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Learning Guide

These notes and slides are designed to accompany eight lectures on type systems for Part II
of the Cambridge University Computer Science Tripos. The Part IB courses on ‘Semantics of
Programming Languages’ and ‘Foundations of Functional Programming’ are prerequisites.

The course aims to discuss some of the key ideas about the role of types in programming
languages, to introduce the mathematical formalism of type systems, and to apply it to a few
selected topics—centred mainly around the notion of polymorphism. Formal systems and
formal proof play an important role in this subject—a fact which is reflected in the nature of
the material presented here and in the kind of questions set on it in the Tripos. As well as
learning some specific facts about the ML type system and the polymorphic lambda calculus,
at the end of the course you should:

• appreciate how type systems can be used to constrain the dynamic behaviour of
programs;

• be able to use a rule-based specification of a type system to show, in simple cases, that
a given expression is, or is not typeable;

• be able to describe, in outline, a particular type inference algorithm involving para-
metric polymorphism.

The dependency between the material in these notes and the lectures will be something like:

Lecture Sections depends on
A 1 1 -
B 2–4 2–3 A
C 5 4 A & B
D 6–8 5–7 A & B

Tripos questions

Here is a list of past Tripos questions that are relevant to the current course.

Year 02 02 01 01 00 00 99 99 98 98 97 97 96 95 95 94 94 93 93 92 91 91 90 90
Paper 7 9 7 9 7 9 7 9 7 9 7 9 9 7 9 8 9 8 9 8 8 9 8 9

Question 13 6 13 6 11 13 12 13 10 13 10 13 13 12 12 13 13 11 11† 11 11 11 9 10

†N.B. watch out for a misprint in this question. In the notation of these notes, ∃α.σ should be defined
to be ∀ β (∀α (σ → β) → β).

In addition there are a few exercises at the end of most sections.

Additional reading

Section 1 (Cardelli 1997) is highly recommended. Copies of this article are available in the
booklocker of the Computer Laboratory Library.
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Sections 2–4 (Cardelli 1987) introduces the ideas behind ML polymorphism and type-
checking. One could also take a look in (Milner, Tofte, Harper, and MacQueen
1997) at the chapter defining the static semantics for the core language, although it
does not make light reading! If you want more help understanding the material in
Section 4 (Polymorphic Reference Types), try Section 1.1.2.1 (Value Polymorphism)
of the SML’97 Conversion Guide provided by the SML/NJ implementation of ML.
(See the web page for this lecture course for a URL for this document.)

Sections 5–6 Read (Girard 1989) for an account by one of its creators of the polymorphic
lambda calculus (Système F), its relation to proof theory and much else besides.

The recent graduate-level, but still very approachable, text by Pierce (2002) covers much
of the material presented in these notes (although not always in the same way). It is also a
good starting point for finding out about more advanced topics which are not on the syllabus
for this course, such as recursive types and type systems for object-oriented languages.

Note!

The material in these notes has been drawn from several different sources, including those
mentioned above and previous versions of this course by the author and by others. Any
errors are of course all my own work. Please let me know if you find typos or possible
errors: a list of corrections will be available from the course web page (follow links from
〈www.cl.cam.ac.uk/Teaching/〉). A lecture(r) appraisal form is included at the end of the
notes. Please take time to fill it in and return it. Alternatively, fill out an electronic version of
the form via the URL 〈http : //www.cl.cam.ac.uk/cgi− bin/lr/login〉.

Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk
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1 Introduction

1.1 The role of types in programming languages

Slides 1 and 2 list some reasons why types are an increasingly crucial aspect of software
systems and of programming languages in particular. In very general terms, type systems are
used to formulate properties of program phrases. However, unlike the annotation of programs
with assertions, for example, the kind of properties expressed by type systems are of a very
specific kind. Types classify expressions in a language according to their structure (e.g. “this
expression is an array of character strings”) and/or behaviour (e.g. “this function takes an
integer argument and returns a list of booleans”). Such classifications can not only help with
the structuring of programs, but also with efficiency of compilation (by allowing different
kinds of representation for different types of data).

Aspects of software systems related to types

Code reuse, e.g. via polymorphism—the ability of expressions to

be used with many different types.

Code structuring via the use of abstract datatypes (modules)

and typed interfaces between parts of large software systems.

Connections with logic. E.g. the ‘propositions-as-types’

paradigm and connection with typed formal logics used in

machine-assisted theorem proving.

Slide 1

1
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Types in programming languages

Used for two related purposes:

• preventing the occurrence of (certain kinds of) errors during

program execution;

• structuring data and programs.

Second purpose requires type expressions to occur explicitly in the

syntax of programs. First purpose can sometimes be achieved with (part

of) a language’s type system implicit, e.g. occurring as part of the

compilation process—cf. the ML family of languages.

Slide 2

Type systems used to implement checks at compile-time necessarily involve decidable
properties of program phrases, since otherwise the process of compilation is not guaranteed
to terminate. (Recall the notion of (algorithmic) decidability from the CST IB ‘Computation
Theory’ course.) For example, in a Turing-powerful language (one that can code all partial
recursive functions), it is undecidable whether an arbitrary function definition yields a totally
defined function (i.e. one that terminates on all legal arguments). So we cannot expect to have
a type system that rules out non-termination at compile-time. The more properties of program
phrases a type systems can express the better. But expressivity is constrained in theory by
this decidability requirement, and is constrained in practice by questions of computational
feasibility.

1.2 Safety via types

Type systems are the principle means to the desirable end of ‘safety’ (as defined on Slide 3).
Of course type systems may be designed to rule out some kinds of trapped error as well:
one of the main motivations in the design of type systems for object-oriented languages is to
avoid trapped errors of the “method not understood” kind. In principle, an untyped language
could be safe by virtue of performing certain checks at run-time. Since such checks generally
hamper efficiency, in practice very few untyped languages are safe. Cardelli (1997) cites LISP
as an example of an untyped, safe language, and assembly language as the quintessential
untyped, unsafe language.
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Run-time errors

Trapped errors Cause execution to halt immediately.

(E.g. jumping to an illegal address, raising a top-level

exception, etc.) Innocuous?

Untrapped errors May go unnoticed for a while and later cause

arbitrary behaviour. (E.g. accessing data past the end of an

array, security loopholes in Java abstract machines, etc.)

Insidious!

Given a precise definition of what constitutes an untrapped

run-time error, then a language is safe if all its syntactically legal

programs cannot cause such errors.

Slide 3

Although typed languages may use a combination of run- and compile-time checks to
ensure safety, they usually emphasise the latter. In other words the ideal is to have a type
system implementing algorithmically decidable checks used at compile-time to rule out all
untrapped run-time errors (and some kinds of trapped ones as well). Many languages (such
as C) employ types without any pretensions to safety. Some languages are designed to be
safe by virtue of a type system, but turn out not to be—because of unforeseen or unintended
uses of certain combinations of their features.1 We will see an example of this in Section 4,
where we consider the combination of ML polymorphism with mutable references.

Such difficulties have been a great spur to the development of the formal mathematics and
logic of type systems. The main point of this course is to introduce a little of this formalism
and illustrate its uses.

1.3 Formalising type systems

One can only prove that a language is safe after its syntax and operational semantics have
been formally specified. Standard ML (Milner, Tofte, Harper, and MacQueen 1997) is the
shining example of a full-scale language possessing a complete such specification and whose
type soundness (cf. Slide 4) has been subject to proof.2 The study of formal type systems

1Object-oriented languages seem particularly prone to this problem and it is a matter of current
research to understand why and to design round the problem.

2Standard ML is a sufficiently large language that a fully formalised proof of its type safety is surely
enormous and certainly requires machine-assistance to carry out. However, since the language design
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uses similar techniques as for structural operational semantics (cf. CST IB ‘Semantics of
Programming Languages’ course): inductive definitions generated by syntax-directed axioms
and rules. A formal type system consists of a number of axioms and rules for inductively
generating the kind of assertion, or ‘judgement’, shown on Slide 5. (Sometimes the type
system may involve several different kinds of judgement.) A judgement such as

x1 : τ1, x2 : τ2, x3 : τ3 �M : τ

is really just a notation for a formula in predicate calculus, viz.

(x1 : τ1) & (x2 : τ2) & (x3 : τ3) ⇒ (M : τ)

built up from the basic, or atomic, formulas for typing (such as x1 : τ1 and M : τ ). The
reason for adopting special notation for typing judgements is that only very restricted kinds
of predicate calculus formulas occur in a type system. (E.g. we want the atomic formulas to
the left of⇒ to only refer to identifiers, not compound expressions, and the identifiers should
all be distinct from each other.) Furthermore, the axioms and rules for generating valid typing
judgements in a given type system will only employ a small part of predicate logic. Finally,
the notation emphasises that the phrase M is the main ‘subject’ of the judgement.

Formal type systems

• Constitute the precise, mathematical characterisation of

informal type systems (such as occur in the manuals of most

typed language.)

• Basis for type soundness theorems: “any well-typed program

cannot produce run-time errors (of some specified kind)”.

