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1 Introduction

Universities and industrial research laboratories around the world contain hun-

dreds of professionals who would describe themselves, or at least admit to being,

theoretical computer scientists. They certainly seem to have a lot of fun doing

whatever it is that they do, but those who regard `theoretical' as the antonym

of `practical' sometimes ask whether any of it is of interest to a broader com-

munity, or more narrowly, whether it has any industrial relevance. In this essay

I will attempt to argue (rather unsurprisingly) that the answer to both of these

questions is `yes', and to discuss how theory and practice should interact.

The discussion is, of necessity, mostly based on the kind of theory and the

kind of practice of which I have some direct experience, so I should start by clar-

ifying what I mean by `theory'. It seems reasonable to identify as a community

those computer scientists, mathematicians and logicians who do research in or

around the areas of logic and type theory, semantics of programming languages,

functional programming, concurrency theory, automated reasoning and logics

for reasoning about hardware and software systems. This kind of research is

sometimes called `Eurotheory' because, although its practitioners are spread all

over the world, it seems to be regarded as slightly more mainstream in Europe

than it is in North America (where `theoretical computer science' often implies

work on algorithms and complexity theory). For the present discussion, I will

use the term `theory' in its European sense.

This collection of research areas is certainly very broad, ranging from fairly

abstract category theory to the implementation of programming languages and

theorem provers. Nevertheless, the �elds do form a fairly coherent whole: they

share a lot of common concepts, techniques and tools and there are many indi-

viduals who have made signi�cant contributions to all of them.

Work in theoretical computer science tends to be mathematical (or at least

formal) in nature, to involve a close analysis of the fundamental structures

arising in computer science, to emphasize correctness, proof and reasoning prin-

ciples, to be at a high level of abstraction and to proceed by investigation of

paradigmatic foundational systems such as various �-calculi or the �-calculus.

Theory is widely accepted as a major part of computer science. It is a very

active research area, as witnessed by the large number of journals and confer-

ences devoted to it, and also accounts for much of the undergraduate curriculum
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at most leading universities. Theoretical computer science is a fascinating and

exhilarating �eld, with great cultural and intellectual value. From Turing's work

on computability through the Curry-Howard correspondence, Scott's domain

theory, Milner's CCS and Hoare's CSP to the linear logic of Girard, categorical

logic and game semantics, theoretical computer science has produced much that

is beautiful and deep. Mathematical logic has blossomed under the inuence

of computer science, which has given a new signi�cance to areas such as con-

structive logic and proof theory (which even most mathematicians would have

regarded as marginal a few decades ago). The `big questions' of theory { What

is the relationship between the declarative and the procedural? How should we

describe, structure and reason about complex interacting systems? { have an

importance which transcends their origins in particular engineering problems.

The notions of information and computation are, along with relativity, quantum

mechanics, evolution and genetics, amongst the de�ning scienti�c ideas of our

times.

In spite of this heady subject matter, theoretical computer science is not

a branch of philosophy, nor even of pure mathematics. The thing that keeps

theoretical computer science focussed, vital and (let us not forget) comparatively

well-funded, is its relation to computing practice.

The inuence of practice on theory is not hard to see. The great pace of

innovation in the computer industry provides a continual stream of new ideas

and problems for theoreticians to investigate and a large collection of concrete

examples against which abstract theories can be tested. But the tra�c is sup-

posed to be two-way { theoretical research is claimed to have application to

the design of new languages, systems and methodologies, to the speci�cation

and veri�cation of computer systems, and to the analysis and synthesis of both

software and hardware. In this respect the situation appears less satisfactory:

most of the computing industry seems to work and innovate quite successfully,

hardly ever worrying at all about the issues which are the daily concern of the-

oreticians. Of course, there are examples of successful applications of ideas and

results originating in the theory community, some of which are discussed below,

but few would argue that these are typical of mainstream industrial practice.

Is this true; if so, is it a problem and should we care? Amongst the positions

one could take are four that could be caricatured as:

Arrogant ivory tower: \Who cares? Let's just get on with doing intellectu-

ally satisfying abstract work. If we can get funded for it because somebody

thinks there might be industrial applications then that's �ne, but it's not

our problem."

Re�ned ivory tower: \It's inevitable that basic scienti�c work is often a very

long way from many of the applications for which it, in theory, provides

foundations. Theory and practice are, after all, di�erent things and at-

tempts to manage their interaction or to force them closer together are

detrimental to both.

