uses !-
pos whi
h are not ne
essarily pointed

(predomains) and
ontinuous maps. This semanti
s is shown in Figure 6. We use %

for �

op

envinronments, and again assume trivial standard results about the denotational

semanti
s. Note that the only denotational di�eren
e between the two kinds of lambda-

abstra
tion is in the types and that as we have not synta
ti
ally distinguished the two

kinds of appli
ation, we have not distinguished them in the denotational semanti
s.

Proposition 2 (Computational adequa
y for �

op

) If e is a
losed �

op

term of type

�

?

then

[[e℄℄ = [d℄ , e + v & [[v℄℄ = d

Proof. This is a slight variant on the logi
al relations argument used to prove Proposi-

tion 1. 2

Note that we have adequa
y at all types for �

op

, but only at the ground type for �

T

.

The semanti
s validates various equational laws, but the three important ones involving

omputational types are:

let a [e℄ in f = f [e=a℄ (1)

let a (let b e in f) in g = let b e in (let a f in g) (2)

let a e in [a℄ = e (3)

where Equation 2
arries the side-
ondition that b is not free in g.

3

3

A proof-theoreti
 a

ount of the the
omputational lambda
al
ulus, in
luding these rules,
an be

found in [BBdP95℄.

8

Types

[[�℄℄ = IN

[[
 ! Æ℄℄ = [[
℄℄! [[Æ℄℄

[[�

?

℄℄ = [[�℄℄

?

Terms

[[a℄℄% = %(a)

[[�a: Æ:e℄℄% = �d 2 [[Æ℄℄:[[e℄℄%[a 7! d℄

[[�a: Æ:e℄℄% = �d 2 [[Æ℄℄:[[e℄℄%[a 7! d℄

[[e f ℄℄% = ([[e℄℄%) ([[f ℄℄%)

[[[e℄℄℄% = [[[e℄℄%℄

[[let a e in f ℄℄% =

(

[[f ℄℄%[a 7! d℄ if [[e℄℄% = [d℄

? otherwise

[[re
(a:�

?

: e)℄℄% =

F

i2!

d

i

where d

0

= ?

[[�

?

℄℄

and d

n+1

= [[e℄℄%[a 7! d

n

℄

[[if e then f

1

else f

2

℄℄% =

(

[[f

1

℄℄% if [[e℄℄% = 0

[[f

2

℄℄% if [[e℄℄% = n+ 1

[[n℄℄% = n

[[e op f ℄℄% = [([[e℄℄%) op ([[f ℄℄%)℄

Figure 6: Denotational semanti
s of �

op

4 Translating �

T

into �

op

There is a well-known
all-by-name translation of the lambda
al
ulus into the
omputa-

tional lambda
al
ulus due to Moggi [Mog89℄ whi
h gives a natural default translation of

�

T

into �

op

. Under this default translation, a typing judgement of the form � ` e:A in

�

T

is translated to a judgement �

n

?

` e

n

:A

n

?

in �

op

, where A

n

is de�ned indu
tively as:

nat

n

= � (A! B)

n

= (A

n

?

! B

n

?

)

In parti
ular, a sour
e term of fun
tional type is translated into a target term whi
h is (a

omputation of) a fun
tion from
omputations to
omputations. There is also a
all-by-

value translation, also due to Moggi, in whi
h terms of fun
tional type are translated into

(
omputations of) fun
tions from values to
omputations.

4

The default translation of �

T

into �

op

makes evaluation order very plain by using the

let
onstru
t to evaluate
omputations of fun
tional or ground type prior to their use in

appli
ations or arithmeti
 operations. Apart from the fa
t that there is no treatment of

updating, the default translation produ
es results whi
h
orrespond very
losely to the

real
ode that is produ
ed by naive
ompilers for lazy fun
tional languages. Our aim is

to produ
e a better translation, whi
h,
rudely, means one whi
h introdu
es fewer liftings

(i.e.
omputations rather than values) in the types of translated programs. For example,

the default translation of the following �

T

program:

(�a: nat:a+ a) (3 + 4)

4

These translations
an also be found in, for example, [Ben92, Cro92℄. Their intimate
onne
tion with

various translations into a language based on linear logi
 is the subje
t of [BW95℄.

9

is

let f [�a: �

?

:let b a in let
 a in b+
℄

in f (let x [3℄ in let y [4℄ in x+ y)

whi
h is rather verbose, but we
an use Equation 1 from the previous se
tion to make

some `administrative redu
tions' and obtain:

(�a: �

?

:let b a in let
 a in b+
) (3 + 4)

However, be
ause the fun
tion is stri
t we should prefer a translation in whi
h the ar-

gument is evaluated before the
all and in whi
h the fun
tion is
ompiled to expe
t an

evaluated argument:

let b 3 + 4 in (�a: �:a+ a) b

whi
h will be derivable using the improved translation. Note that the improvement is not

just that we save building a
losure, but also that the repeated evaluation of that
losure is

avoided. Of
ourse, real lazy implementations avoid this kind of re-evaluation by updating,

but the updates themselves still have a
ost and it is still ne
essary to perform a
ontext

swit
h to evaluate the
losure for the se
ond time, even though the evaluation will return

immediately with the updated value.