• Can decouple specification of typing aspects of a language

from algorithmic concerns (via type inference algorithms).

Slide 4

was semantically-driven and had type safety very much in mind, it is possible to give convincing, if
semi-formal, proofs of type safety for large fragments of it.
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Typical type system ‘judgement’

is a typing relation of the form phrase
↓

Γ �M : τ
↑ ↑

typing environment type

whose intended meaning is: “given the assignment of types to

free identifiers of M specified by type environment Γ, then M
has type τ ”.

E.g.

f : int list → int , b : bool � (if b then f nil else 3) : int

Slide 5

A first example of a formal type system is given on Slides 6 and 7. It assigns types, τ , in
the grammar

τ ::= bool type of booleans
| τ → τ function type

to the expressions, M , of a lambda calculus in which binding occurrences of variables in
function abstractions are explicitly tagged with a type:

M ::= x variable
| true | false boolean values
| if M thenM elseM conditional
| λx : τ(M) function abstraction
| M M function application.

Note that the lambda abstraction λx : τ(M) is a variable-binding construct: free occurrences
of x in M become bound in λx : τ(M). Here, and throughout this course, we will im-
plicitly identify expressions up to renaming of bound variables, i.e. up to the equivalence
relation of alpha-conversion. Thus Γ � M : τ and Γ � M ′ : τ will be regarded as the same
judgement if M is alpha-convertible to M ′.
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A simple type system, I

Γ � x : τ if (x : τ) ∈ Γ(var)

Γ � B : bool where B ∈ {true, false}(bool)

Γ �M1 : bool Γ �M2 : τ Γ �M3 : τ

Γ � if M1 thenM2 else M3 : τ
(if)

Slide 6

A simple type system, II

Γ, x : τ1 �M : τ2

Γ � λx : τ1(M) : τ1→ τ2

if x /∈ dom(Γ)(fn)

Γ �M1 : τ1→ τ2 Γ �M2 : τ1

Γ �M1 M2 : τ2

(app)

Slide 7
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Note. If the notions of alpha-conversion and capture-avoiding substitution of expres-
sions for free variables in an expression are at all unfamiliar, please review the relevant
material in the lecture notes for the Part IB CST courses on ‘Foundations of Functional
Programming’ and/or ‘Semantics of Programming Languages’.

In this particular type system typing environments, Γ, are finite functions from variables
to types which we write concretely as comma-separated lists of (identifier : type)-pairs

x1 : τ1, x2 : τ2, . . . , xn : τn

in which the variables x1, x2, . . . , xn are all distinct. The set of these variables form the
domain (of definition of) Γ, written dom(Γ). The notation

Γ, x : τ

used on Slide 7 means the typing environment obtained by extending Γ by mapping a variable
x not in dom(Γ) to type τ . Thus

dom(Γ, x : τ) = dom(Γ) ∪ {x}.
As usual, the axiom and rules on Slides 6 and 7 are schematic: Γ, M , τ stand for any well-

formed type environment, expression and type. The axiom and rules are used to inductively
generate the typing relation—a subset of all possible triples Γ � M : τ . We say that a
particular triple Γ � M : τ is derivable (or provable, or valid) in the type system if there is
a proof of it using the axioms and rules. Thus the typing relation consists of exactly those
triples for which there is such a proof. The construction of proofs is greatly aided by the fact
that the axioms and rules are syntax-directed: if Γ � M : τ is derivable, then the outermost
form of the expression M dictates which must be the last axiom or rule used in any proof of
its derivability. For example, if ∅ denotes the empty type environment then for any types τ1,
τ2, and τ3

(1) ∅ � λx1 : τ2→ τ3(λx2 : τ1→ τ2(λx3 : τ1(x1 (x2 x3))))
: (τ2→ τ3)→ ((τ1→ τ2)→ (τ1→ τ3))

is derivable in the type system of Slides 6 and 7. (Why? Give a proof for it.) Whereas for no
types τ1, τ2, and τ3 is

(2) ∅ � λx : τ1→ τ2(x x) : τ3

derivable in the system. (Why?)

Note. If the notion of an inductive definition given by axioms and rules is at all
unfamiliar, please review the section on Induction in the lecture notes for the CST
Part IB course on ‘Semantics of Programming Languages’.

Once we have formalised a particular type system, we are in a position to prove results
about type soundness (Slide 4) and the notions of type checking, typeability and type inference
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described on Slide 8. We will see non-trivial examples of such problems in the rest of the
course, beginning with type inference for ML-polymorphism. But first let’s examine them
for the case of the simple type system on Slides 6 and 7.

Type checking, typeability, and type inference

Suppose given a type system TS, say with judgements of the

form Γ �M : τ .

Type checking problem for TS: given Γ, M , and τ , is

Γ �M : τ derivable in TS?

Typeability problem(s) for TS: given M (resp. Γ and M ), find

Γ, τ (resp. τ ) such that Γ �M : τ is derivable in TS (or show

there are none).

Second problem is usually harder than the first. Solving it usually

results in a type inference algorithm computing Γ, τ (resp. τ ) for

each M (resp. Γ,M ) (or failing, if there are none).

Slide 8

The explicit tagging of λ-bound variables with a type means that given a particular typing
environment, expressions have a unique type, if any. Because of the structural nature of
the typing rules, it is easy to devise a type inference algorithm defined by recursion on the
structure of expressions and which shows that the typeability problem is decidable in this case.
(Exercise 1.4.3.) To illustrate the notion of type soundness (Slide 4), consider a transition
system whose configurations are the closed expressions (i.e. the ones with no free variables)
together with a distinguished configuration FAIL. The terminal configurations are FAIL,
true, false, and any closed function abstraction λx : τ(M). A basic step of computation is
β-reduction

(λx : τ(M1)) M2 →M1[M2/x]

where M1[M2/x] is the notation we will use to indicate the result of substituting M2 for
all free occurrences of x in M1 (as usual, well-defined up to alpha-conversion of λ-bound
variables in M1 to avoid capture of free variables in M2). An example of a computation
failing is

trueM → FAIL.

The whole transition relation is inductively defined in Figure 1 and the type soundness result
is stated on Slide 9. We leave its proof as an exercise (see Exercises 1.4.4 and 1.4.5).
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M1 →M ′
1

M1 M2 →M ′
1 M2

M1 → FAIL

M1 M2 → FAIL

(λx : τ(M1)) M2 →M1[M2/x]

trueM → FAIL

falseM → FAIL

M1 →M ′
1

if M1 thenM2 elseM3 → if M ′
1 thenM2 elseM3

M1 → FAIL

if M1 thenM2 elseM3 → FAIL

if true thenM1 elseM2 →M1

if false thenM1 elseM2 →M2

if λx : τ(M1) thenM2 elseM3 → FAIL

Figure 1: Axioms and rules for a transition system
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A simple type soundness result

For the type system defined on Slides 6 and 7 and the transition

system in Figure 1 we have that if a closed term M is typeable

then its evaluation does not fail. In other words

if ∅ �M : τ holds for some τ , then M →∗ FAIL does

not hold.

(As usual,→∗ indicates the reflexive-transitive closure of→).

Slide 9

1.4 Exercises

These exercises refer to the type system defined on Slides 6 and 7.

Exercise 1.4.1. Give a proof of (1) from the axioms and rules.

Exercise 1.4.2. Show that there can be no proof of (2) from the axiom and rules.

Exercise 1.4.3. Show that given Γ and M , there is at most one type τ for which Γ � M : τ
is derivable. Describe a type checking algorithm which when given any Γ and M decides
whether such a τ exists. Define your algorithm as a Standard ML function on a suitable
datatype.

Exercise 1.4.4. Prove the following substitution property for the type system defined on
Slides 6 and 7: Γ �M1 : τ1 & Γ, x : τ1 �M2 : τ2 ⇒ Γ �M2[M1/x] : τ2.
[Hint: show by induction on the structure of M2 that for all Γ, M1, τ1, x /∈ dom(Γ) and τ2

that if Γ �M1 : τ1 and Γ, x : τ1 �M2 : τ2 hold, then so does Γ �M2[M1/x] : τ2.]

Exercise 1.4.5. Deduce the type soundness result stated on Slide 9 by proving:

(i) If ∅ �M : τ and M →M ′, then ∅ �M ′ : τ .

(ii) If M → FAIL, then M is not typeable.

[Hint: prove both by induction on the derivation of transitions from the axioms and rules in
Figure 1. You will need the substitution property of the previous exercise for part (i).]