\If there is a certain amount of tension between the theoretical and the

applied in computer science, it's surely no greater than in many other dis-

ciplines, such as economics, chemistry or biology. We shouldn't encourage

division, but neither should we be too concerned about it.
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\In many areas, fundamental science has proved to have useful applica-

tion, and this is one major justi�cation for doing it. But the application

is often much later and may even be to a problem that could not have

been envisaged when the original research was done. Furthermore, wor-

rying about `the mainstream' is misguided { it is only to be expected

that practical applications of theory will commonly be in fairly specialised

domains.

\To make an extreme analogy, it seems unlikely that many theoretical

physicists spend much time worrying about how to get the results of their

research into the civil engineering community. This is despite the fact

that the fundamental natural laws being investigated by the physicists

`explain', say, the properties of materials of interest to somebody designing

a bridge. The gap between the levels of description is so vast that that

kind of theory is of no use in solving the problems arising in that kind of

application. Indeed, in this case the gap is so large that it is inhabited by

at least two other disciplines { chemistry and materials science { each with

their own distinct kind of theory appropriate to their particular levels of

abstraction.

\So whilst we should keep an eye out for the odd application which is

clearly close to the theory, the main thing is just to do good science,

con�dent that some of it will prove to be of practical bene�t eventually."

Unappreciated genius: \Most computer programs are ugly messes, designed

in an unprincipled way and implemented using stone-age languages by ill-

educated hackers. Of course nothing ever works properly. If they'd just

use formal logic x and programming language y, then everything would

be �ne. But they never listen."

Hard-nosed real-worlder: \Computing is a practical engineering discipline,

not a branch of mathematics. Most theory is just a sign of `physics envy',

and contributes nothing to the solution of the problems of building real

computer systems. All the foundations we need, such as automata theory

and computability, have been well understood for decades. Insofar as

there is scope for further theoretical research, it should be driven by the

immediate needs of engineers and industrialists." (By contrast with the

others, this is a view more likely to be held by a non-theorist, but it is

also consistent with being an unusually cynical ivory-tower dweller, or a

disillusioned former unappreciated genius.)

In this article I will attempt to argue for a more exible attitude, which tries

to combine a con�dence in the relevance and importance of abstract foundational

research with a willingness to tackle practical problems.

2 The applicability of theory

In computing, the real conceptual distance between the most abstract theory

and the screen-face of practical development work is far smaller than in the

physical sciences and engineering, �rstly because computing is still a fairly young

subject and secondly because writing code or designing hardware is inherently

a highly abstract activity compared with most engineering tasks. The `real
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worlder' sees the gap as large and unbridgable (or, worse, not worth bridging),

and I believe that he is entirely wrong. The `re�ned ivory tower-dweller' also

sees the gap as large and has no personal interest in trying to cross it; instead,

she imagines communication between the two sides being achieved by `Chinese

whispers' passing along a chain of people ranging from the most applied on one

side to the most theoretical on the other. But the whole point of the game of

Chinese whispers is that it is an unreliable means of communication, and poor

communication is a large part of the gap which many see between theory and

practice in computing. It is far better for individuals to work on both sides

whilst that is still feasible; that way we may prevent the gap becoming a gulf.

The `arrogant ivory tower-dweller' simply risks missing out, not only on po-

tentially exciting and satisfying application-related work, but also on a whole

range of new perspectives and intuitions which applications can bring to theo-

retical work.

Foundational research in computer science has much more to o�er comput-

ing practice than is often realised, although the explicit contribution will only

occasionally be in the form of an elegant collection of independently-developed

de�nitions and theorems. It is easy to think that, because theoretical research

often involves precise, even pedantic, analysis of computational structures (e.g.

in deriving sound principles for proving the correctness of programs), it is only of

bene�t in application areas where such complex and expensive formal reasoning

is both feasible and justi�able. This seems to me to be mistaken.

It is certainly true that theory-based formal methods have had a signi�cant

e�ect on practice in areas such as safety-critical systems, security and hardware

design, in which the potential cost of bugs is extremely high. These are the

obvious, high-pro�le application areas for theory: those in which the e�ort of

developing a formal speci�cation of the problem and a proof of correctness of the

solution pays for itself in increased con�dence in the resulting system. Theory's

potential for continued contribution to this sort of work is clear: �rstly because

the demand for provably correct systems can only increase as information tech-

nology plays an ever greater part in most people's lives, and secondly because

further developments in the underlying technology of formal methods (both

foundations and tools) will make them viable in a wider range of applications.

