
On the Relationship Between Formal Semanti
s

and Stati
 Analysis

P. N. Benton

�

, University of Cambridge

Introdu
tion

Stati
 analysis is the automati
 
ompile-time analysis of programs so as to extra
t in-

formation whi
h 
an be used to produ
e optimised 
ode. Mu
h work on stati
 analysis

draws on more theoreti
al resear
h into the semanti
s of programming languages, as this


an provide frameworks both for formulating analyses and for proving their 
orre
tness {

su
h relationships between `pure' and `applied' �elds are 
ommon throughout the s
ien
es.

This paper highlights a few existing intera
tions between the two �elds and identi�es some


urrent trends and possible dire
tions for future work. The a

ount is (unsurprisingly)

biased towards my own interests in fun
tional 
omputation.

It seems entirely natural that stati
 analysis should be a major 
onsumer of, as well

as a testbed and an inspiration for, ideas in semanti
s be
ause both �elds are, at their

broadest, 
on
erned with �nding formal prin
iples for reasoning about the behaviour of

programs. The major distin
tion is that stati
 analyses are intended to be implemented,

and must therefore be (eÆ
iently) 
omputable. Sin
e nearly all interesting program prop-

erties are non-
omputable, stati
 analyses 
annot dis
over pre
ise information and we must

instead a

ept safe, and often rather 
rude, approximations. Semanti
ists, by 
ontrast,

are generally interested in modelling programming languages as a

urately as possible and

in proving rather more 
omplex program properties than are 
onsidered in stati
 analysis.

Thus the essential di�eren
e is in the level of abstra
tion at whi
h one works, though the

important question of how analyses should be implemented has no obvious 
ounterpart in

semanti
s.

Analysis te
hniques

The idea of the previous paragraph is, roughly, the basis for abstra
t interpretation [3℄.

An abstra
t interpretation assigns, usually 
ompositionally, an abstra
t meaning in some

latti
e of properties to ea
h program phrase. Corre
tness is established by relating this

abstra
t semanti
s to a more standard 
on
rete semanti
s.

The other main way of presenting analyses is to give a logi
 or type system in whi
h

one 
an derive judgments asserting that a program phrase satis�es a parti
ular predi
ate.

The relationship between abstra
t interpretations and inferen
e-based analyses, in terms

of both theory and implementation, is an a
tive resear
h area in whi
h non-trivial semanti


ideas, su
h as Stone duality, have been in
uential [1℄, and there is s
ope for more work

along similar lines, parti
ularly on the analysis of 
on
urrent systems. In a sense whi
h

is so broad as to be useless, it is probably 
orre
t to say that the two frameworks are

�

Supported by EU BRA 8130 LOMAPS.

1



`equivalent'; but the qualitative di�eren
es are still signi�
ant, and what is natural in one

framework may be awkward in the other. One so
iologi
al bene�t of using analysis logi
s is

that the 
onne
tions with more general and well-known program logi
s and type systems

be
ome obvious, and ordinary type inferen
e 
an be seen as a stati
 analysis problem.

Abstra
t interpretation is sometimes unfairly seen as a rather spe
ialised subje
t.

Semanti
s in stati
 analysis

Domain theory has been used to formulate and validate many stati
 analyses, parti
ularly

for fun
tional languages [2, 1, 4℄. Analyses of properties su
h as stri
tness, binding-time or

totality are often not merely validated by su
h a semanti
s, but are formulated right from

the start in semanti
 terms; domain-theoreti
 
on
epts, su
h as proje
tions, 
an naturally

suggest program analysis te
hniques [4℄. More sophisti
ated semanti
 
on
epts, su
h as

parametri
ity [1℄, initiality, �brations [4℄ and higher-dimensional automata, have also been

used in stati
 analysis. Operational, rather than denotational, semanti
s are now often

used as the basis for stati
 analyses: see, for example, [6, 8℄.

Although stati
 analysis sometimes uses moderately sophisti
ated ideas from the se-

manti
s 
ommunity, this is 
omparatively rare { more often stati
 analysis develops its

own theory on top of fairly elementary semanti
s. There are several possible explanations

for this:

1. Relevant semanti
 work is not well-known or its relevan
e is not widely appre
iated.

For example, the monadi
 approa
h to semanti
s [5℄ is well-known to theorists, but

still has unrealised potential as a framework for understanding `type and e�e
t'

analyses like [8℄.