2 ML Polymorphism

2.1 Varieties of polymorphism

Recall the relevance of type systems to code structuring and code reuse mentioned on Slide 1.
Static typing (Slide 10) is regarded as an important aid to building large, highly structured,
and reliable software systems. On the other hand, early forms of static typing, for example
as found in Pascal, tended to hamper code reuse. For example, a procedure for sorting lists
of one type of data could not be applied to lists of a different type of data. To try to get
the benefits of static typing for code structuring without hampering code reuse too much,
it is natural to want, for example, a polymorphic sorting procedure—one which operates
(uniformly) on lists of several different types. The potential significance for programming
languages of this phenomenon of polymorphism was first emphasised by Strachey (1967),
who identified several different varieties: see Slide 11. Here we will concentrate on
parametric polymorphism. One way to achieve it is to make the type parameterisation an
explicit part of the language syntax: we will see an example of this in Section 5. Here
we will look at the implicit version of parametric polymorphism first implemented in the
ML family of languages (and subsequently adopted elsewhere). ML phrases need contain
little explicit type information: the type inference algorithm infers a ‘most general’ type
(scheme) for each well-formed phrase, from which all the other types of the phrase can be
obtained by specialising type variables. These ideas should be familiar to you from your
previous experience of Standard ML. The point of this section is to see how one gives a
precise formalisation of a type system and its associated type inference algorithm for (a small
fragment of) ML.

Note. We use a non-standard ML syntax compared with the definition in (Milner,
Tofte, Harper, and MacQueen 1997). For example we write λx(M) for fnx =>M
and letx = M1 inM2 for let val x =M1 inM2 end. Furthermore we call the symbol ‘x’
occurring in these expressions a variable rather than a ‘(value) identifier’.

11
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Static versus dynamic typing

Dynamic typing: types of phrases are inferred during program

execution.

Static typing: types are inferred at compile time (hence typeability

problem has to be decidable).

Slide 10

Polymorphism = ‘has many types’

Overloading (or ‘ad hoc’ polymorphism): same symbol denotes

operations with unrelated implementations. (E.g. + might mean

both integer addition and string concatenation.)

Subsumption ordering τ1 <: τ2: any M1 : τ1 can be used as

M1 : τ2 without violating safety (Slide 3).

Parametric polymorphism: same expression belongs to a family of
structurally related types. (E.g. in SML, length function

fun length nil = 0
| length x :: xs = 1 + (length xs)

has type τ list → int for all types τ .)

Slide 11
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Type variables

To formalise statements like

“ length has type τ list → int , for all types τ ”

it is natural to introduce type variables (i.e. variables for which

types may be substituted), α, and write

∀α (length : α list → int).

Slide 12

Polymorphism of let-bound variables

For example in

let f = λx(x) in (f true) :: (f nil)

λx(x) has type α→ α (for all α) and the variable f to which it is

bound is used polymorphically:

- in (f true), f has type bool → bool

- in (f nil), f has type bool list → bool list

Both types are substitution instances of α→ α. Overall, the

expression has type bool list .

Slide 13
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2.2 Type schemes

As indicated on Slide 12, to formalise parametric polymorphism, we have to introduce type
variables. An interactive ML system will just display α list → int as the type of the length
function (cf. Slide 11), leaving the universal quantification over α implicit. However, when
it comes to formalising the ML type system (as is done in the definition of the Standard ML
‘static semantics’ in Milner, Tofte, Harper, and MacQueen 1997, chapter 4) it is necessary to
make this universal quantification over types explicit in some way. The reason for this has
to do with the typing of local declarations. Consider the example given on Slide 13. The
expression (f true) :: (f nil) has type bool list , given some assumption about the type of the
variable f . Two possible such assumptions are shown on Slide 14. Here we are interested in
the second possibility since it leads to a type system with very useful properties.

‘Ad hoc’ polymorphism:

(f : bool → bool) & (f : bool list → bool list)

⇒ (f true) :: (f nil) : bool list .

‘Parametric’ polymorphism:

∀α (f : α→ α)⇒ (f true) :: (f nil) : bool list .

Slide 14

The simple type system mentioned in Section 1.3 codified predicate calculus formulas of
the form

. . . & x : τ & . . .⇒M : τ ′.

To deal with parametric polymorphism and examples like that on Slide 13 we have to use
logically more complex formulas:

(3) . . . & ∀α (x : τ(α)) & . . .⇒ ∀α′ (M : τ ′(α′)).

Since Φ ⇒ ∀α′ (Ψ(α′)) is logically equivalent to ∀α′ (Φ ⇒ Ψ(α′)), instead of (3) we can
use the slightly simpler form

(4) . . . & ∀α (x : τ(α)) & . . .⇒M : τ ′(α′)
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leaving the outermost quantification over α′ implicit. The ML type system makes use
of judgements which are a compact notation for predicate calculus formulas like (4). To
emphasise that the typing relation is the prime concern, one writes ∀α (x : τ) as

x : ∀α (τ).

The expression ∀α (τ) is called a type scheme. The particular grammar of ML types and type
schemes that we will use is shown on Slide 15.

Type schemes over a collection of ML types

Types
τ ::= α type variable

| bool type of booleans

| τ → τ function type

| τ list list type

where α ranges over a fixed, countably infinite set TyVar.

Type Schemes
σ ::= ∀A (τ)

where A ranges over finite subsets of the set TyVar.

Slide 15

Note. The following points about type schemes should be noted.

(i) If the elements of A are given explicitly, say by a list of distinct type variables, A =
{α1, . . . , αn}, then we write ∀A (τ) as

∀α1, . . . , αn (τ)

In particular, if A = {α}, then ∀A (τ) is written ∀α (τ).

(ii) The case when A is empty, A = ∅, is allowed: ∀ ∅ (τ) is a well-formed type scheme. We
will often regard the sets of types as a subset of the set of type schemes by identifying
the type τ with the type scheme ∀ ∅ (τ).

(iii) Any occurrences in τ of a type variable α ∈ A become bound in ∀A (τ). Thus by definition,
the free type variables of a type scheme ∀A (τ) are all those type variables which occur
in τ , but which are not in the finite set A. (For example the set of free type variables
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of ∀α (α → α′) is {α′}.) As usual for variable-binding constructs, we are not interested
in the particular names of ∀-bound type variables (since we may have to change them to
avoid variable capture during substitution of types for free type variables). Therefore we
will identify type schemes up to alpha-conversion of ∀-bound type variables. For example,
∀α (α→ α′) and ∀α′′ (α′′ → α′) determine the same alpha-equivalence class and will be
used interchangeably. Of course the finite set

ftv(∀A (τ))

of free type variables of a type scheme is well-defined up to alpha-conversion of bound type
variables. Just as in (ii) we identified ML types τ with trivial type schemes ∀ ∅ (τ), so we
will sometimes write

ftv(τ)
for the finite set of type variables occurring in τ (of course all such occurrences are free,
because ML types do not involve binding operations).

(iv) ML type schemes are not ML types! So for example, α→∀α′ (α′) is neither a well-formed
ML type nor a well-formed ML type scheme.1 Rather, ML type schemes are families of
types, parameterised by type variables. We get types from type schemes by substituting
types for type variables, as we explain next.

Slide 16 gives some terminology and notation to do with substituting types for the bound
type variables of a type scheme. The notion of a type scheme generalising a type will feature
in the way variables are assigned types in the ML type system of the next subsection.

The ‘generalises’ relation

We say a type scheme σ = ∀α1, . . . , αn (τ) generalises a

type τ ′, and write σ � τ ′ if τ ′ can be obtained from the type τ
by simultaneously substituting some types τ i for the type

variables αi (i = 1, . . . , n):

τ ′ = τ [τ1/α1, . . . , τn/αn].

(N.B. The relation is unaffected by the particular choice of names of

bound type variables in σ.)

The converse relation is called specialisation: a type τ ′ is a

specialisation of a type scheme σ if σ � τ ′.

Slide 16

1The step of making type schemes first class types will be taken in Section 5.
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Examples 2.2.1. Some simple examples of generalisation:

∀α (α→ α) � bool → bool
∀α (α→ α) � α list → α list
∀α (α→ α) � (α→ α)→ (α→ α).

However

∀α (α→ α) � (α→ α)→ α.

This is because in a substitution τ [τ ′/α], by definition we have to replace all occurrences in
τ of the type variable α by τ ′. Thus when τ = α→ α, there is no type τ ′ for which τ [τ ′/α]
is the type (α→ α)→ α. (Simply because in the syntax tree of τ [τ ′/α] = τ ′→ τ ′, the two
subtrees below the outermost constructor ‘→’ are equal (namely to τ ′), whereas this is false
of (α→ α)→ α.)

Another example:

∀α1, α2 (α1→ α2) � α list → bool .

However

∀α1 (α1→ α2) � α list → bool

because α2 is a free type variable in the type scheme ∀α1 (α1 → α2) and so cannot be
substituted for during specialisation.

2.3 The ML type system

Slide 17 gives the form of typing judgement we will use to illustrate ML polymorphism and
type inference.
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ML typing judgement

takes the form Γ �M : τ where

• the typing environment Γ is a finite function from variables to

type schemes.

(We write Γ = {x1 : σ1, . . . , xn : σn} to indicate that Γ
has domain of definition dom(Γ) = {x1, . . . , xn} and

maps each xi to the type scheme σi for i = 1..n.)

• M is an ML expression

• τ is an ML type.

Slide 17

As well as only considering a small subset of ML types, we will restrict attention to
typings for expressions, M , generated by the following grammar:

M ::= x variable
| true | false boolean values
| if M thenM elseM conditional
| λx(M) function abstraction
| M M function application
| letx = M inM local declaration
| nil nil list
| M :: M list cons
| caseM of nil⇒M | x :: x⇒M case expression.