Without wishing in any way to minimise the importance of formal methods,

however, it should be emphasised that much of the mutually bene�cial inter-

action between theory and practice actually takes place via a more informal

exchange of concepts, idioms and folklore. This is supplemented by occasional

nuggets of more rigorously developed theory being applied to relatively small

components of larger systems, and by increased use of languages and tools whose

design has been inuenced by theoretical work (of which the users are typically

unaware). This might sound alarmingly vague and woolly, particularly to a

formally-inclined theorist, but it is a much more realistic view than that of our

`unappreciated genius' and provides a much wider range of opportunities for

theory to inuence practice. It seems improbable that there is a grand uni�ed

theory of programming which could solve all the problems of software devel-

opment, but theorists have already developed a large collection of ideas and

ways of thinking which can be usefully applied, albeit sometimes in a slightly

`impure' form, to solving practical problems today. Encouragingly, the last few

years have seen a noticable increase both in real applications of ideas originating

in the theory community, and in the development of new theories for speci�c
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contemporary problem areas. For example:

Year 2000: AnnoDomini is a commercial source-to-source analysis and trans-

formation tool for solving Year 2000 problems in Cobol programs [16]. It

is written in Standard ML and uses a novel type inference system both to

detect potential Year 2000 bugs and to control program transformations.

The underlying type theory, whilst non-trivial and speci�c to the problem,

is based on ideas of type inference, polymorphism and subtyping, which

have been developed by the theory community over the last twenty years

to the point where they are now fairly standard.

Java: The success of the Java programming language [4] has motivated much

recent theoretical work. Java has increased general interest in program-

ming languages and popularised many features which were hitherto mostly

con�ned to non-mainstream languages popular with theoreticians (e.g.

type-safety and automatic storage management). A feature of Java that

is of particular interest to theoreticians is its use of bytecode veri�cation:

untrusted code is automatically analysed before being executed to prove

that certain security invariants will not be violated. Java's type system,

security model and veri�er have been extensively formalised and investi-

gated (e.g. [14, 42]), leading to the discovery of bugs (e.g. [13, 20]) and

the proposal of numerous improvements and extensions (e.g. [8, 1]). It

is pleasing to observe �rstly that existing logical, type theoretic, semantic

and theorem-proving techniques have proved e�ective in studying the new

language, and secondly that interesting new research directions have been

suggested by the experience.

Whilst a committee of academic language theorists might well have come

up with a slightly di�erent design for Java (it would certainly have included

parametric polymorphism, for example), what is undeniable is that the

current language draws heavily on ideas which were `in the air' because of

more theoretical research work. (So much so that it has been suggested

that Java's popularity is such that advocates of functional programming

should now simply declare victory!)

Ambients: Java is but one example of a much wider trend towards network-

oriented computing. Specifying and enforcing security policies in an en-

vironment in which both code and machines may be mobile is extremely

challenging { this is an area in which there is a clear industrial need for

new ideas. Cardelli and Gordon's ambient calculus [9, 10] is an expres-

sive formal system designed speci�cally to model issues of mobility and

access control. Although the calculus is novel, and is intended to address

new, practical questions associated with �rewalls, applets and so on, it

is founded in a great body of previous work from the theory community,

such as the �-calculus, operational semantics, various forms of bisimula-

tion, modal logic and type theory.

Functional programming: Functional programming languages have for decades

been both objects of study for theoreticians and a favourite tool for im-

plementing `theoretically-motivated' applications such as theorem provers

and optimising compilers. Compared with the huge number of program-

mers who use C, C++ or Cobol, of course, it is still almost true to say
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that `no one uses functional languages' [47], but functional languages are

becoming both more usable and more widely used.

The most commonly-cited example of the industrial use of functional pro-

gramming is undoubtedly Ericsson's language Erlang [3]. The achieve-

ments of the Erlang team are extremely impressive: they have designed

and implemented their own concurrent functional language, tools and li-

braries which are used by hundreds of programmers to develop very large

telecommunications applications which are widely deployed in real prod-

ucts. Along the way they have gathered real evidence for the bene�ts

of functional programming and overcome many technical (and at least as

many non-technical) obstacles.

Interestingly, the earliest versions of Erlang lacked most of the features

that an academic, semantically-minded functional programmer might con-

sider essential: static typing, higher-order functions, referential trans-

parency and fast compiled code. But Erlang did have many other other

features which were crucial for its success: concurrency, distribution, dy-

namic code loading, interoperability, good tools, training and support.

Other functional language implementations are also maturing into useful

tools. For many years, compiler technology was a major focus of functional

programming research because poor performance was considered the main

obstacle to the wider use of functional languages. This research paid o� {

modern compilers for functional languages produce code with performance

that is usually within a modest factor of that of code compiled from C {

but languages like Erlang, Java, Perl and Visual Basic have shown that

speed is not always necessary for a new language to be successful, and is

certainly not su�cient. The emphasis has now shifted to making func-

tional languages more usable and demonstrating their usefulness. Func-

tional languages now interoperate with other systems using COM [19, 32],

CORBA [26] and Java [5]. They have solid, useful libraries [2] and often

extend the functional paradigm with concurrency [37, 28, 40, 22].