We now des
ribe the improved translation in more detail. To begin with, noti
e that

for ea
h �

T

term e of type A, there are several �

op

types Æ of roughly the same `shape'

as A whi
h we might
hoose as the type of the translation of e. Ea
h of these types
an

be regarded as a `de
oration' of the type A. We formalise this notion by de�ning a map

U (for underlying) from �

op

types to �

T

types:

U(�) = nat

U(
 ! Æ) = U(
)! U(Æ)

U(�

?

) = U(�)

The translation is de�ned by a set of inferen
e rules for dedu
ing translation judgements

of the form

(a

1

:A

1

; : : : ; a

n

:A

n

` e:B) > (a

1

: Æ

1

; : : : ; a

n

: Æ

n

` e

0

:
)

where

� a

1

:A

1

; : : : ; a

n

:A

n

` e:B is a valid typing judgement in �

T

� a

1

: Æ

1

; : : : ; a

n

: Æ

n

` e

0

:
 is a valid typing judgement in �

op

� For all i, U(Æ

i

) = A

i

� U(
) = B

Roughly speaking, the basi
 idea behind the translation is that in any derivable translation

judgement, Æ

i

is a value type � only if e is stri
t in a

i

. Similarly, a sour
e language fun
tion

will only be translated into a target language fun
tion with a value type as argument if

it is stri
t. As we have already noted, however, the stri
tness of e in a

i

may depend on

the stri
tness properties of some other free variable a

j

, so the translation has to be able

to
ope with su
h
onditional information too. For example, suppose that the following is

a derivable translation judgement:

f : nat! nat; a: nat ` e: nat! nat > f : (�! �

?

)

?

; a: � ` e

0

: �! �

?

10

The intuitive reading of this in terms of stri
tness properties of e is that e is not ne
essarily

stri
t in f (sin
e the translated type of f is lifted), but that if f is itself a stri
t fun
tion

(the translated type of f is a
omputation of a fun
tion from values to
omputations)

then e is stri
t in a (the translated type of a is unlifted) and, moreover, e is then itself

a WHNF of a stri
t fun
tion (it translates as a value whi
h is a fun
tion from values to

omputations). The target term e

0

is a translation of e whi
h assumes that f will evaluate

to a stri
t fun
tion expe
ting an evaluated argument and that a will already be evaluated.

Finally, e

0

itself expe
ts an evaluated argument.

As the pre
eding explanation shows, giving a
lear, intuitive de�nition of pre
isely

whi
h translations we regard as
orre
t is slightly tri
ky. It should be stressed, however,

that we
an give a pre
ise formal de�nition of
orre
tness, and that we do so in the next

se
tion.

Be
ause translated terms will, in general,
ontain administrative redexes, there is some

hoi
e about exa
tly how to present the inferen
e rules whi
h de�ne the translation. One

way is to try to build as mu
h peephole optimisation as possible into the translation pro
ess

itself. This, however, has the e�e
t of in
reasing
onsiderably the number of translation

rules. Whilst this
an be alleviated by the use of auxiliary ma
ros, it still
ompli
ates the

translation and gives more
ases for the
orre
tness proof. Sin
e it does not seem easy to

remove all the administrative redexes by
ompli
ating the translation in this way, we have

instead opted for a presentation whi
h keeps the inferen
e rules simple at the expense of

introdu
ing more administrative redexes. The removal of administrative redexes is then

performed by repeatedly applying Equations 1, 2 and 3 as rewrite rules (orienting them

from left to right) until no further simpli�
ation is possible.

5

Note that one advantage

of our separation of
omputations from values is that the distin
tion between what we

regard as an administrative redex, to be removed at
ompile-time, and what we regard as

a `real' redex, to be evaluated at run-time, is a very natural one. This is in
ontrast to the

situation for CPS transformations, for whi
h some authors have suggested an extra level of

labelling on terms to distinguish those appli
ations and abstra
tions whi
h are introdu
ed

by the transformation itself from those present in the original sour
e program so that

redexes introdu
ed by the transformation
an be removed at
ompile-time. When giving

examples of derivable translations, we will usually perform the removal of administrative

redexes without expli
itly mentioning it.

The rules de�ning the translation are shown in Figure 7. We use the notational
onven-

tions that distin
t
ontexts mention distin
t sets of variable names, that variable names

whi
h o

ur in the
on
lusion of a rule but not in the hypotheses are always fresh, and

that �

?

stands for a �

op

ontext in whi
h every variable is given a lifted type. The trans-

lation has several interesting features, the most obvious of whi
h is that we have made

ontra
tion expli
it and used multipli
ative (disjoint)
ontexts everywhere ex
ept in the

two arms of the
onditional. This is be
ause the subexpressions of
ompound expressions

(su
h as arithmeti
 expressions) will generally be stri
t in di�erent variables. We deal

with this by making the variables distin
t,
on
atenating the
ontexts and then using the

ontra
tion rules (C1,C2) to merge distin
t variables together in a
ontrolled way. Weak-

ening is built into the (Id) and (Nat) rules, and is only allowed on lifted types, sin
e any

variable introdu
ed by weakening is not one in whi
h the asso
iated expression is stri
t.

Similarly, note that in the (AppNS) and (AppNS

0

) rules, all the variables used to derive

5

That this pro
ess terminates follows from a small modi�
ation to the strong normalisation proof of

[BBdP95℄

11

Id

�; a:A ` a:A > �

0

?