As usual, the free variables of λx(M) are those of M , except for x. In the expression
letx = M1 inM2, any free occurrences of the variable x in M2 become bound in the let-
expression. Similarly, in the expression caseM1 of nil⇒M2 | x1 :: x2⇒M3, any free
occurrences of the variables x1 and x2 in M3 become bound in the case-expression.

The axioms and rules inductively generating the ML typing relation for these expressions
are given on Slides 18–20.
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ML type system, I

Γ � x : τ if (x : σ) ∈ Γ and σ � τ(var �)

Γ � B : bool if B ∈ {true, false}(bool)

Γ �M1 : bool Γ �M2 : τ Γ �M3 : τ

Γ � if M1 thenM2 else M3 : τ
(if)

Slide 18

ML type system, II

Γ, x : τ1 �M : τ2

Γ � λx(M) : τ1→ τ2

if x /∈ dom(Γ)(fn)

Γ �M1 : τ1→ τ2 Γ �M2 : τ1

Γ �M1 M2 : τ2

(app)

Γ �M1 : τ1

Γ, x : ∀A (τ1) �M2 : τ2

Γ � letx = M1 inM2 : τ2

if x /∈ dom(Γ) and

A = ftv(τ1)− ftv (Γ)
(let)

Slide 19
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ML type system, III

Γ � nil : τ list(nil)

Γ �M1 : τ Γ �M2 : τ list

Γ �M1 :: M2 : τ list
(cons)

Γ �M1 : τ1 list Γ �M2 : τ2

Γ, x1 : τ1, x2 : τ1 list �M3 : τ2

Γ � caseM1 of nil⇒M2

| x1 :: x2⇒M3 : τ2

if x1, x2 /∈
dom(Γ)
and x1 �= x2

(case)

Slide 20

Notes 2.3.1.

(i) Given a type environment Γ we write Γ, x : σ to indicate a typing environment with domain
dom(Γ) ∪ {x}, mapping x to σ and otherwise mapping like Γ. When we use this notation it
will almost always be the case that x /∈ dom(Γ) (cf. rules (fn), (let) and (case)).

(ii) In rule (fn) we use Γ, x : τ1 as an abbreviation for Γ, x : ∀ ∅ (τ1). Similarly, in rule (case),
Γ, x1 : τ1, x2 : τ1 list really means Γ, x1 : ∀ ∅ (τ1), x2 : ∀ ∅ (τ1 list). (Recall that by
definition, a typing environment has to map variables to type schemes, rather than to types.)

(iii) In rule (let) the notation ftv(Γ) means the set of all type variables occurring free in
some type scheme assigned in Γ. (For example, if Γ = {x1 : σ1, . . . , xn : σn}, then
ftv(Γ) = ftv(σ1) ∪ · · · ∪ ftv(σn).) Thus the set A = ftv(τ1) − ftv(Γ) used in that rule
consists of all type variables in τ1 that do not occur freely in any type scheme assigned in
Γ. Rule (let) is the characteristic rule of the ML type system: M1 has type τ1 for any types
we care to substitute for type variables in A = ftv(τ1) − ftv(Γ), so we type M2 under the
assumption that the variable x bound to M1 has type scheme ∀A (τ1).
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Assigning type schemes

We write Γ �ML M : σ to indicate that

• σ = ∀A (τ) with A ∩ ftv (Γ) = ∅, and

• the typing judgement Γ �M : τ is derivable from the

axioms and rules on Slides 18–20.

When Γ = ∅ we just write �ML M : σ for ∅ �ML M : σ
and say that the (necessarily closed—see Exercise 2.4.2)

expression M is typeable in ML with type scheme σ.

Also, when A = ∅ we write Γ �ML M : τ for Γ �ML M : ∀ ∅ (τ).

Slide 21

We verify that the example of polymorphism of let-bound variables given on Slide 13
has the type claimed there.

Example 2.3.2. Using the notation introduced on Slide 21, we have:

�ML let f = λx(x) in (f true) :: (f nil) : bool list .

Proof. First note that �ML λx(x) : ∀α (α→ α), as witnessed by the following proof:

(5) x : α � x : α
(var �) using ∀ ∅ (α) � α

∅ � λx(x) : α→ α
(fn).

Next note that since ∀α (α→ α) � bool → bool , by (var �) we have

f : ∀α (α→ α) � f : bool → bool .

By (bool) we also have
f : ∀α (α→ α) � true : bool

and applying the rule (app) to these two judgements we get

(6) f : ∀α (α→ α) � f true : bool .
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Similarly, using (app) on (var �) and (nil), we have

(7) f : ∀α (α→ α) � f nil : bool list .

Applying rule (cons) to (6) and (7) we get

f : ∀α (α→ α) � (f true) :: (f nil) : bool list .

Finally we can apply rule (let) to this and (5) to conclude

∅ � let f = λx(x) in (f true) :: (f nil) : bool list

as required.

2.4 Exercises

Exercise 2.4.1. Here are some type checking problems, in the sense of Slide 8. Prove the
following typings:

�ML λx(x :: nil) : ∀α (α→ α list)
�ML λx(casexof nil⇒ true | x1 :: x2⇒ false) : ∀α (α list → bool)
�ML λx1(λx2(x1)) : ∀α1, α2 (α1→ (α2→ α1))
�ML let f = λx1(λx2(x1)) in f f : ∀α1, α2, α3 (α1→ (α2→ (α3→ α2))).

Exercise 2.4.2. Show that if ∅ �ML M : σ (cf. Slide 21), then M must be closed, i.e. have
no free variables. [Hint: use rule induction for the rules on Slides 18–20 to show that the
derivable ML typing judgements, Γ �M : τ , all have the property that fv(M) ⊆ dom(Γ).]



3 ML Type Inference

For the ML type system introduced in the previous section, the typeability problem (Slide 8)
is decidable. Moreover, amongst all the possible type schemes a given closed ML expression
may possess, there is a most general one—one from which all the others can be obtained
by substitution. Before launching into the general problem of ML typeability, we give some
specific examples.

3.1 Examples of type inference, by hand

Two examples involving self-application

M
def= let f = λx1(λx2(x1)) in f f

M ′ def= (λf(f f)) λx1(λx2(x1))

Are M and M ′ typeable in the ML type system?

Slide 22

Consider the expression M given on Slide 22. Exercise 2.4.1 sets a type-checking
problem involving M . But if we are not given a type scheme to check, how can we infer
one? We are aided in such a task by the syntax-directed (or ‘structural’) nature of the axioms
and rules on Slides 18–20: there is one axiom or rule for each clause of the grammar defining
ML expressions on page 18. Consequently, as we try to build a proof of a typing judgement
Γ � M : τ from the bottom up, the structure of the expression M determines the shape of
the tree together with which rules are used at its nodes and which axioms at its leaves. For
example, for the particular expression M given on Slide 22, any proof of �ML M : ∀A1 (τ1),
i.e. any proof of ∅ � M : τ1 from the axioms and rules, has to look like the tree given in
Figure 2. Node (C0) is supposed to be an instance of the (let) rule; nodes (C1) and (C2)
instances of the (fn) rule; leaves (C3), (C5), and (C6) instances of the (var �) axiom; and
node (C4) an instance of the (app) rule. For these to be valid instances the constraints (C0)–

23
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x1 : τ3, x2 : τ5 � x1 : τ6

(C3)

x1 : τ3 � λx2(x1) : τ4

(C2)

∅ � λx1(λx2(x1)) : τ2

(C1)
f : ∀A (τ2) � f : τ7

(C5)
f : ∀A (τ2) � f : τ8

(C6)

f : ∀A (τ2) � f f : τ1

(C4)

∅ � let f = λx1(λx2(x1)) in f f : τ1

(C0)

Figure 2: Proof tree for let f = λx1(λx2(x1)) in f f

(C6) listed on Slide 23 have to be satisfied.

Constraints generated while inferring a type for

let f = λx1(λx2(x1)) in f f

A = ftv (τ2)(C0)

τ2 = τ3→ τ4(C1)

τ4 = τ5→ τ6(C2)

∀ ∅ (τ3) � τ6, i.e. τ3 = τ6(C3)

τ7 = τ8→ τ1(C4)

∀A (τ2) � τ7(C5)

∀A (τ2) � τ8(C6)

Slide 23

Thus M is typeable if and only if we can find types τ1, . . . , τ8 satisfying the constraints
on Slide 23. First note that they imply

τ2
(C1)
= τ3→ τ4

(C2)
= τ3→ (τ5→ τ6)

(C3)
= τ6→ (τ5→ τ6).