Functional languages are now being used for more than writing compil-

ers for functional languages. The Fox project at Carnegie-Mellon has

produced low-level networking software written in SML [7], the Ensem-

ble project at Cornell has used Objective Caml to implement a toolkit

for building distributed applications [25] and Elliott and Hudak have de-

veloped a very elegant and powerful language, embedded in Haskell, for

programming reactive 3D animations [18], and the same ideas are now

being applied to controlling mobile robots [38]. There are many other,

though still far too few, examples [46].

In areas like these powerful ideas originating in the theory community have

proven applicable to practical problems. This has always been true; when se-

manticists �rst tried to model languages with jumps, they invented continua-

tions { a powerful generalisation of jumps. Continuations have since become

a language feature, for example in Scheme and SML/NJ. But whatever the

language, a programmer who learns about continuations gains a useful new

conceptual skeleton or pattern for thinking about programs. Nice applications

of the shift in perspective that continuations give include Halls's use of continua-

tion passing to restructure CGI-based web scripts [23] and Appel and Tolmach's
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`time travel' debugger for SML [44].

Semanticists have a strong aesthetic sense which favours simplicity, elegance,

generality and provable correctness. This ideal is seldom achieved in applica-

tions, so when doing applicable theory there often seems to be a choice between

either being `pure' and prescriptive or being `impure' and descriptive.

1

This

tension between purity and pragmatism is particularly clear in the evolution of

functional languages. The designers and implementers of functional languages

have tended also to be experts in semantics and type theory, and have been

keen to produce languages which are not only e�cient and highly expressive,

but also have good theoretical properties, such as type soundness and a rich

equational theory. Strict languages like ML are usually thought of as being

`impure', allowing traditional imperative programming with mutable state and

IO to be mixed freely with functional computation, though at the cost of weak-

ening the equational theory. Lazy functional programmers, by contrast, regard

reasoning principles as sacrosanct and have only allowed imperative features

into languages like Haskell as research has shown how they may be added with-

out compromising existing equations. This gave rise a very pleasing example

of the way in which apparently abstract theory can inuence practice: Moggi's

original work on using categorical strong monads to structure denotational se-

mantics [34] quickly became �rst a programming style [45] and then a language

feature [31] and an implementation technique [5]. The tension between purity

and pragmatism is a very creative one. From one side, we discover good ways

to add impure features to a pure system and from the other we devise new the-

ories to bring impure systems within the scope of our reasoning abilities. Real

progress is made when the two approaches converge on a common solution.

Even in the case of `pure' functional languages, however, the true relation-

ship between formal theoretical foundations and real implementations is itself

actually quite informal. Sometimes this is `just' a matter of scale: a di�cult

theorem which establishes the soundness of a new language construct or opti-

misation is often proved only for a much-simpli�ed �-calculus, but in such a

way that most experts are con�dent that a correctness proof for the full lan-

guage would work if only one could be bothered with all the details. At other

times, the practitioner's reach really does exceed the semanticist's grasp. For

example, the safe encapsulation of non-interfering state threads in Haskell [29]

is based on non-trivial theoretical results about parametricity but, whilst there

is no reason to believe it to be unsound, we do not yet quite have the theoreti-

cal machinery to establish its formal correctness for the full language including

mixed-variance recursive types. Of course, this is perfectly natural situation of

the sort which leads to further progress; the point is merely that often what is

actually transferred between theory and implementations, even in area where

the two are especially close, is ideas rather than theorems.

All of which might prompt our `real worlder' to ask:

If theory inuences practice by the transfer of these mysterious and

informal `patterns', then what's the point of doing all the di�cult

formal mathematics? Isn't this a bit like trying to justify the space

programme on the basis that it led to non-stick frying pans? Surely

1

As an unappreciated genius, quoting Shaw, might put it: \The reasonable man adapts

himself to the world; the unreasonable one persists in trying to adapt the world to himself.

Therefore, all progress depends upon the unreasonable man."
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we could invent these patterns just by thinking informally about

programming?

This is wrong for two reasons. Firstly, computing really is a di�cult and unfor-

giving discipline and there are some things which it is important to get right.

Perhaps not all programmers need a deep understanding of the mathematical

foundations of programming, but programming language designers, for exam-

ple, certainly should not just trust to `common sense', as experience shows that

often leads to mistakes (e.g. the unsoundness of the Ei�el type system [11]).