2. Relevant semanti
 work does not exist, be
ause the properties of interest are at

a lower level or are more intensional than is usually dealt with in semanti
s (e.g.

data representation, memory allo
ation), or be
ause semanti
ists have not yet dealt

satisfa
torily with 
ertain high-level language features. A la
k of denotational models

for 
on
urrent languages was one reason for the move to operational te
hniques in

stati
 analysis, though su
h models are now starting to appear.

3. \Semanti
ists only deal with toy languages". (
f. 2) Although this 
ontains a grain of

truth, theory provides paradigms, insights and intuitions whi
h are more a

essible

and more appli
able be
ause they are not tied up with the details of parti
ular

languages. Turning theory into pra
ti
e is the job of pra
titioners, though for this

to happen theoreti
ians must make their work relevant and a

essible.

4. \Many of the subtleties studied by semanti
ists 
an safely be ignored be
ause stati


analysis only deals with approximations." For example, although simple domain-

theoreti
 semanti
s are often not fully abstra
t, they are useful in stati
 analysis.

However, for some appli
ations, the approximations introdu
ed by a naive semanti
s

may be parti
ularly bad ones. Also, the payo� from semanti
 work may be more

indire
t, as is shown by the use of intensional representations of fun
tions, developed

in the sear
h for fully abstra
t models of PCF, to write eÆ
ient abstra
t interpreters.

5. \Semanti
ists study notions of program equivalen
e and look for models whi
h re-


e
t these equivalen
es as a

urately as possible. Stati
 analysis is only 
on
erned

with program properties, whi
h 
an be interpreted in a naive semanti
s." (
f. 4) One

2



reason that program equivalen
e is rarely mentioned in stati
 analysis is that the


orre
tness of the asso
iated optimising transformations is only rarely addressed.

The purpose of analysis is to repla
e one program with another, and a notion of

equivalen
e is needed to justify this. Furthermore, even if the properties have naive

interpretations, the entailment relation between those properties is re�ned by mov-

ing to a more a

urate semanti
s, enabling more useful information to be gathered

without ne
essarily in
reasing the 
omplexity of the analysis.

The question of how to justify optimising transformations is 
learly important and may

provide a bridge between stati
 analysis and more theoreti
al work 
on
erning languages

with re�ned type systems, whi
h enfor
e 
ertain behavioral 
onstraints. This work is

essentially dual to stati
 analysis and often has strong semanti
 or proof-theoreti
 founda-

tions. Analysis-based optimisations may be expressed via translations into su
h a re�ned

language, and it seems natural to design the analysis after the type system of the target

language, giving a primary role to logi
al or proof-theoreti
 ideas.

Situations 1 and 2 above 
an be improved by more 
ollaboration. A good example

of where this might be pro�table is 
urrent resear
h into the semanti
s of lo
al variables

[7℄; this seems 
losely related to the problems of s
ope and aliasing whi
h arise in stati


analysis of dynami
 
reation of storage regions [8℄ and 
ommuni
ation 
hannels [6℄. This

is also an example of the situation mentioned in 4 and 5: many of the `tri
ky' program

equivalen
es arising from lo
al names and higher-order fun
tions 
orrespond to plausible

optimisations, yet they are only validated by fairly 
omplex semanti
s. Analyses and

semanti
s should develop together.

Referen
es

[1℄ P. N. Benton. Stri
tness logi
 and polymorphi
 invarian
e. In Pro
eedings of the Se
ond

Symposium on Logi
al Foundations of Computer S
ien
e, Tver. Springer-Verlag LNCS

620. July 1992.

[2℄ G. L. Burn, C. L. Hankin and S. Abramsky. The theory and pra
ti
e of stri
tness

analysis for higher-order fun
tions. S
ien
e of Computer Programming 7. 1986.

[3℄ P. Cousot and R. Cousot. Abstra
t Interpretation Frameworks. Journal of Logi
 and

Computation 4(2) 1992.

[4℄ J. Laun
hbury. Proje
tion fa
torisations in partial evaluation. Distinguished Disserta-

tions in Computer S
ien
e Vol. 1. Cambridge University Press 1991.

[5℄ E. Moggi. Notions of Computation and Monads. Information and Computation 93(1)

1991.

[6℄ F. Nielson and H. R. Nielson. From CML to its Pro
ess Algebra. To appear in Theo-

reti
al Computer S
ien
e, North-Holland.

[7℄ I. D. B. Stark, Categori
al Models for Lo
al Names. Lisp and Symboli
 Computation

9(1) 1996.

[8℄ M. Tofte and J.-P. Talpin. Implementation of the typed 
all-by-value �-
al
ulus using

a sta
k of regions. Pro
eedings of the 21st ACM Symposium on Prin
iples of Program-

ming Languages. ACM Press. January 1994.

3