; a: Æ ` a: Æ

(U(Æ) = A; U(�

0

?

) = �)

Nat

� ` n: nat > �

0

?

` n: �

(U(�

0

?

) = �)

Val

� ` e:A > �

0

` e

0

:�

� ` e:A > �

0

` [e

0

℄:�

?

Let

�; a:A ` e:B > �

0

; a:� ` e

0

: �

?

�; b:A ` e[b=a℄:B > �

0

; b:�

?

` let a b in e

0

: �

?

C1

�; a:A; b:A ` e:B > �

0

; a: Æ; b: Æ ` e

0

:

�;
:A ` e[
=a;
=b℄:B > �

0

;
: Æ ` e

0

[
=a;
=b℄:

C2

�; a:A; b:A ` e:B > �

0

; a:�; b:�

?

` e

0

:

�;
:A ` e[
=a;
=b℄:B > �

0

;
:� ` e

0

[
=a; [
℄=b℄:

Abs

�; a:A ` e:B > �

0

; a: Æ ` e

0

:�

?

� ` (�a:A:e):A ! B > �

0

` (�a: Æ:e

0

): Æ ! �

?

Abs

0

�; a:A ` e:B > �

0

; a: Æ ` e

0

:�

� ` (�a:A:e):A ! B > �

0

` (�a: Æ:e

0

): Æ ! �

AppS

� ` e:A! B > �

0

` e

0

: (� ! �

?

)

?

� ` f :A > �

0

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

` let x e

0

in let y f

0

in x y: �

?

AppS

0

� ` e:A! B > �

0

` e

0

: (� ! �)

?

� ` f :A > �

0

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

` let x e

0

in let y f

0

in x y: �

?

AppNS

� ` e:A! B > �

0

` e

0

: (�

?

! �

?

)

?

� ` f :A > �

0

?

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

?

` let x e

0

in x f

0

: �

?

AppNS

0

� ` e:A! B > �

0

` e

0

: (�

?

! �)

?

� ` f :A > �

0

?

` f

0

:�

?

�;� ` e f :B > �

0

;�

0

?

` let x e

0

in x f

0

: �

?

Re

�; a:A ` e:A > �

0

; a:�

?

` e

0

:�

?

� ` re
(a:A: e):A > �

0

` re
(a:�

?

: e

0

):�

?

Arith

� ` e: nat > �

0

` e

0

: �

?

� ` f : nat > �

0

` f

0

: �

?

�;� ` e op f : nat > �

0

;�

0

` let x e

0

in let y f

0

in x op y: �

?

Cond

� ` e: nat > �

0

` e

0

: �

?

� ` f :A > �

0

` f

0

:�

?

� ` g:A > �

0

` g

0

:�

?

�;� ` if e then f else g:A > �

0

;�

0

` let x e

0

in if x then f

0

else g

0

:�

?

Figure 7: Optimising translation of �

T

into �

op

12

the typing of the argument must be lifted, sin
e they might not be used if the fun
tion

turns out not to need the argument.

The observant reader will noti
e that the stri
tness type system whi
h morally under-

lies the optimising translation is essentially based on intuitionisti
 relevan
e logi
. The

basi
 idea of relevan
e logi
 is that in proving a sequent � ` A, all the assumptions in �

must a
tually be used at least on
e in proving A, whi
h is enfor
ed by restri
ting the weak-

ing rule. This
ontrasts with linear logi
, whi
h restri
ts both weakening and
ontra
tion

so that all the assumptions must be used exa
tly on
e. Just as linear logi
 reintrodu
es

weakening and
ontra
tion in a
ontrolled way, via the exponential modality !, so one
an

add a modality to intuitionisti
 relevan
e logi
 to reintrodu
e, but
ontrol, weakening. In

our system, the role of this modality is played by the lifting operator of �

op

: see the (Id)

and (Nat) rules of the translation. The language �

op

is, however, not the term
al
ulus

whi
h arises by the Curry-Howard isomorphism from su
h a relevan
e logi
 (though see

[BBdP95℄). �

op

allows unrestri
ted weakening and
ontra
tion, but the stri
tness trans-

lation prevents weakening being used to introdu
e variables of unlifted type. The idea

of relevan
e also lies behind Wright's work [Wri92℄ on `neededness analysis' and the
on-

ne
tion with relevan
e logi
 has been made more expli
it by Baker-Fin
h [BF92℄. Their

work is
on
erned only with analysis and formulates
orre
tness in terms of the synta
ti

notion of `neededness', whi
h is de�ned via a labelled redu
tion system whi
h tra
ks the

des
endents of individual redexes through �-redu
tion.

Clearly, we need to
he
k that for every �

T

term, there is some �

op

term to whi
h it

translates. But this is easy, as we
an just use Moggi's
all-by-name translation:

Lemma 3 If � ` e:A then � ` e:A > �

n

?

` e

n

:A

n

?

. 2

However, the point is that in general we
an do rather better than Moggi's translation.

For example:

1. ` (�a: nat:a+ a) (3 + 4): nat > ` let b 3 + 4 in (�a: �:a + a) b: �

?

, whi
h was

the motivating example we gave earlier.