The second, and most important, reason is that informal thinking just doesn't

scale. One can build high by putting a small, ramshackle structure on top of a

tall, solid one, but one cannot build a tall structure which is ramshackle all the

way up.

We wouldn't even have the language to think about the way encapsulated

state is dealt with in Haskell if it weren't for a great deal deal of background

theory concerning program equivalences, polymorphism, parametricity, repre-

sentation independence, logical relations and monads. And that work had to

be formal because that's the only way we can build such complex towers of

ideas which actually work. There are many other examples of clearly applicable

ideas which would be inconcievable, or at least unimplementable, without the

language and techniques developed by the theory community:

Partial evaluation: Partial evaluation is the process of automatically special-

izing general purpose programs to take advantage of partial knowledge of

their inputs [27, 12]. This is a powerful technique which has been suc-

cessfully applied to produce compilers from interpreters and to speed up

applications ranging from aircraft crew planning to ray tracing and pattern

matching. The basic idea comes from classical recursion theory { Kleene's

s-m-n theorem { and modern partial evaluators also exploit more recent

developments in, for example, type theory.

Proof-carrying code: One promising approach to the problems of mobile-

code security is to transmit not merely executable code, but also a formal

proof that the code will adhere to a particular security or resource usage

policy [35, 36]. This proof can typically be checked by the receiver far

more e�ciently than it could be synthesized. Proof carrying code research

depends crucially on many ideas from logic, theorem proving, type theory

and programming language semantics.

Region-based memory management: The software engineering bene�ts of

automatic storage management are now widely recognised, but a radical

alternative to traditional runtime garbage collection has recently emerged

from the theory community. Region-based memory management [43] uses

a sophisticated non-standard type inference system to analyse object life-

times and insert memory allocation and deallocation code statically, at

compile time. A version of this system is built into the current version of

the ML Kit compiler and shows dramatic performance gains over tradi-

tional garbage collection for some programs.

Domain theory and real arithmetic: Classical domain theory has been suc-

cesfully applied to the semantics of programming languages since the

1970s. A new kind of domain theory, leading to novel computational
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techniques in continuous spaces (such as the reals) has recently emerged

from a combination of ideas from theoretical computer science with more

traditional analysis, topology and measure theory. New algorithms for in-

tegration and for in�nite-precision real number computation are amongst

its results [15].

It should also be emphasized that not only does theory need to be done in

a formal way (even if it ends up being less formally applied), but the formal

work has its own quite distinct driving forces. Ideas in the formal world are

often developed, re�ned, generalised with little thought being given to appli-

cations. The truly marvellous thing is that the new ideas which result do so

often prove applicable. In the context of the physical sciences, the mysterious

fact that mathematical reasoning actually works for deriving new true facts

about the natural world is often referred to as `the unreasonable e�ectiveness of

mathematics' after a famous paper by Wigner [48, 24]. As information process-

ing systems are human constructions, it is perhaps slightly less mysterious that

mathematics is e�ective for reasoning about them (Milner [33], discussing the

development and applicability of semantic idea in computing, characterizes com-

puter science as a `science of the arti�cial' [41]). Nevertheless, it is striking how

often ideas in computing can be discovered (or sometimes rediscovered) through

purely mathematical or logical research. A typical small example is Bierman

and de Paiva's term calculus for an intuitionistic version of the modal logic S4

[6], which was derived by categorical and proof-theoretic means { specialising

some earlier work on linear logic { and was later discovered to be applicable to

staged computation, a close relative of partial evaluation [39].

3 The State of the Art

So far, I have mainly discussed the applicability of logic and semantics research.

We should also consider the current state of the art in the wider community.

Does industry actually have a need for any of these theory-derived ideas, and,

if so, does it know it needs them?

The need is, I think, beyond doubt. The are some small niches, such as pro-

gramming toasters or maintaining legacy Cobol programs, where the pressure

to adopt new programming techniques is small.

2

And there are some sectors,

such as microprocessor design, which are already making good use of theory.

But for much of the software industry, the revolutions of the last two decades {

the introduction of graphical user interfaces, the spread of computers to desk-

tops and homes and the emergence of network computing { have led to chaos

(albeit a chaos whose e�ects are masked by staggering economic growth and an

exponential increase in computer power). Instead of the stable towers of pre-

cisely interlocking ideas to which I idealistically referred earlier, we have built

intellectual shanty towns; quick to construct and displaying much ingenuity, to

be sure, but you wouldn't want to work there.