So let us take τ5, τ6 to be type variables, say α2, α1 respectively. Hence by (C0), A =
ftv(τ2) = ftv(α1→ (α2→ α1)) = {α1, α2}. Then (C4), (C5) and (C6) require that

∀α1, α2 (α1→ (α2→ α1)) � τ8→ τ1 and ∀α1, α2 (α1→ (α2→ α1)) � τ8.
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In other words there have to be some types τ9, . . . , τ12 such that

τ9→ (τ10→ τ9) = τ8→ τ1(C7)

τ11→ (τ12→ τ11) = τ8.(C8)

Now (C7) can only hold if

τ9 = τ8 and τ10→ τ9 = τ1

and hence

τ1 = τ10→ τ9 = τ10→ τ8
(C8)
= τ10→ (τ11→ (τ12→ τ11)).

with τ10, τ11, τ12 otherwise unconstrained. So if we take them to be type variables α3, α4, α5

respectively, all in all, we can satisfy all the constraints on Slide 23 by defining

A = {α1, α2}
τ1 = α3→ (α4→ (α5→ α4))
τ2 = α1→ (α2→ α1)
τ3 = α1

τ4 = α2→ α1

τ5 = α2

τ6 = α1

τ7 = (α4→ (α5→ α4))→ (α3→ (α4→ (α5→ α4)))
τ8 = α4→ (α5→ α4).

With these choices, Figure 2 becomes a valid proof of

∅ � let f = λx1(λx2(x1)) in f f : α3→ (α4→ (α5→ α4))

from the typing axioms and rules on Slides 18–20. Hence according to Slide 21 we do have

(8) �ML let f = λx1(λx2(x1)) in f f : ∀α3, α4, α5 (α3→ (α4→ (α5→ α4)))

as expected from Exercise 2.4.1.
If we go through the same type inference process for the expression M ′ on Slide 22 we

generate a tree and set of constraints as in Figure 3. These imply in particular that

τ7
(C13)
= τ4

(C12)
= τ6

(C11)
= τ7→ τ5.

But there are no types τ5, τ7 satisfying τ7 = τ7→ τ5, because τ7→ τ5 contains at least one
more ‘→’ symbol than does τ7. So we conclude that (λf(f f)) λx1(λx2(x1)) is not typeable
within the ML type system.
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f : τ4 � f : τ6

(C12)
f : τ4 � f : τ7

(C13)

f : τ4 � f f : τ5

(C11)

∅ � λf(f f) : τ2

(C10)

x1 : τ8, x2 : τ10 � x1 : τ11

(C16)

x1 : τ8 � λx2(x1) : τ9

(C15)

∅ �: λx1(λx2(x1)) : τ3

(C14)

∅ � (λf(f f)) λx1(λx2(x1)) : τ1

(C9)

Constraints:

τ2 = τ3→ τ1(C9)

τ2 = τ4→ τ5(C10)

τ6 = τ7→ τ5(C11)

∀ ∅ (τ4) � τ6, i.e. τ4 = τ6(C12)

∀ ∅ (τ4) � τ7, i.e. τ4 = τ7(C13)

τ3 = τ8→ τ9(C14)

τ9 = τ10→ τ11(C15)

∀ ∅ (τ11) � τ8, i.e. τ11 = τ8(C16)

Figure 3: Proof tree and constraints for (λf(f f)) λx1(λx2(x1))



3.2 Principal type schemes 27

3.2 Principal type schemes

The type scheme ∀α3, α4, α5 (α3 → (α4 → (α5→ α4))) not only satisfies (8), it is in fact
the most general, or principal type scheme for let f = λx1(λx2(x1)) in f f , as defined on
Slide 24. This makes use of the natural extension of the ‘generalises’ relation, � (Slide 16),
to a binary relation between (closed) type schemes. Exercise 3.4.1 gives an alternative
characterisation of this relation.

It is worth pointing out that in the presence of (a), the converse of condition (b) on
Slide 24 holds: if σ � σ′ and �ML M : σ, then �ML M : σ′. This is a consequence of the
substitution property of valid ML typing judgements given on Slide 31 below.

Slide 25 gives the main result about the ML typeability problem. It was first proved for
a simple type system without polymorphic let-expressions by Hindley (1969) and extended
to the full system by Damas and Milner (1982).

Principal type schemes for closed expressions

A type scheme σ is the principal type scheme of a closed ML

expression M if

(a) �ML M : σ

(b) for all σ′, if �ML M : σ′ then σ � σ′

where by definition σ � σ ′ holds if σ′ = ∀A′ (τ ′) with

A′ ∩ ftv (σ) = ∅ and σ � τ ′ (as defined on Slide 16).

(Note that since we identify type schemes up to alpha-conversion of

∀-bound type variables, we can always satisfy the condition

A′ ∩ ftv(σ) = ∅ by suitably renaming the bound type variables of σ′.)

Slide 24

Remark 3.2.1 (Complexity of the type checking algorithm). Although typeability is
decidable, it is known to be exponential-time complete. Furthermore, the principal type
scheme of an expression can be exponentially larger than the expression itself, even if the type
involved is represented efficiently as a directed acyclic graph. More precisely, the time taken
to decide typeability and the space needed to display the principal type are both exponential in
the number of nested let’s in the expression. For example the expression on Slide 26 (taken
from Mairson 1990) has a principal type scheme which would take hundreds of pages to print
out. It seems that such pathology does not arise naturally, and that the type checking phase
of an ML compiler is not a bottle neck in practice. For more details about the complexity of
ML type inference see (Mitchell 1996, Section 11.3.5).
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Theorem (Hindley; Damas-Milner)

If the closed ML expression M is typeable (i.e. �ML M : σ
holds for some type scheme σ), then there is a principal type

scheme for M .

Indeed, there is an algorithm which, given any M as input,

decides whether or not it is typeable and returns a principal type

scheme if it is.

Slide 25

An ML expression with a principal type scheme

hundreds of pages long

let pair = λx(λy(λz(z x y))) in
letx1 = λy(pair y y) in

let x2 = λy(x1(x1 y)) in
letx3 = λy(x2(x2 y)) in

let x4 = λy(x3(x3 y)) in
letx5 = λy(x4(x4 y)) in

x5(λy(y))
(Taken from Mairson 1990.)

Slide 26
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Principal typing algorithm, pt

pt is defined recursively, following structure of expressions (and

its termination is proved by induction on the structure of

expressions).

Clause of definition of pt for each expression-former tries to

create an instance of the corresponding axiom/rule in the type

system, calling unification algorithm, mgu , to solve any

necessary equational constraints between types.

pt only FAILs if a call to mgu FAILs.

pt returns principal typings because mgu returns most general

unifiers.

Slide 27

3.3 A type inference algorithm

The aim of this subsection is to sketch the proof of the Hindley-Damas-Milner theorem stated
on Slide 25, by describing an algorithm, pt , for deciding typeability and returning a most
general type scheme. The main features of pt are set out on Slide 27. As the examples
in Section 3.1 should suggest, the algorithm depends crucially upon unification—the fact
that the solvability of a finite set of equations between algebraic terms is decidable and that
a most general solution exists, if any does. This fact was discovered by Robinson (1965)
and has been a key ingredient in several logic-related areas of computer science (automated
theorem proving, logic programming, and of course type systems, to name three). The form of
unification algorithm, mgu , we need here is specified on Slide 28. Although we won’t bother
to give an implementation of mgu here (see for example (Rydeheard and Burstall 1988,
Chapter 8), (Mitchell 1996, Section 11.2.2), or (Aho, Sethi, and Ullman 1986, Section 6.7)
for more details), we do need to explain the notation for type substitutions introduced on
Slide 28.
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Unification of ML types

There is an algorithm mgu which when input two ML types τ1

and τ2 decides whether τ1 and τ2 are unifiable, i.e. whether there

exists a type-substitution S ∈ Sub with

(a) S(τ1) = S(τ2).

Moreover, if they are unifiable, mgu(τ1, τ2) returns the most

general unifier—an S satisfying both (a) and

(b) ∀S′ ∈ Sub(S′(τ1) = S′(τ2)
⇒ ∃T ∈ Sub (S′ = TS)).

By convention mgu(τ1, τ2) = FAIL if (and only if) τ1 and τ2 are not

unifiable.

Slide 28

Definition 3.3.1 (Type substitutions). A type substitution S is a (totally defined) function
from type variables to ML types with the property that S(α) = α for all but finitely many α.
We write Sub for the set of all such functions. The domain of S ∈ Sub is the finite set of
variables

dom(S) def= {α ∈ TyVar | S(α) �= α}

Given a type substitution S, the effect of applying the substitution to a type is written
S τ ; thus if dom(S) = {α1, . . . , αn} and S(αi) is the type τi for each i = 1..n, then S(τ) is
the type resulting from simultaneously replacing each occurrence of αi in τ with τi (for all
i = 1..n), i.e.

S τ = τ [τ1/α1, . . . , τn/αn]

using the notation for substitution from Slide 16. Notwithstanding the notation on the right
hand side of the above equation, we prefer to write the application of a type substitution
function S on the left of the type to which it is being applied.1 As a result, the composition TS
of two type substitutions S, T ∈ Sub means first apply S and then T . Thus by definition TS
is the function mapping each type variable α to the type T (S(α)) (apply the type substitution
T to the type S(α)). Note that the function TS does satisfy the finiteness condition required
of a substitution and we do have TS ∈ Sub; indeed, dom(TS) ⊆ dom(T ) ∪ dom(S).