2. For the fa
torial fun
tion, we obtain

` re
(f : nat! nat: �n: nat:if n then 1 else n � (f (n� 1))): nat! nat >

` re
(f : (�! �

?

)

?

: [�n: �:if n then [1℄ else let f

0

 f in

let n

1

 (n� 1) in

let n

2

 (f

0

n

1

) in n � n

2

℄): (�! �

?

)

?

whi
h, as we would hope, re
ognises that the fun
tion is stri
t and so
ompiles it

to expe
t an evaluated argument. Note that the argument to the re
ursive
all is

evaluated eagerly, just as it would be in a stri
t language.

3. Here's a higher-order example:

` (�f : nat! nat:�n: nat:if n then 1 else f (n+ 1)) (�m: nat:m+ 1): nat! nat

>

` (�f : (�! �

?

)

?

:�n: �:if n then [1℄ else

let f

0

 f in

let n

0

 (n+ 1) in f

0

n

0

) [�m: �:m+ 1℄: (�! �

?

)

?

Here, although the higher-order fun
tion is not stri
t in f , it is
ompiled to expe
t a

stri
t fun
tion as argument, so the appli
ation in the else bran
h of the
onditional

13

has the argument passed by value. Note also that the higher-order fun
tion returns

a WHNF immediately (the use of �f : : : rather than �f : : :), but that the translation

annot exploit the fa
t that the argument to the higher-order fun
tion is itself already

a WHNF and so
ould have been passed by value.

The following is a non-example, whi
h reveals a weakness of the analysis built into this

system:

x: nat; w: nat ` (�y: nat:�z: nat:if x then y + 1 else z + 2) w w: nat 6>

x: �; w: � ` let f (�y: �:�z: �:if x then y + 1 else z + 2) w

in f w: �

?

The problem here is that the expression is stri
t in w, sin
e whi
hever bran
h of the

onditional is
hosen, w will be evaluated; this
annot be dete
ted in our system be
ause

the fun
tion
ontaining the
onditional is stri
t in neither of y or z alone. The fa
t that this

expression really is stri
t in w is dete
table even in the stri
tness logi
 of [Ben92℄ without

onjun
tion, a system whi
h is itself weaker than the standard abstra
t interpretation of

[BHA86℄. There are, however, also examples whi
h are dete
ted by this system but are

missed by the
onjun
tion-free stri
tness logi
, so these two systems are in
omparable in

terms of a

ura
y. Both are stri
tly weaker than [BHA86℄, or the equivalent
onjun
tive

stri
tness logi
.

5 Corre
tness of the translation

We now turn to the question of showing that our optimising translation is
orre
t. The

riterion for
orre
tness whi
h we naturally adopt is that for any sour
e program p and

for any translation p

0

of p, p evaluates to a result v i� p

0

evaluates to v. We shall establish

this result via a logi
al relation, indexed by �

op

types, between the domains used in the

semanti
s of �

T

and the predomains used in the semanti
s of �

op

. Thus for ea
h Æ, we

have

R

Æ

� [[U(Æ)℄℄ � [[Æ℄℄

(and we will often use in�x notation for R). The relation expresses the sense in whi
h

a sour
e term and its translation are `equivalent'. Unsurprisingly, the de�nition of the

relation has to make referen
e to some notion of stri
tness, but this has to be done with

some
are in order for the proof to work. We make use of a family r

Æ

� [[U(Æ)℄℄ of

subsets of the sour
e language domains whi
h are de�ned simultaneously with the relations

R

Æ

. One should think of r

Æ

as, roughly, the
olle
tion of elements of [[U(Æ)℄℄ whi
h are

indistinguishable from ? in all sour
e
ontexts whi
h translate to target
ontexts with a

hole of type Æ. We shall also use the abbreviation

I

Æ

= fx 2 [[U(Æ)℄℄ j 9y 2 [[Æ℄℄:(x; y) 2 R

Æ

g

The de�nitions of R and r are as follows:

R

�

= f([n℄; n) j n 2 INg

r

�

= f?g

R

�

?

= f(a; [d℄) j (a; d) 2 R

�

g [f(x;?) j x 2 r

�

g

r

�

?

= r

�

14

R

�!Æ

= f(f; g) j 8x 2 r

�

:f(x) 2 r

Æ

; 8(x; y) 2 R

�

:(f x; g y) 2 R

Æ

g

R

�

?

!Æ

= f(f; g) j 8(x; y) 2 R

�

?

:(f x; g y) 2 R

Æ

g

r

!Æ

= ff j 8x 2 I

[r

:f(x) 2 r

Æ

g

Note that the de�nition of R at fun
tion types is of the usual `takes related arguments to

related results' form, but that at types of the form � ! Æ there is an additional requirement

that f be stri
t, in a suitably generalised sense. It is a simple indu
tion on types to show

that all the R

Æ

are in
lusive and that all the r

Æ

are ideals, whi
h we shall need later:

Lemma 4 For all Æ

1. If d

0

v d

1

v � � � is an !-
hain in [[U(Æ)℄℄ and e

0

v e

1

v � � � is an !-
hain in [[Æ℄℄ su
h

that for all i 2 !:(d

i

; e

i

) 2 R

Æ

then (

F

i

d

i

;

F

i

e

i

) 2 R

Æ

.

2. The set r

Æ

is non-empty, downwards
losed and
losed under limits of !-
hains.

