On the Relationship Between Formal Semantics
and Static Analysis

P. N. Benton} University of Cambridge

Introduction

Static analysis is the automatic compile-time analysis of programs so as to extract in-
formation which can be used to produce optimised code. Much work on static analysis
draws on more theoretical research into the semantics of programming languages, as this
can provide frameworks both for formulating analyses and for proving their correctness —
such relationships between ‘pure’ and ‘applied’ fields are common throughout the sciences.
This paper highlights a few existing interactions between the two fields and identifies some
current trends and possible directions for future work. The account is (unsurprisingly)
biased towards my own interests in functional computation.

It seems entirely natural that static analysis should be a major consumer of, as well
as a testbed and an inspiration for, ideas in semantics because both fields are, at their
broadest, concerned with finding formal principles for reasoning about the behaviour of
programs. The major distinction is that static analyses are intended to be implemented,
and must therefore be (efficiently) computable. Since nearly all interesting program prop-
erties are non-computable, static analyses cannot discover precise information and we must
instead accept safe, and often rather crude, approximations. Semanticists, by contrast,
are generally interested in modelling programming languages as accurately as possible and
in proving rather more complex program properties than are considered in static analysis.
Thus the essential difference is in the level of abstraction at which one works, though the
important question of how analyses should be implemented has no obvious counterpart in
semantics.

Analysis techniques

The idea of the previous paragraph is, roughly, the basis for abstract interpretation [3].
An abstract interpretation assigns, usually compositionally, an abstract meaning in some
lattice of properties to each program phrase. Correctness is established by relating this
abstract semantics to a more standard concrete semantics.

The other main way of presenting analyses is to give a logic or type system in which
one can derive judgments asserting that a program phrase satisfies a particular predicate.
The relationship between abstract interpretations and inference-based analyses, in terms
of both theory and implementation, is an active research area in which non-trivial semantic
ideas, such as Stone duality, have been influential [1], and there is scope for more work
along similar lines, particularly on the analysis of concurrent systems. In a sense which
is so broad as to be useless, it is probably correct to say that the two frameworks are

*Supported by EU BRA 8130 LOMAPS.



‘equivalent’; but the qualitative differences are still significant, and what is natural in one
framework may be awkward in the other. One sociological benefit of using analysis logics is
that the connections with more general and well-known program logics and type systems
become obvious, and ordinary type inference can be seen as a static analysis problem.
Abstract interpretation is sometimes unfairly seen as a rather specialised subject.

Semantics in static analysis

Domain theory has been used to formulate and validate many static analyses, particularly
for functional languages [2, 1, 4]. Analyses of properties such as strictness, binding-time or
totality are often not merely validated by such a semantics, but are formulated right from
the start in semantic terms; domain-theoretic concepts, such as projections, can naturally
suggest program analysis techniques [4]. More sophisticated semantic concepts, such as
parametricity [1], initiality, fibrations [4] and higher-dimensional automata, have also been
used in static analysis. Operational, rather than denotational, semantics are now often
used as the basis for static analyses: see, for example, [6, 8].

Although static analysis sometimes uses moderately sophisticated ideas from the se-
mantics community, this is comparatively rare — more often static analysis develops its
own theory on top of fairly elementary semantics. There are several possible explanations
for this:

1. Relevant semantic work is not well-known or its relevance is not widely appreciated.
For example, the monadic approach to semantics [5] is well-known to theorists, but
still has unrealised potential as a framework for understanding ‘type and effect’
analyses like [8].

2. Relevant semantic work does not exist, because the properties of interest are at
a lower level or are more intensional than is usually dealt with in semantics (e.g.
data representation, memory allocation), or because semanticists have not yet dealt
satisfactorily with certain high-level language features. A lack of denotational models
for concurrent languages was one reason for the move to operational techniques in
static analysis, though such models are now starting to appear.

3. “Semanticists only deal with toy languages”. (cf. 2) Although this contains a grain of
truth, theory provides paradigms, insights and intuitions which are more accessible
and more applicable because they are not tied up with the details of particular
languages. Turning theory into practice is the job of practitioners, though for this
to happen theoreticians must make their work relevant and accessible.

4. “Many of the subtleties studied by semanticists can safely be ignored because static
analysis only deals with approximations.” For example, although simple domain-
theoretic semantics are often not fully abstract, they are useful in static analysis.
However, for some applications, the approximations introduced by a naive semantics
may be particularly bad ones. Also, the payoff from semantic work may be more
indirect, as is shown by the use of intensional representations of functions, developed
in the search for fully abstract models of PCF, to write efficient abstract interpreters.

5. “Semanticists study notions of program equivalence and look for models which re-
flect these equivalences as accurately as possible. Static analysis is only concerned
with program properties, which can be interpreted in a naive semantics.” (cf. 4) One



reason that program equivalence is rarely mentioned in static analysis is that the
correctness of the associated optimising transformations is only rarely addressed.
The purpose of analysis is to replace one program with another, and a notion of
equivalence is needed to justify this. Furthermore, even if the properties have naive
interpretations, the entailment relation between those properties is refined by mov-
ing to a more accurate semantics, enabling more useful information to be gathered
without necessarily increasing the complexity of the analysis.

The question of how to justify optimising transformations is clearly important and may
provide a bridge between static analysis and more theoretical work concerning languages
with refined type systems, which enforce certain behavioral constraints. This work is
essentially dual to static analysis and often has strong semantic or proof-theoretic founda-
tions. Analysis-based optimisations may be expressed via translations into such a refined
language, and it seems natural to design the analysis after the type system of the target
language, giving a primary role to logical or proof-theoretic ideas.

Situations 1 and 2 above can be improved by more collaboration. A good example
of where this might be profitable is current research into the semantics of local variables
[7]; this seems closely related to the problems of scope and aliasing which arise in static
analysis of dynamic creation of storage regions [8] and communication channels [6]. This
is also an example of the situation mentioned in 4 and 5: many of the ‘tricky’ program
equivalences arising from local names and higher-order functions correspond to plausible
optimisations, yet they are only validated by fairly complex semantics. Analyses and
semantics should develop together.

References

[1] P. N. Benton. Strictness logic and polymorphic invariance. In Proceedings of the Second
Symposium on Logical Foundations of Computer Science, Tver. Springer-Verlag LNCS
620. July 1992.

[2] G. L. Burn, C. L. Hankin and S. Abramsky. The theory and practice of strictness
analysis for higher-order functions. Science of Computer Programming 7. 1986.

[3] P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic and
Computation 4(2) 1992.

[4] J. Launchbury. Projection factorisations in partial evaluation. Distinguished Disserta-
tions in Computer Science Vol. 1. Cambridge University Press 1991.

[5] E. Moggi. Notions of Computation and Monads. Information and Computation 93(1)
1991.

[6] F. Nielson and H. R. Nielson. From CML to its Process Algebra. To appear in Theo-
retical Computer Science, North-Holland.

[7] 1. D. B. Stark, Categorical Models for Local Names. Lisp and Symbolic Computation
9(1) 1996.

[8] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value A-calculus using
a stack of regions. Proceedings of the 21st ACM Symposium on Principles of Program-
ming Languages. ACM Press. January 1994.