1i.e. we write S τ rather than τ S as in last year’s Part IB Logic and Proof course.
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More generally, if dom(S) = {α1, . . . , αn} and σ is an ML type scheme, then S σ will
denote the result of the (capture-avoiding2) substitution of S(αi) for each free occurrence of
αi in σ (for i = 1..n).

Principal type schemes for open expressions

A solution for the typing problem Γ �M : ? is a pair (S, σ)
consisting of a type substitution S and a type scheme σ satisfying

S Γ �ML M : σ

(where S Γ = {x1 : S σ1, . . . , xn : S σn}, if

Γ = {x1 : σ1, . . . , xn : σn}).
Such a solution is principal if given any other, (S ′, σ′), there is

some T ∈ Sub with TS = S ′ and T (σ) � σ′.

Slide 29

Even though we are ultimately interested in the typeability of closed expressions, since
the algorithm pt descends recursively through the subexpressions of the input expression,
inevitably it has to generate typings for expressions with free variables. Hence we have
to define the notions of typeability and principal type scheme for open expressions in the
presence of a non-empty typing environment. This is done on Slide 29. To compute principal
type schemes it suffices to compute ‘principal solutions’ in the sense of Slide 29: for if M is
in fact closed, then any principal solution (S, σ) for the typing problem ∅ � M : ? has the
property that σ is a principal type scheme for M in the sense of Slide 24 (see Exercise 3.4.3).

Slide 30 sets out in more detail what is required of the principal typing algorithm, pt .
One possible implementation (in somewhat informal pseudocode, and leaving out the cases
for nil, cons, and case-expressions) is sketched in Figure 4. No claims for its efficiency
are made, just for its correctness. This depends crucially upon an important property of ML
typing, namely that it is respected by the operation of substituting types for type variables.
See Slide 31. The proof of this property can be carried out by induction on the proof of the
typing judgement from the axioms and rules on Slides 18–20.

2Since we identify type schemes up to renaming their ∀-bound type variables, we always assume
the bound type variables in σ are different from any type variables in the types S(α i).
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Specification for the principal typing algorithm, pt

pt operates on typing problems Γ �M : ? (consisting of a

typing environment Γ and an ML expression M ). It returns either

a pair (S, τ) consisting of a type substitution S ∈ Sub and an

ML type τ , or the exception FAIL.

• If Γ �M : ? has a solution (cf. Slide 29), then

pt(Γ �M : ?) returns (S, τ) for some S and τ ;

moreover, setting A = (ftv (τ) − ftv(S Γ)), then

(S,∀A (τ)) is a principal solution for the problem

Γ �M : ?.

• If Γ �M : ? has no solution, then pt(Γ �M : ?) returns

FAIL.

Slide 30

Type substitutions preserve ML typeability

If

Γ �M : τ

is provable from the axioms and rules on Slides 18–20 and

S ∈ Sub is a type substitution, then

S Γ �M : S τ

is also provable.

Slide 31



3.3 A type inference algorithm 33

Variables:

pt(Γ � x : ?) def= let ∀A (τ) = Γ(x), with each α ∈ A fresh
in

(Id , τ)

Function abstractions:

pt(Γ � λx(M) : ?) def= let fresh α;
(S, τ) = pt(Γ, x : α �M : ?)

in
(S − α, S(α)→ τ)

Function applications:

pt(Γ �M1 M2 : ?) def= let (S1, τ1) = pt(Γ �M1 : ?);
(S2, τ2) = pt(S1 Γ �M2 : ?);
fresh α;
S3 = mgu(S2 τ1, τ2→ α)

in
((S3S2S1)− α, S3(α))

let-Expressions:

pt(Γ � letx = M1 inM2 : ?) def= let (S1, τ1) = pt(Γ �M1 : ?);
A = ftv(τ1)− ftv(S1 Γ);
(S2, τ2) = pt(S1Γ, x : ∀A (τ1) �M2 : ?)

in
(S2S1, τ2)

Booleans (B = true, false):

pt(Γ � B : ?) def= (Id , bool)

Conditionals:

pt(Γ � if M1 thenM2 elseM3 : ?) def= let (S1, τ1) = pt(Γ �M1 : ?);
S2 = mgu(τ1, bool);
(S3, τ3) = pt(S2S1 Γ �M2 : ?);
(S4, τ4) = pt(S3S2S1 Γ �M3 : ?);
S5 = mgu(S4 τ3, τ4)

in
(S5S4S3S2S1, S5 τ4)

Figure 4: Some of the clauses in a definition of pt
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Notes 3.3.2 (on the definition in Figure 4).

(i) We have not given the clauses of the definition for nil, cons, and case-expressions.

(ii) The type substitution Id occurring in the clauses for variables and booleans is the identity
substitution which maps each type variable α to itself.

(iii) The notation S − α used in the clause for function abstractions (and also in the one for
function applications) is the substitution obtained from S by removing α from its domain. In
other words S − α maps α to α and elsewhere maps like S.

(iv) We implicitly assume that all bound variables in expressions are distinct from each other and
from any other variables in context. So, for example, the clause for function abstractions
tacitly assumes that x /∈ dom(Γ).

(vi) We do not give the proof that the definition in Figure 4 is correct (i.e. meets the specification
on Slide 30): but see Exercise 3.4.5.

3.4 Exercises

Exercise 3.4.1. Let σ and σ′ be ML type schemes. Show that the relation σ � σ ′ defined on
Slide 24 holds if and only if

∀ τ (σ′ � τ ⇒ σ � τ).

[Hint: use the following property of simultaneous substitution:

(τ [τ1/α1, . . . , τn/αn])[�τ ′/�α′] = τ [τ1[�τ ′/�α′]/α1, . . . , τn[�τ ′/�α′]/αn]

which holds provided the type variables �α′ do not occur in τ .]

Exercise 3.4.2. Try to augment the definition of pt in Figure 4 with clauses for nil, cons,
and case-expressions.

Exercise 3.4.3. Suppose M is a closed expression and that (S, σ) is a principal solution for
the typing problem ∅ � M : ? in the sense of Slide 29. Show that σ must be a principal type
scheme for M in the sense of Slide 24. [Hint: first show that S has to be a (finite) permutation
of type variables.]

Exercise 3.4.4. Prove the property of the ML type system stated on Slide 31.

Exercise 3.4.5. [hard] Try to give some of the proof that the definition in Figure 4 meets the
specification on Slide 30. For example, try to prove that if

∀Γ (pt(Γ �Mi : ?) has correct properties)

for i = 1, 2, then
∀Γ (pt(Γ �M1 M2 : ?) has correct properties).

(Why is it necessary to build the quantification over Γ into the inductive hypotheses?)
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4 Polymorphic Reference Types

Recall from the Introduction that an important purpose of type systems is to provide safety
(Slide 3) via type soundness results (Slide 4). Even if a programming language is intended
to be safe by virtue of its type system, it can happen that separate features of the language,
each desirable in themselves, can combine in unexpected ways to produce an unsound type
system. In this section we look at an example of this which occurred in the development of
the ML family of languages. The two features which combine in a nasty way are:

• ML’s style of implicitly typed let-bound polymorphism, and

• reference types.

We have already treated the first topic in Sections 2 and 3. The second concerns ML’s
imperative features, which are based upon the ability to dynamically create locally scoped
storage locations which can be written to and read from.1 We begin by giving the syntax and
typing rules for this.

4.1 The problem

We augment the grammar for ML types given on Slide 15 with a unit type (a type with a
single value) and reference types:

τ ::= . . .
| unit unit type
| τ ref reference type.

Correspondingly, we augment the grammar for ML expressions given on page 18 as follows:

M ::= . . .
| () unit value
| !M dereference
| M := M assignment
| ref M reference creation.

The typing rules for these new forms of expression are given on Slide 32.

1The dynamic creation of names of exceptions causes similar problems for type soundness.
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Unit, dereference, assignment

and reference creation

Γ � () : unit(unit)

Γ �M : τ ref

Γ � !M : τ
(get)

Γ �M1 : τ ref Γ �M2 : τ

Γ �M1 := M2 : unit
(set)

Γ �M : τ

Γ � ref M : τ ref
(ref)

Slide 32

Example 4.1.1

The expression

let r = ref λx(x) in
let u = (r := λx′(ref !x′)) in

(!r)()

has type unit .

Slide 33
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Here is an example of the typing rules on Slide 32 in use.

Example 4.1.1. The expression given on Slide 33 has type unit .

Proof. This can be deduced by applying the (let) rule (Slide 19) to the judgements

∅ � ref λx(x) : (α→ α) ref
r : ∀α ((α→ α) ref ) � letu = (r := λx′(ref !x′)) in (!r)() : unit .

The first of these judgements has the following proof:

x : α � x : α
(var �)

∅ � λx(x) : α→ α
(fn)

∅ � ref λx(x) : (α→ α) ref
(ref).