2

Now
orre
tness follows from the following theorem, whi
h is in the spirit of the `funda-

mental theorem of logi
al relations':

Theorem 5 If the translation judgement

� ` e:B > �

0

` e

0

: Æ

is derivable, where

� = a

1

:A

1

; : : : ; a

n

:A

n

�

0

= a

1

:�

1

?

; : : : ; a

m

:�

m

?

; a

m+1

:�

m+1

; : : : ; a

n

:�

n

then

1. For all �: �, %: �

0

su
h that �R % (pointwise), ([[e℄℄�) R

Æ

([[e

0

℄℄%):

2. If �: � satis�es the following three
onditions:

(a) 81 � i � m: �(a

i

) 2 I

�

i

?

(b) 8m < j � n: �(a

j

) 2 I

�

j

[r

�

j

(
) 9m < j � n: �(a

j

) 2 r

�

j

then [[e℄℄� 2 r

Æ

.

Proof. This follows by an indu
tion on the derivation of the translation judgement. We

give a few interesting
ases:

Val For the �rst part we have to show that for any suitable � and %, [[e℄℄�R

�

?

[[[e

0

℄℄℄%. But

[[[e

0

℄℄℄% = [[[e℄℄%℄ so this is immediate from the indu
tion hypothesis and the de�nition

of R

�

?

. For the se
ond part, if � satis�es the
onditions given then it trivially

satis�es the the
onditions for part 2 applied to the hypothesis of the rule. Hen
e

by indu
tion [[e℄℄� 2 r

�

and sin
e r

�

?

= r

�

we are done.

15

Let For part 1, assume that �: �, %: �

0

with �R% and that x 2 [[A℄℄, y 2 [[�

?

℄℄ with xR

�

?

y.

We want to show that

([[e[b=a℄℄℄�[b 7! x℄)R

�

?

([[let a b in e

0

℄℄%[b 7! y℄)

By the de�nition of R

�

?

, there are two
ases to
onsider: either x 2 r

�

and y = ?

or y = [y

0

℄ with xR

�

y

0

. In the �rst
ase, �[a 7! x℄ satis�es the
onditions for part 2

of the indu
tion hypothesis, so that

[[e[b=a℄℄℄�[b 7! x℄ = [[e℄℄�[a 7! x℄ 2 r

�

?

and [[let a b in e

0

℄℄%[b 7! y℄ = ? and we are done by the de�nition of R

�

?

. In the

se
ond
ase, �[a 7! x℄ and %[a 7! y

0

℄ satis�y the
onditions for part 1 of the indu
tion

hypothesis, so we
an dedu
e

([[e[b=a℄℄℄�[b 7! x℄) = ([[e℄℄�[a 7! x℄)R

�

?

([[e

0

℄℄%[a 7! y

0

℄) = ([[let a b in e

0

℄℄%[b 7! [y

0

℄℄)

as required. For part 2, if �[b 7! x℄ satis�es the relevant
onditions, then �[a 7! x℄

satis�es the
onditions for part 2 of the indu
tion hypothesis, so that

([[e[b=a℄℄℄�[b 7! x℄) = ([[e℄℄�[a 7! x℄) 2 r

�

?

as required.

C2 For part 1, assume �: �,%: �

0

with �R% and that x 2 [[A℄℄, y 2 [[�℄℄ with xR

�

y. Then

xR

�

?

[y℄ so that

[[e[
=a;
=b℄℄℄�[
 7! x℄ = [[e℄℄�[a 7! x; b 7! x℄

R

[[e

0

℄℄%[a 7! y; b 7! [y℄℄ by indu
tion 1

= [[e

0

[
=a; [
℄=b℄℄℄%[
 7! y℄

as required. For part 2, it is easy to see that if �[
 7! x℄ satis�es the relevant

onditions then �[a 7! x; b 7! x℄ satis�es the
onditions for part 2 of the indu
tion

hypothesis, so

([[e[
=a;
=b℄℄℄�[
 7! x℄) = ([[e℄℄�[a 7! x; b 7! x℄) 2 r

Abs We
onsider the
ase where Æ = � , i.e. we are introdu
ing a stri
t fun
tion. The
ase

Æ = �

?

is similar. For part 1, assume that �R%. We have to show

(�x 2 [[A℄℄:[[e℄℄�[a 7! x℄) R

�!�

?

(�y 2 [[� ℄℄:[[e

0

℄℄%[a 7! y℄)

By the de�nition of R

�!�

?

, this means that we �rstly have to show that if x 2 r

�

,

then [[e℄℄�[a 7! x℄ 2 r

�

?

. But this follows from part 2 of the indu
tion hypothesis,

sin
e it is easy to see that �[a 7! x℄ satis�es the appropriate
onditions. Se
ondly,

we have to show that if xR

�

y then [[e℄℄�[a 7! x℄R

�

?

[[e

0

℄℄%[a 7! y℄, whi
h follows from

part 1 of the indu
tion hypothesis.

For part 2, assume that � satis�es the three
onditions, then we have to show that

[[�a:A:e℄℄� 2 r

�!�

?

. This means showing that if x 2 I

�

[r

�

then [[e℄℄�[a 7! x℄ 2

r

�

?