Monolithic, sequential applications running on static and isolated computers

are giving way to concurrent, distributed, and even mobile, software components

2

Actually, even that is untrue: toasters will soon be networked `smart appliances', and

both microcontrollers and legacy Cobol su�er from Y2K problems which, as we've seen, can

usefully be addressed by type theory.
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running on a dynamic global network of hetrogenous computing devices. The

people who once wrote green-screen database applications are now being asked

to write `fault-tolerant, secure, web-enabled agent-based enterprise workow

solutions' and they need all the help they can get. Software is now built using

many di�erent languages and technologies all mixed together: C,C++ and now

Java are supplemented by complex GUI APIs, DLLs, component frameworks like

COM and CORBA, HTML, DHTML, CSS, XML, scripting languages like Perl,

Python and Tcl, browser plugin APIs, server extension frameworks, application

servers, query languages like SQL and special-purpose speci�cation languages

like ASN.1. Ad hoc metaprogramming is common and the universal datatype

has become the string.

3

In the 1980s, many programmers started spending

more time on GUI programming than on application logic; now they are likely

to spend most of their time �ghting their middleware.

Vast resources have been devoted to solving the problem of making it easier

to produce and maintain increasing amounts of increasingly complex software.

There are now graphical development environments that produce user interface

code automatically, sophisticated source-level debuggers and analysis tools for

tracking down memory leaks and deadlocks. We also had a range of program-

ming fashions, including object-oriented programming, object-oriented design

and modelling methodologies (including much which seems to be the IT equiv-

alent of psychobabble), design patterns, component-oriented programming and

agent architectures.

It is sometimes suggested that industry is resistant to change, but the speed

with which each of these new ideas has been embraced as the new `silver bullet'

suggests otherwise. Unfortunately, non-trivial software is not obviously becom-

ing more reliable or cheaper to produce or maintain as a result. A signi�cant

part of the explanation for this is certainly that expectations have increased,

but I also believe that few of the proposed solutions even begin to address the

fundamental complexity of thinking about computational structure. As Milner

[33] puts it, software engineers often erroneously view software as a hydraulic

engineer might view water: homogeneous and well-understood, with the main

problem being how to deliver it e�ciently to the right place.

The unsatisfactory state of software development is not a consequence of

widespread stupidity in the industry. On the contrary, the fact that software

systems of hundreds of thousands of lines of C can be made to work at all is

a marvellous demonstration of human intelligence and ingenuity. Furthermore,

there are usually perfectly reasonable explanations for things being done the

way they are, including a shortage of trained sta�, the need for well-supported

tools and the fact that computer systems are typically developed under great

time pressure, so that the local optimum is always to stick with concepts and

technologies with which one is already familiar.

One interesting recent development, which shows industrial recognition of

the need for powerful and, above all, reusable ideas is the rise of the `design

patterns' movement [21]. Design patterns are attempts to identify and classify

useful programming structures at a slightly higher level than code in a particular

programming language. A theoretician who looks at patterns like `command',

`action', `iterator', `visitor' or `interpreter' will see clumsy expressions of familiar

3

No language theorist who has seen Embedded SQL could doubt that there is useful work

to be done, and I have seen complex datastructures made persistent by shoehorning them into

relational database tables: if all you have is a hammer, everything looks like a nail.
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ideas such as higher-order functions, continuations and homomorphisms. Here,

theorists seem to have produced the ideas which practitioners want, but to have

failed to communicate them.

4 Ways Forward

So how can theory go about inuencing practice more e�ectively? There is a

competitive marketplace for ideas in computing and I believe the theory com-

munity bene�ts from devoting a certain amount of its energy to capturing what

marketing people call `mindshare'.

As well as doing big, impressive things like formal veri�cation of safety-

critical systems, it is important to popularize all the little ideas which are taken

for granted in the theory community. These include continuations, invariants,

higher-order functions, thinking with types, languages for concurrency, the very

idea of program equivalences, equational reasoning, polymorphism, initial alge-

bras and induction. These are, of course, largely things which undergraduates

are supposed to learn in university computer science courses, but my own ex-

perience is that even good students often fail to see a connection between these

apparently esoteric subjects and the everyday practice of programming. So a

better integration of theory courses within university curricula is desirable. To

achieve that, and to reach a wider audience of practising professionals, theorists

need to spread their ideas by example.

Useful examples do not have to be explicitly presented as applications of

theory. Simply solving a practical problem in a `theory-aware' style is often more

e�ective. A case in point is Elliott's work, referred to above, on programming

reactive animations in Haskell. Elliott's approach is based on a great deal

of knowledge of type theory and functional programming, but is immediately

appealing to programmers who know little of either. Another aspect of Elliott's

work which makes it an exemplar of how good ideas should be spread is that it

has also been written up in a publication which is actually read by practising

programmers [17], rather than being con�ned to the academic literature.