The second judgement can be proved by applying the (let) rule to

r : ∀α ((α→ α) ref ) � r := λx′(ref !x′) : unit(9)

r : ∀α ((α→ α) ref ), u : unit � (!r)() : unit(10)

Writing Γ for the typing environment {r : ∀α ((α→ α) ref )}, the proof of (9) is

Γ � r : (α ref → α ref ) ref
(var �)

Γ, x′ : α ref � x′ : α ref
(var �)

Γ, x′ : α ref � !x′ : α
(get)

Γ, x′ : α ref � ref !x′ : α ref
(ref)

Γ � λx′(ref !x′) : α ref → α ref
(fn)

Γ � r := λx′(ref !x′) : unit
(set)

while the proof of (10) is

Γ, u : unit � r : (unit → unit) ref
(var �)

Γ, u : unit � !r : unit → unit
(get)

Γ, u : unit � () : unit
(unit)

Γ, u : unit � (!r)() : unit
(app).

Although the typing rules for references seem fairly innocuous, they combine with the
previous typing rules, and with the (let) rule in particular, to produce a type system for which
type soundness fails with respect to ML’s operational semantics. For consider what happens
when the expression on Slide 33, call it M , is evaluated.
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Evaluation of the outermost let-binding in M creates a fresh storage location bound to
r and containing the value λx(x). Evaluation of the second let-binding updates the contents
of r to the value λx′(ref !x′) and binds the unit value to u.1 Next (!r)() is evaluated. This
involves applying the current contents of r, which is λx′(ref !x′), to the unit value (). This
results in an attempt to evaluate !(), i.e. to dereference something which is not a storage
location, an unsafe operation which should be trapped.

Transitions involving references

〈!x, s〉 → 〈s(x), s〉 if x ∈ dom(s)

〈!V, s〉 → FAIL if V not a variable

〈x := V ′, s〉 → 〈(), s[x �→ V ′]〉

〈V := V ′, s〉 → FAIL if V not a variable

〈ref V, s〉 → 〈x, s[x �→ V ]〉 if x /∈ dom(s)

where V ranges over values: V ::= x | λx(M) | ().

Slide 34

Put more formally, we have 〈M, ∅〉 → FAIL in the transition system defined in Figure 5
and Slide 34. The configurations of the transition system are of two kinds:

• A pair 〈M, s〉, where M is an ML expression and s is a state—a finite function
mapping variables, x, (here being used as the names of storage locations) to syntactic
values, V . (The possible forms of V for this fragment of ML are defined in
Figure 5.) Furthermore, we require a well-formedness condition for such a pair to
be a configuration: the free variables of M and of each value s(x) (as x ranges over
dom(s)) should be contained in the finite set dom(s).

• The symbol FAIL, representing a run-time error.

In giving the axioms and rules for inductively generating the transition system, we have
restricted attention to the fragment of ML relevant to Example 4.1.1. The notation s[x �→ V ]

1Since the variable u does not occur in its body, M ’s innermost let-expression is just a way
of expressing the sequence (r := λx′(ref !x′)); (!r)() in the fragment of ML that we are using for
illustrative purposes.
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The axioms and rules inductively defining the transition system for ML+ref are those
on Slide 34 together with the following ones:

〈(λx(M))V ′, s〉 → 〈M [V ′/x], s〉

〈V V ′, s〉 → FAIL if V not a function abstraction

〈letx = V inM, s〉 → 〈M [V/x], s〉

〈M, s〉 → 〈M ′, s′〉
〈E [M ], s〉 → 〈E [M ′], s′〉

〈M, s〉 → FAIL

〈E [M ], s〉 → FAIL

where V ranges over values:

V ::= x | λx(M) | ()

E ranges over evaluation contexts:

E ::= − | EM | V E | letx = E inM | !E | E := M | V := E | ref E

and E [M ] denotes the ML expression that results from replacing all occurrences of
‘−’ by M in E .

Figure 5: Transition system for a fragment of ML with references
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used on Slide 34 means the state with domain of definition dom(s) ∪ {x} mapping x to V
and otherwise acting like s. The rules for defining transitions in Figure 5 are specified in the
rather compact style of Wright and Felleisen (1994).

4.2 Restoring type soundness

The root of the problem described in the previous section lies in the fact that typing
expressions like let r = ref M1 inM2 with the (let) rule allows the storage location (bound
to) r to have a type scheme σ generalising the reference type of the type of M1. Occurrences
of r in M2 refer to the same, shared location and evaluation of M2 may cause assignments to
this shared location which restrict the possible type of subsequent occurrences of r. But the
typing rule allows all these occurrences of r to have any type which is a specialisation of σ.

We can avoid this problem by devising a type system that prevents generalisation of type
variables occurring in the types of shared storage locations. A number of ways of doing this
have been proposed in the literature: see (Wright 1995) for a survey of them. The one adopted
in the original, 1990, definition of Standard ML (Milner, Tofte, and Harper 1990) was that
proposed by Tofte (1990). It involves partitioning the set of type variables into two (countably
infinite) halves, the ‘applicative type variables’ (ranged over by α) and the ‘imperative type
variables’ (ranged over by α). The rule (ref) is restricted by insisting that τ only involve
imperative type variables; in other words the principal type scheme of λx(ref x) becomes
∀ α ( α→ α ref ), rather than ∀α (α→ α ref ). Furthermore, and crucially, the (let) rule
(Slide 19) is restricted by requiring that when A contains imperative type variables, M1 must
be a value (and hence in particular its evaluation does not create any fresh storage locations).

This solution has the advantage that in the new system the typeability of expressions not
involving references is just the same as in the old system. However, it has the disadvantage
that the type system makes distinctions between expressions which are behaviourly equivalent
(i.e. which should be contextually equivalent). For example there are many list-processing
functions that can be defined in the pure functional fragment of ML by recursive definitions,
but which have more efficient definitions using local references. Unfortunately, if the type
scheme of the former is something like ∀α (α list → α list), the type scheme of the latter
may well be the different type scheme ∀ α ( α list → α list). So we will not be able to use
the two versions of such a function interchangeably.
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Value-restricted typing rule for let-expressions

Γ �M1 : τ1

Γ, x : ∀A (τ1) �M2 : τ2

Γ � letx = M1 inM2 : τ2

(†)(letv)

(†) provided x /∈ dom(Γ) and

A =

{
∅ if M1 is not a value

ftv (τ1)− ftv (Γ) if M1 is a value

(Recall that values are given by V ::= x | λx(M) | ().)

Slide 35

The authors of the revised, 1996, definition of Standard ML (Milner, Tofte, Harper,
and MacQueen 1997) adopt a simpler solution, proposed independently by Wright (1995).
This removes the distinction between applicative and imperative type variables (in effect,
all type variables are imperative, but the usual symbols α, α′ . . . are used) while retaining a
value-restricted form of the (let) rule, as shown on Slide 35.1 Thus our version of this type
system, call it ML+ref, is based upon exactly the same form of type, type scheme and typing
judgement as before, with the typing relation being generated inductively by the axioms and
rules on Slides 18–20 and 32, except that the applicability of the (let) rule is restricted as on
Slide 35.

Example 4.2.1. The expression on Slide 33 is not typeable in the ML+ref type system.

Proof. Because of the form of the expression, the last rule used in any proof of its typeability
must end with (letv). Because of the side condition on that rule and since ref λx(x) is not a
value, the rule has to be applied with A = ∅. This entails trying to type

(11) letu = (r := λx′(ref !x′)) in (!r)()

1N.B. what we call a value, (Milner, Tofte, Harper, and MacQueen 1997) calls a non-expansive
expression. For the fragment of ML we are considering here, such an expression is just an identifier, a
function abstraction, or the unit value (); but in the full language, there are other kinds of non-expansive
expression.
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in the typing environment Γ = {r : (α→ α) ref }. But this is impossible, because the type
variable α is not universally quantified in this environment, whereas the two instances of r in
(11) are of different implicit types (namely (α ref →α ref ) ref and (unit→ unit) ref ).

The above example is all very well, but how do we know that we have achieved safety
with the type system ML+ref? The answer lies in a formal proof of a type soundness result
(generalising the one on Slide 9). One first has to formulate a definition of typing for the
configurations of the form 〈M, s〉 in the transition system we defined in the previous section.
Then one proves that a sequence of transitions from such a well-typed configuration can never
lead to the FAIL configuration. We do not have the time to give the details in this course:
the interested reader is referred to (Wright and Felleisen 1994; Harper 1994) for examples of
similar type soundness results.

Although the typing rule (letv) does allow one to achieve type soundness for polymorphic
references in a pleasingly straightforward way, it does mean that some expressions not
involving references that are typeable in the original ML type system are no longer typeable
in ML+ref (Exercise 4.3.2.) Wright (1995, Sections 3.2 and 3.3) analyses the consequences
of this and presents evidence that it is not a hindrance to the use of Standard ML in practice.

4.3 Exercises

Exercise 4.3.1. Letting M denote the expression on Slide 33 and ∅ the empty state, show
that 〈M, ∅〉 →∗ FAIL is provable in the transition system defined in Figure 5.