. This follows by part 2 of the indu
tion hypothesis, sin
e for any su
h x,

�[a 7! x℄ satis�es the appropriate
onditions.

16

AppS For part 1 we assume that �

1

: �,%

1

: �

0

, �

2

:�,%:�

0

with �

1

R%

1

and �

2

R%

2

. By

indu
tion 1, we know that [[e℄℄�

1

R

(�!�

?

)

?

[[e

0

℄℄%

1

and [[f ℄℄�

2

R

�

?

[[f

0

℄℄%

2

.

Hen
e either (i) [[e℄℄�

1

2 r

�!�

?

and [[e

0

℄℄%

1

= ?

or (ii) [[e

0

℄℄%

1

= [x

0

℄ with [[e℄℄�

1

R

�!�

?

x

0

And either (a) [[f ℄℄�

2

2 r

�

and [[f

0

℄℄%

2

= ?

or (b) [[f

0

℄℄%

2

= [y

0

℄ with [[f ℄℄�

2

R

�

y

0

In
ase (i), whi
hever of (a) or (b) holds, [[f ℄℄�

2

2 I

�

[r

�

so that by, the de�nition

of r

�!�

?

, ([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

. Hen
e

([[e℄℄�

1

)([[f ℄℄�

2

) R

�

?

([[let x e

0

in let y f

0

in x y℄℄%

1

%

2

) = ?

In
ase (ii), if (a) holds then the stri
tness part of the de�nition of R

�!�

?

gives that

([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

again, and be
ause [[f

0

℄℄%

2

= ? we
an then
on
lude that the

relation holds as above. If (b) holds then by the logi
al relation part of the de�nition

of R

�!�

?

we get

([[e℄℄�

1

)([[f ℄℄�

2

) R

�

?

(x

0

y

0

) = ([[let x e

0

in let y f

0

in x y℄℄%

1

%

2

)

as required.

For part 2, assume that �

1

: �,�

2

:� and that the
on
atenated environment �

1

�

2

satis�es the three
onditions. Then at least one of �

1

and �

2

also satis�es the three

onditions on its own (there is at least one variable whi
h is assigned an unlifted type

in �

0

;�

0

whi
h is bound to an element of the appropriate r by �

1

�

2

). If �

1

satis�es

the
onditions for part 2, then by indu
tion 2, [[e℄℄�

1

2 r

�!�

?

. Now, if �

2

also satis�es

the
onditions for part 2, we
an apply indu
tion 2 to dedu
e that [[f ℄℄�

2

2 r

�

and

hen
e ([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

as required. If, on the other hand �

2

does not satisfy

the three
onditions, we must have that for all a

i

: Æ

i

2 �, �

2

(a

i

) 2 I

Æ

i

. And this

means that we
an apply indu
tion 1 to dedu
e that [[f ℄℄�

2

2 I

�

?

= I

�

[r

�

. Hen
e

([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

again.

If �

1

does not satisfy the three
onditions for part 2 but �

2

does, then we
an apply

indu
tion 1 to dedu
e that [[e℄℄�

1

2 I

(�!�

?

)

?

= I

�!�

?

[r

�!�

?

and we
an use

indu
tion 2 to dedu
e that [[f ℄℄�

2

2 r

�

. Hen
e, using either the stri
tness part of

the de�nition of R

�!�

?

or the de�nition of r

�!�

?

a

ording to whi
h part of the

union [[e℄℄�

1

lies in, we �nd that ([[e℄℄�

1

)([[f ℄℄�

2

) 2 r

�

?

as required.

Re
 For part 1, given appropriate �,%, de�ne d

0

= ?

[[A℄℄

, d

n+1

= [[e℄℄�[a 7! d

n

℄ and

d

0

0

= ?

[[�

?

℄℄

, d

0

n+1

= [[e

0

℄℄%[a 7! d

n

℄. We
laim that for all n, d

n

R

�

?

d

0

n

, whi
h follows

by a little indu
tion. For the base
ase, observe that by the se
ond part of Lemma 4,

?

[[A℄℄

2 r

�

?

and thus, by the de�nition of R

�

?

, d

0

R

�

?

d

0

0

. Now for the indu
tion

step, we assume d

n

R

�

?

d

0

n

so that �[a 7! d

n

℄R%[a 7! d

0

n

℄ and we
an apply indu
tion

1 to dedu
e that

d

n+1

= ([[e℄℄�[a 7! d

n

℄) R

�

?

([[e

0

℄℄%[a 7! d

0

n

℄) = d

0

n+1

And so by the �rst part of Lemma 4

[[re
(a:A: e)℄℄� =

G

i2!

d

i

R

�

?

G

i2!

d

0

i

= [[re
(a:�

?

: e

0

)℄℄%

as required.

17

For part 2, if � satis�es the three
onditions, then with d

n

de�ned as above it is

another easy indu
tion on n, using indu
tion 2, to show that for all n, d

n

2 r

�

?

.

Then as r

�

?

is
losed under limits of
hains (Lemma 4),

[[re
(a:A: e)℄℄� =

G

i2!

d

i

2 r

�

?

as required.

2

Corollary 6 For any program p, if the translation judgement ` p: nat > ` p

0

: �

?

is

derivable then for any n 2 IN , p + n i� p

0

+ n.

Proof. By Theorem 5, [[p℄℄R

�

?

