
On the Relationship Between Formal Semantis

and Stati Analysis

P. N. Benton

�

, University of Cambridge

Introdution

Stati analysis is the automati ompile-time analysis of programs so as to extrat in-

formation whih an be used to produe optimised ode. Muh work on stati analysis

draws on more theoretial researh into the semantis of programming languages, as this

an provide frameworks both for formulating analyses and for proving their orretness {

suh relationships between `pure' and `applied' �elds are ommon throughout the sienes.

This paper highlights a few existing interations between the two �elds and identi�es some

urrent trends and possible diretions for future work. The aount is (unsurprisingly)

biased towards my own interests in funtional omputation.

It seems entirely natural that stati analysis should be a major onsumer of, as well

as a testbed and an inspiration for, ideas in semantis beause both �elds are, at their

broadest, onerned with �nding formal priniples for reasoning about the behaviour of

programs. The major distintion is that stati analyses are intended to be implemented,

and must therefore be (eÆiently) omputable. Sine nearly all interesting program prop-

erties are non-omputable, stati analyses annot disover preise information and we must

instead aept safe, and often rather rude, approximations. Semantiists, by ontrast,

are generally interested in modelling programming languages as aurately as possible and

in proving rather more omplex program properties than are onsidered in stati analysis.

Thus the essential di�erene is in the level of abstration at whih one works, though the

important question of how analyses should be implemented has no obvious ounterpart in

semantis.

Analysis tehniques

The idea of the previous paragraph is, roughly, the basis for abstrat interpretation [3℄.

An abstrat interpretation assigns, usually ompositionally, an abstrat meaning in some

lattie of properties to eah program phrase. Corretness is established by relating this

abstrat semantis to a more standard onrete semantis.

The other main way of presenting analyses is to give a logi or type system in whih

one an derive judgments asserting that a program phrase satis�es a partiular prediate.

The relationship between abstrat interpretations and inferene-based analyses, in terms

of both theory and implementation, is an ative researh area in whih non-trivial semanti

ideas, suh as Stone duality, have been inuential [1℄, and there is sope for more work

along similar lines, partiularly on the analysis of onurrent systems. In a sense whih

is so broad as to be useless, it is probably orret to say that the two frameworks are

�

Supported by EU BRA 8130 LOMAPS.

1



`equivalent'; but the qualitative di�erenes are still signi�ant, and what is natural in one

framework may be awkward in the other. One soiologial bene�t of using analysis logis is

that the onnetions with more general and well-known program logis and type systems

beome obvious, and ordinary type inferene an be seen as a stati analysis problem.

Abstrat interpretation is sometimes unfairly seen as a rather speialised subjet.

Semantis in stati analysis

Domain theory has been used to formulate and validate many stati analyses, partiularly

for funtional languages [2, 1, 4℄. Analyses of properties suh as stritness, binding-time or

totality are often not merely validated by suh a semantis, but are formulated right from

the start in semanti terms; domain-theoreti onepts, suh as projetions, an naturally

suggest program analysis tehniques [4℄. More sophistiated semanti onepts, suh as

parametriity [1℄, initiality, �brations [4℄ and higher-dimensional automata, have also been

used in stati analysis. Operational, rather than denotational, semantis are now often

used as the basis for stati analyses: see, for example, [6, 8℄.

Although stati analysis sometimes uses moderately sophistiated ideas from the se-

mantis ommunity, this is omparatively rare { more often stati analysis develops its

own theory on top of fairly elementary semantis. There are several possible explanations

for this:

1. Relevant semanti work is not well-known or its relevane is not widely appreiated.

For example, the monadi approah to semantis [5℄ is well-known to theorists, but

still has unrealised potential as a framework for understanding `type and e�et'

analyses like [8℄.

2. Relevant semanti work does not exist, beause the properties of interest are at

a lower level or are more intensional than is usually dealt with in semantis (e.g.

data representation, memory alloation), or beause semantiists have not yet dealt

satisfatorily with ertain high-level language features. A lak of denotational models

for onurrent languages was one reason for the move to operational tehniques in

stati analysis, though suh models are now starting to appear.