Useful examples also do not have to o�er a perfect solution to every aspect of

a problem. The scienti�c culture of rigorous review and academic honesty

4

can

make researchers reluctant to proclaim their ideas as perfect solutions when they

know perfectly well that this is not the case. Unfortunately, these ideas compete

with weaker ones that are hyped with no such reservations. I am certainly not

advocating dishonesty and hype in research, merely observing that ideas that

might seem slightly inelegant or that are imperfectly understood can still be

usefully applied.

There are many areas in which theoreticians can �nd ways to apply their

work, and recent industrial developments have created plenty of exciting new

opportunities. For example:

Security Logic and semantics researchers have always been concerned with

correctness but have found it hard to convince most of the rest of the

world that producing programs which provably meet their speci�cations

is either possible or worth the e�ort. The spread of local and global

networks has, however, made security a major concern and this seems to

4

A somewhat idealized view, of course...
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be an area in which formal techniques can gain widespread acceptance.

I have already mentioned the Java veri�er, ambients and proof-carrying

code and there are many other examples of new and existing theory being

applied to security problems. There is undoubtedly plenty of scope for

further applied work in this �eld.

Concurrency, Distribution and Mobility These three related ideas are not

new, but have gained a new importance. A few years ago, concurrent and

parallel programming was fairly esoteric, distributed applications were

mainly written by systems researchers and both mobile code and mo-

bile computers were practically unknown. Now they are all widespread.

Such systems are far harder to design, implement and test than tradi-

tional single-threaded applications, which o�ers an opportunity for new

programming paradigms to gain acceptance. Theoreticians have been

studying concurrency for many years and have developed a signi�cant

body of knowledge and a number of tools (e.g. model checkers) which

have been successfully applied to real applications, such as verifying net-

work protocols. Distribution and mobility have received similar attention

more recently.

From an intellectual point of view, concurrency has always been one of

the main strands of theoretical research and, along with ideas from other

areas of logic, semantics and type theory, it is a large part of what Milner,

Abramsky and others have identi�ed as an emerging `science of interac-

tion' [33]. Where this will lead in the long term is impossible to say, but

what is certain is that in the short term more ad hoc approaches to the

same essential problems will proliferate. Continuing to develop and apply

theory-based tools and languages for concurrent, distributed and mobile

applications is thus useful today and helps ensure that solutions developed

tomorrow have a chance of being recognised as such.

Domain-speci�c languages Although large applications are mainly written

in a relatively small number of languages, there is an ever-growing Babel

of `little languages' for more speci�c tasks: music, typesetting, graphics,

web scripting, de�ning component interfaces, �ltering network packets,

querying databases, describing hardware and so on. These can provide an

excellent vehicle for testing and spreading new ideas about programming,

language design and optimization because they are simpler to implement

and far easier to gain acceptance for than new general-purpose languages.

This is emphatically not a suggestion that theoretical research should be

largely directed towards the solution of immediate engineering problems, or

that semanticists should all give up proving theorems for a few years in favour

of writing applications. Even if one is only interested in industrial e�ciency, I

hope I have indicated how truly basic theoretical research can make a signi�cant

contribution. That potential will remain largely unrealised whilst theoreticians

and practitioners speak apparently di�erent languages. The right way to bridge

the gap is for theoreticians to spend some time demonstrating the utility of

their approach to computer science and I hope I have also shown how many of

them are succesfully doing just that.
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5 Obstacles

The preceeding discussion could fairly be characterized as `motherhood and ap-

ple pie' { nobody would really argue that basic scienti�c research with demon-

strable application to practical problems is anything other than A Good Thing.

But succesfully transferring theoretical ideas into more applied research is cer-

tainly not easy, and getting them into industry is very hard indeed. Amongst

the obstacles are:

1. Nobody got �red for choosing C++. Many computing projects fail, and if

everything is done in a conventional way then this is regarded as normal.

If, however, some new technology has been employed and the project fails,

then that technology will be blamed and the person who decided to adopt

it punished.

2. It's got to be done by next week. Commercial software is typically devel-

oped to very tight deadlines, so there is insu�cient time for a contempla-

tive theoretician to break into the development cycle, analyse a problem

and o�er a good solution { the �rst thing that seemed to work will be set

in stone by then. One way around this is to have the answer ready before

the question is asked.