[[p

0

℄℄. By the de�nition of R

�

?

, this means that [[p℄℄ = [n℄

i� [[p

0

℄℄ = [n℄ and the result then follows from Propositions 1 and 2. 2

Stri
tly speaking, a further
orre
tness result holds as a
orollary of Theorem 5. This

states that if ` p: nat > ` p

0

: � then p + n i� p

0

= n, but as this only happens when the

sour
e program is just a numeri
 literal, it has rather limited s
ope.

It is interesting to note that the proof of Theorem 5 reveals that the simple-minded

stri
tness analysis whi
h underlies the translation is
orre
t, but surprisingly deli
ate. The

semanti
s of our sour
e language identi�es ? and �x:?, whi
h does not
ause adequa
y to

fail be
ause we restri
t our observations to whole programs, so that termination at higher

types is unobservable. We make use of this identi�
ation in the de�nition of r

!Æ

and,

in fa
t, our translation would be unsound if we added termination testing at higher types

to the sour
e language. The problem is in the rules for abstra
tions, whi
h essentially

say that if an expression e is stri
t in some subset S of its free variables, then when we

�-abstra
t on one of the free variables a, the resulting abstra
tion �a:e is still stri
t in

S n fag. If we
an observe termination at higher types, this is simply not true, as the

abstra
tion is a weak head normal form and its evaluation therefore terminates whatever

is substituted for the remaining free variables. If we were to �x this problem by insisting

that the
ontext �

0

in the abstra
tion rules
ontained only lifted types, then the resulting

analysis would be hopelessly weak. Other stri
tness analyses based on `relevan
e logi

style' type systems are similarly fragile.

6 Con
lusions and further work

We have shown how a simple stri
tness analysis and its asso
iated optimisations may

be expressed together in a single formal system whi
h gives an improved translation of

the sour
e language into a variant of Moggi's
omputational metalanguage. Although

the analysis inherent in this translation is rather weak, the asso
iated optimisations go

beyond those often
onsidered in the literature in that, in addition to sele
tively passing

arguments by value, they also allow fun
tions to be
ompiled to expe
t arguments whi
h

are, for example, already evaluated or known to be stri
t fun
tions. The
orre
tness of the

translation was established by a fairly straightforward logi
al relations argument whi
h

onne
ts the domain-theoreti
 semanti
s of the sour
e and target languages.

One obvious pie
e of further work is to implement the system des
ribed here. This

will involve de
iding what we mean by the `best' translation of a given sour
e term and

18

then designing an algorithm to �nd that translation. The right way to do this seems to be

to design a non-standard type inferen
e algorithm whi
h assigns �

op

types to �

T

terms,

building up the translation �

op

term as a side-e�e
t of uni�
ation. The fa
t that the rules

are very far from being syntax dire
ted suggests that a good starting point would be to

de�ne a normal form for translation derivations, in whi
h the
ontra
tion, (Let) and (Val)

rules are only used in
ertain restri
ted pla
es. More fundamentally, however, there is

onsiderable s
ope for further work on improving the translation itself.

The simple system presented here does not in itself provide a pra
ti
al basis for stri
t-

ness analysis and optimisation in `realisti
' fun
tional languages. This is be
ause there is

no treatment of pairs or other stru
tured datatypes and be
ause the treatment of fun
tions

is only valid for languages like PCF, in whi
h termination at higher type is unobservable.

It is, however, a natural �rst step in a line of resear
h whi
h aims to bring analyses and

optimisations
loser together. The basi
 idea is that many
ompiler optimisations
an

be presented using a target language whi
h has a �xed operational semanti
s and a type

system making the properties of interest expli
it. The purpose of analysing the sour
e

program is to validate an improved translation into the target language. Roughly speak-

ing, the types of the target language should
orrespond to the properties used in the stati

analysis of the sour
e language. In general, however, there will be many properties whi
h

are useful in analysis but whi
h we would not wish to make types of the target language,

so there will be three kinds of judgement to relate: the typing judgement in the sour
e

language, the analysis judgement in the sour
e language and the typing judgement in

the target language. (Alternatively, one
ould imagine a framework in whi
h the default

translation is applied �rst, and an analysis is then applied to the resulting target program

in order to justify target-to-target transformations.) The system presented here only in-

volves two kinds of judgement be
ause the only properties whi
h are used in the analysis

are those whi
h
orrespond to target language types. This is why the system is simple,

but not parti
ularly powerful. The next step is to develop a better translation of �

T

into

�

op

whi
h exploits the results of a more powerful analysis, su
h as those in [Ben92℄. Su
h

analyses
an also deal satisfa
torily with languages for whi
h termination at higher type

is observable, so the fragility of the present system whi
h was des
ribed at the end of

the previous se
tion would be removed. It would also be interesting to look at de�ning

and justifying a `polyvariant' translation, in whi
h a single sour
e term may be
ompiled

into multiple target terms for use in di�erent
ontexts. Here again, there are
onsiderable

omplexities and it would seem advantageous to separate the question of when, in pra
-

ti
e, we wish to generate multiple
ode versions from that of formally de�ning the spa
e

of theoreti
ally valid polyvariant translations.