3. \Semantiists only deal with toy languages". (f. 2) Although this ontains a grain of

truth, theory provides paradigms, insights and intuitions whih are more aessible

and more appliable beause they are not tied up with the details of partiular

languages. Turning theory into pratie is the job of pratitioners, though for this

to happen theoretiians must make their work relevant and aessible.

4. \Many of the subtleties studied by semantiists an safely be ignored beause stati

analysis only deals with approximations." For example, although simple domain-

theoreti semantis are often not fully abstrat, they are useful in stati analysis.

However, for some appliations, the approximations introdued by a naive semantis

may be partiularly bad ones. Also, the payo� from semanti work may be more

indiret, as is shown by the use of intensional representations of funtions, developed

in the searh for fully abstrat models of PCF, to write eÆient abstrat interpreters.

5. \Semantiists study notions of program equivalene and look for models whih re-

et these equivalenes as aurately as possible. Stati analysis is only onerned

with program properties, whih an be interpreted in a naive semantis." (f. 4) One

2



reason that program equivalene is rarely mentioned in stati analysis is that the

orretness of the assoiated optimising transformations is only rarely addressed.

The purpose of analysis is to replae one program with another, and a notion of

equivalene is needed to justify this. Furthermore, even if the properties have naive

interpretations, the entailment relation between those properties is re�ned by mov-

ing to a more aurate semantis, enabling more useful information to be gathered

without neessarily inreasing the omplexity of the analysis.

The question of how to justify optimising transformations is learly important and may

provide a bridge between stati analysis and more theoretial work onerning languages

with re�ned type systems, whih enfore ertain behavioral onstraints. This work is

essentially dual to stati analysis and often has strong semanti or proof-theoreti founda-

tions. Analysis-based optimisations may be expressed via translations into suh a re�ned

language, and it seems natural to design the analysis after the type system of the target

language, giving a primary role to logial or proof-theoreti ideas.

Situations 1 and 2 above an be improved by more ollaboration. A good example

of where this might be pro�table is urrent researh into the semantis of loal variables

[7℄; this seems losely related to the problems of sope and aliasing whih arise in stati

analysis of dynami reation of storage regions [8℄ and ommuniation hannels [6℄. This

is also an example of the situation mentioned in 4 and 5: many of the `triky' program

equivalenes arising from loal names and higher-order funtions orrespond to plausible

optimisations, yet they are only validated by fairly omplex semantis. Analyses and

semantis should develop together.

Referenes

[1℄ P. N. Benton. Stritness logi and polymorphi invariane. In Proeedings of the Seond

Symposium on Logial Foundations of Computer Siene, Tver. Springer-Verlag LNCS

620. July 1992.

[2℄ G. L. Burn, C. L. Hankin and S. Abramsky. The theory and pratie of stritness

analysis for higher-order funtions. Siene of Computer Programming 7. 1986.

[3℄ P. Cousot and R. Cousot. Abstrat Interpretation Frameworks. Journal of Logi and

Computation 4(2) 1992.

[4℄ J. Launhbury. Projetion fatorisations in partial evaluation. Distinguished Disserta-

tions in Computer Siene Vol. 1. Cambridge University Press 1991.

[5℄ E. Moggi. Notions of Computation and Monads. Information and Computation 93(1)

1991.

[6℄ F. Nielson and H. R. Nielson. From CML to its Proess Algebra. To appear in Theo-

retial Computer Siene, North-Holland.

[7℄ I. D. B. Stark, Categorial Models for Loal Names. Lisp and Symboli Computation

9(1) 1996.

[8℄ M. Tofte and J.-P. Talpin. Implementation of the typed all-by-value �-alulus using

a stak of regions. Proeedings of the 21st ACM Symposium on Priniples of Program-

ming Languages. ACM Press. January 1994.

3