3. Suspicion of `clever-clever' solutions. By and large, industry is interested

in solutions to immediate problems, not in beautiful ideas. So it's impor-

tant to present things in the right way. (\Well, I've designed this new

programming language," is, unfortunately, nearly always a bad way to

start.) It is also dangerous for an idea to look too good to be true, too

unconventional or frighteningly sophisticated.

4. Immature tools, support and documentation. Software that is produced

by researchers as a proof-of-concept is, unsurprisingly, usually unsuitable

for use in real applications. It is often buggy, has a poor user-interface,

fails to interoperate with other systems, lacks essential features and is

unsupported and badly documented. The fact that it is probably free

does not make up for these shortcomings. The way around this problem is

either to try to convince a company to develop and support a commercial

version, or for the research group to undertake a more serious long-term

development and support role. There are successful examples of both

approaches, but the latter carries a particular risk:

5. Damage to a research career. Developing and supporting a signi�cant

piece of software is not seen as `real research', so those who choose to do

so run the risk of damaging their publication record. Peyton Jones [30]

argues (and indeed demonstrates) that the long-term development of se-

rious research platforms, rather than throwaway prototypes, can lead to

important new research being done, and should be more widely encour-

aged.

6. How will that help my CV? Individual programmers moving from job to

job like to have CVs �lled with widely-recognized standard skills, so can

be reluctant to use new techniques even when they believe them to be

useful.
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7. Manager power. Decisions about what technology should be used on a

commercial project are taken by managers (who often don't have to use it

themselves). The perceived power of a manager is measured by, amongst

other things, the size of the team working under her. Hence she has little

incentive to adopt technology which will enable the job to be done with a

smaller team.

5

8. It is not enough to succeed, others must fail. One of the lessons learnt by

the Erlang team is that it is often not su�cient to propose a demonstrably

good solution to a problem using new ideas. Natural conservatism means

that a more traditional approach will still be chosen. Instead, one has to

wait for the traditional approach to actually fail, and then `save the day'

at the last moment.

Some of these problems are illustrated by a personal anecdote. Audrey Tan

and I were once asked to design a visual tool for writing a certain kind of query on

event streams from a web server. We did everything I have advocated: drawing

on ideas from dataow, proof nets and functional programming (but keeping

that quiet), we designed and implemented a simple and elegant graphical query

language based on a small family of list processing cominators. The system

was written in SML and Java, had a neat graphical user interface and did the

job beautifully. At �rst we were asked a lot of questions about how particular

queries could be expressed in our system, and we dealt with all those. Then

the question of performance was raised, so we demonstrated that it ran quite

fast enough and that we could make it go considerably faster in future if that

ever became necessary. Next it was suggested that it wouldn't integrate with

the rest of the system, so we built a live demo linking our prototype into a real

web server. Then doubts were expressed about the use of SML, particularly

regarding maintainability. This was much harder to deal with, even though

the company had a number of programmers who knew SML. But there was no

reason, apart from taste, why the prototype couldn't be reimplemented entirely

in Java. Ultimately, none of this was enough to overcome the fear that our

solution was overengineered, too unusual and came with too much mysterious

complexity hidden somewhere beneath its friendly interface. Our approach was

dropped in favour of a simple set of hardwired queries with which the developers

felt more comfortable.

I do not have neat ways around all these obstacles. Successful pattern trans-

fer takes good ideas, perseverance and a good deal of luck. But each success

makes the next one easier to achieve.

6 Conclusions

Basis research in theoretical computer science can make a great contribution to

computing practice. But that will only happen if theory ceases to be viewed as

something abstruse and irrelevant and is instead recognized as the natural result

of thinking about computation using a methodology which has proved itself

spectacularly e�ective across engineering and the physical sciences. Experience

shows that even quite simple bits of theory can be usefully applied, and this can

5

I owe this lovely example, like several of the others, to a great talk by Joe Armstrong of

Ericsson.
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be just as e�ective in terms of gaining wider acceptance of theoretical ideas as

more ambitious formal projects.

I have said very little about concurrency, theorem proving or hardware de-

sign, despite these having some of the best examples of a healthy interaction

between theory and practice. This is simply because I don't know nearly enough

about them. I have also not discussed the use of semantic ideas in optimizing

compilation, although that is one of my interests and another major way in

which theoretical results can make a direct contribution to practice. However,

in the context of popularizing theory, the internals of compilers for functional

languages probably count as a bit too introspective.

Despite all the potential obstacles, doing some application work can also

be highly enjoyable and lead to new perspectives on research issues.

6

And

theoreticians should not worry too much about spending some time on things

which don't seem to be `proper' research { any successful application work

will be seized on with delight by the rest of the theory community as further

justi�cation for their own work.
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