It is not yet
lear how many di�erent analyses and optimisations
an be presented using

these ideas, but there are already a number of
losely related pie
es of work. One of these

is Leroy's work on boxing optimisations for ML [Ler92℄, whi
h we have already mentioned,

and another is S
hellinx's work on de
oration strategies for translating
onventional logi

into linear logi
 [S
h94℄. The latter dis
usses improving the Girard translation so as

to introdu
e fewer ! types, whi
h is very similar to what we have done in this paper,

espe
ially in the light of the
lose relationship between translations into linear logi
 and

translations into the
omputational lambda
al
ulus whi
h is explored in [BW95℄. There

is a mutually bene�
ial relationship between theory and pra
ti
e here: not only does the

theory suggest pra
ti
ally useful optimisation te
hniques, but there appears to be s
ope

for applying ideas from stati
 analysis to, for example, the more theoreti
al study of

linear de
oration strategies. Related ideas are behind Abramsky's proposal of `logi
-based

19

program analysis', based on optimising translations of standard fun
tional programs into

linear (or similar) term
al
uli, as a promising resear
h area [Abr90℄.

Referen
es

[Abr90℄ S. Abramsky. Computational interpretations of linear logi
. Te
hni
al Report

90/20, Department of Computing, Imperial College, London, O
tober 1990.

[Amt93℄ T. Amtoft. Minimal thunki�
ation. In P. Cousot, M. Falas
hi, G. Fil�e, and

A. Rauzy, editors, Pro
eedings of the Third International Workshop on Stati

Analysis, Padova, Italy, volume 724 of Le
ture Notes in Computer S
ien
e,

pages 218{229. Springer-Verlag, September 1993.

[BBdP95℄ P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types from

a logi
al perspe
tive. Te
hni
al Report 365, Computer Laboratory, University

of Cambridge, May 1995.

[Ben92℄ P. N. Benton. Stri
tness Analysis of Lazy Fun
tional Programs. PhD thesis,

Computer Laboratory, University of Cambridge, De
ember 1992.

[BF92℄ C. A. Baker-Fin
h. Relevant logi
 and stri
tness analysis. In Workshop on

Stati
 Analysis, LaBRI, Bordeaux. Bigre, 1992.

[BHA86℄ G. L. Burn, C. L. Hankin, and S. Abramsky. The theory and pra
ti
e of stri
t-

ness analysis for higher-order fun
tions. S
ien
e of Computer Programming,

7:249{278, 1986.

[Bur91℄ G. L. Burn. Lazy Fun
tional Languages: Abstra
t Interpretation and Compila-

tion. Resear
h Monographs in Parallel and Distributed Computing. MIT Press,

Cambridge, Mass., 1991.

[BW95℄ P. N. Benton and P. Wadler. Linear logi
, monads and the lambda
al
ulus.

Preprint, 1995.

[Cro92℄ R. L. Crole. Programming Metalogi
s with a Fixpoint Type. PhD thesis, Com-

puter Laboratory, University of Cambridge, February 1992. Available as Te
h-

ni
al Report 247.

[DH93℄ O. Danvy and J. Hat
li�. CPS transformation after stri
tness analysis. ACM

Letters on Programming Languages and Systems, 1(3), 1993.

[HY91℄ P. Hudak and J. Young. Colle
ting interpretations of expressions. ACM Trans-

a
tions on Programming Languages and Systems, 13(2):269{290, April 1991.

[Ler92℄ X. Leroy. Unboxed obje
ts and polymorphi
 typing. In Pro
eedings of the 19th

Symposium on the Prin
iples of Programming Languages, pages 177{188. ACM,

1992.

[Mog89℄ E. Moggi. Computational lambda-
al
ulus and monads. In Pro
eedings of the

4th Annual Symposium on Logi
 in Computer S
ien
e, Asiloomar, CA, pages

14{23, 1989.

20

[Mog91℄ E. Moggi. Notions of
omputation and monads. Information and Computation,

93:55{92, 1991.

[My
81℄ A. My
roft. Abstra
t Interpretation and Optimising Transformations for Ap-

pli
ative Programs. PhD thesis, Department of Computer S
ien
e, University

of Edinburgh, De
ember 1981.

[NN90℄ H. R. Nielson and F. Nielson. Context information for lazy
ode generation. In

LISP and Fun
tional Programming, June 1990.

[PJL91℄ S. L. Peyton Jones and J. Laun
hbury. Unboxed values as �rst
lass
itizens

in a non-stri
t fun
tional language. In Pro
eedings of the 5th International

Symposium on Fun
tional Programming Languages and Computer Ar
hite
ture,

volume 523 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1991.

[Plo77℄ G. D. Plotkin. LCF
onsidered as a programming language. Theoreti
al Com-

puter S
ien
e, 5:223{255, 1977.

[S
h94℄ H. S
hellinx. The Noble Art of Linear De
orating. PhD thesis, University of

Amsterdam, 1994.

[Wan93℄ M. Wand. Spe
ifying the
orre
tness of binding-time analysis. In ACM Sympo-

sium on Prin
iples of Programming Languages, pages 137{143. ACM, January

1993.

[Win93℄ G. Winskel. The Formal Semanti
s of Programming Languages. MIT Press,

1993.

[Wri92℄ D. A. Wright. Redu
tion Types and Intensionality in the Lambda-
al
ulus. PhD

thesis, University of Tasmania, 1992.

21