Exercise 4.3.2. Give an example of a let-expression not involving references which is
typeable in the ML type system of Section 2.3, but not in the type system ML+ref of
Section 4.2.
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In this section we take a look at a type system for explicitly typed parametric polymorphism,
variously called the polymorphic lambda calculus, the second order typed lambda calculus,
or system F. It was invented by the logician Girard (1972) and, independently and for different
purposes, by the computer scientist Reynolds (1974). It has turned out to play a foundational
role in the development of type systems somewhat similar to that played by Church’s untyped
lambda calculus in the development of functional programming. Although it is syntactically
very simple, it turns out that a wide range of types and type constructions can be represented
in the polymorphic lambda calculus.

5.1 From type schemes to polymorphic types

We have seen examples (Example 2.3.2 and the first example on Slide 22) of the fact that the
ML type system permits let-bound variables to be used polymorphically within the body of
a let-expression. As Slide 36 points out, the same is not true of λ-bound variables within
the body of a function abstraction. This is a consequence of the fact that ML types and type
schemes are separate syntactic categories and the function type constructor,→, operates on
the former, but not on the latter. Recall that an important purpose of type systems is to provide
safety (Slide 3) via type soundness (Slide 4). Use of expressions such as those mentioned on
Slide 36 does not seem intrinsically unsafe (although use of the second one may cause non-
termination—cf. the definition of the fixed point combinator in untyped lambda calculus). So
it is not unreasonable to seek type systems more powerful than the ML type system, in the
sense that more expressions become typeable.

One apparently attractive way of achieving this is just to merge types and type schemes
together: this results in the so-called polymorphic types shown on Slide 37. So let us consider
extending the ML type system to assign polymorphic types to expressions. So we consider
judgements of the form Γ �M : π where:

• π is a polymorphic type;

• Γ is a finite function from variables to polymorphic types.

In order to make full use of the mixing of → and ∀ present in polymorphic types we
have to replace the axiom (var �) of Slide 18 by the axiom and two rules shown on Slide 38.
(These are in fact versions for polymorphic types of ‘admissible rules’ in the original ML type
system.) In rule (spec), π[π′/α] indicates the polymorphic type resulting from substituting
π′ for all free occurrences of α in π.

43
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λ-bound variables in ML cannot be used

polymorphically within a function abstraction

E.g. λf((f true) :: (f nil)) and λf(f f) are not typeable in the ML

type system.

Syntactically, because in rule

(fn)
Γ, x : τ1 �M : τ2

Γ � λx(M) : τ1→ τ2

the abstracted variable has to be assigned a trivial type scheme

(recall x : τ1 stands for x : ∀ ∅ (τ1)).

Semantically, because ∀A (τ1)→ τ2 is not semantically

equivalent to an ML type when A �= ∅.

Slide 36

Monomorphic types . . .

τ ::= α | bool | τ → τ | τ list

. . . and type schemes

σ ::= τ | ∀α (σ)

Polymorphic types

π ::= α | bool | π→ π | π list | ∀α (π)

E.g. α→ α′ is a type, ∀α (α→ α′) is a type scheme and a

polymorphic type (but not a monomorphic type), ∀α (α)→ α′ is a

polymorphic type, but not a type scheme.

Slide 37
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Identity, Generalisation and Specialisation

Γ � x : π if (x : π) ∈ Γ(id)

Γ �M : π

Γ �M : ∀α (π)
if α /∈ ftv(Γ)(gen)

Γ �M : ∀α (π)

Γ �M : π[π′/α]
(spec)

Slide 38

Example 5.1.1. In the modified ML type system (with polymorphic types and (var �)
replaced by (id), (gen), and (spec)) one can prove the following typings for expressions
which are untypeable in ML:

∅ � λf((f true) :: (f nil)) : ∀α (α→ α)→ bool list(12)

∅ � λf(f f) : ∀α (α)→∀α (α).(13)

Proof. The proof of (12) is rather easy to find and is left as an exercise. Here is a proof for
(13):

f : ∀α1 (α1) � f : ∀α1 (α1)
(id)

f : ∀α1 (α1) � f : α2→ α2

(1)
f : ∀α1 (α1) � f : ∀α1 (α1)

(id)

f : ∀α1 (α1) � f : α2

(2)

f : ∀α1 (α1) � f f : α2

(app)

f : ∀α1 (α1) � f f : ∀α2 (α2)
(gen)

∅ � λf(f f) : ∀α1 (α1)→∀α2 (α2)
(fn).

Nodes (1) and (2) are both instances of the (spec) rule: the first uses the substitution
(α2→ α2)/α1, whilst the second uses α2/α1.
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Fact (see Wells 1994):

For the modified ML type system with polymorphic types and

(var �) replaced by the axiom and rules on Slide 38, the type

checking and typeability problems (cf. Slide 8) are equivalent and

undecidable.

Slide 39

So why does the ML programming language not use this extended type system with
polymorphic types? The answer lies in the result stated on Slide 39: there is no algorithm
to decide typeability for this type system (Wells 1994). The difficulty with automatic type
inference for this type system lies in the fact that the generalisation and specialisation rules
are not syntax-directed: since an application of either (gen) or (spec) does not change the
expression M being checked, it is hard to know when to try to apply them in the bottom-up
construction of proof inference trees. By contrast, in an ML type system based on (id), (gen)
and (spec), but retaining the two-level stratification of types into monomorphic types and
type schemes, this difficulty can be overcome. For in that case one can in fact push uses of
(spec) right up to the leaves of a proof tree (where they merge with (id) axioms to become
(var �) axioms) and push uses of (gen) right down to the root of the tree (and leave them
implicit).

5.2 The PLC type system

The negative result on Slide 39 does not rule out the use of the polymorphic types of Slide 37
in programming languages, since one may consider explicitly typed languages (Slide 40)
where the tagging of expressions with type information renders the typeability problem
essentially trivial. We consider such a language in this subsection.
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Explicitly versus implicitly typed languages

Implicit : little or no type information is included in program

phrases and typings have to be inferred (ideally, entirely at

compile-time). (E.g. Standard ML.)

Explicit : most, if not all, types for phrases are explicitly part of the
syntax. (E.g. Java.)

E.g. self application function of type ∀α (α)→∀α (α)
(cf. Example 5.1.1)

Implicitly typed version: λ f (f f)

Explicitly type version: λ f : ∀α1 (α1) (Λ α2 (f(α2→ α2)(f α2)))

Slide 40

Remark 5.2.1 (Explicitly typed languages). One often hears the view that programming
languages which enforce a large amount of explicit type information in programs are
inconveniently verbose and/or force the programmer to make algorithmically irrelevant
decisions about typings. But of course it really depends upon the intended applications.
At one extreme, in a scripting language (interpreted interactively, used by a single person to
develop utilities in a rapid edit-run-debug cycle) implicit typing may be desirable. Whereas at
the opposite extreme, a language used to develop large software systems (involving separate
compilation of modules by different teams of programmers) may benefit greatly from explicit
typing (not least as a form of documentation of programmer’s intentions, but also of course
to enforce interfaces between separate program parts). Apart from these issues, explicitly
typed languages are useful as intermediate languages in optimising compilers, since certain
optimising transformations depend upon the type information they contain. See (Harper and
Stone 1997), for example.
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Functions on types

In PLC, Λ α (M) is an anonymous notation for the function F

mapping each type τ to the value of M [τ/α] (of some particular

type). F τ denotes the result of applying such a function to a

type.

Computation in PLC involves beta-reduction for such functions on

types

(Λ α (M)) τ →M [τ/α]

as well as the usual form of beta-reduction from λ-calculus,

((λ x : τ (M1))M2 →M1[M2/x]).

Slide 41

PLC syntax

Types τ ::= α type variable

| τ → τ function type

| ∀α (τ) ∀-type

Expressions

M ::= x variable

| λ x : τ (M) function abstraction

| M M function application

| Λ α (M) type generalisation

| M τ type specialisation

(α and x range over fixed, countably infinite sets TyVar and Var
respectively.)

Slide 42
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The explicit type information we need to add to expressions to get syntax-directed
versions of the (gen) and (spec) rules (Slide 38) concerns the operations of type gener-
alisation and type specialisation. These are forms of function abstraction and application
respectively—for functions defined on the collection of all types (and taking values in one par-
ticular type), rather than on the values of one particular type. See Slide 41. The polymorphic
lambda calculus, PLC, provides rather sparse means for defining such functions—for exam-
ple there is no ‘typecase’ construct that allows branching according to which type expression
is input. As a result, PLC is really a calculus of parametrically polymorphic functions (cf.
Slide 11). The PLC syntax is given on Slide 42. Its types, τ , are like the polymorphic types,
π, given on Slide 37, except that we have omitted bool and ( ) list—because in fact these and
many other forms of datatype are representable in PLC (see Section 6 below). We have also
omitted let-expressions, because (unlike the ML type system presented in Section 2.3) they
are definable from function abstraction and application with the correct typing properties: see
Exercise 5.4.2.

Notes 5.2.2. The following points about PLC syntax should be noted.

(i) Free and bound (type) variables.
Any occurrences in τ of a type variable α become bound in ∀α (τ). Thus by definition, the
finite set, ftv(τ), of free type variables of a type τ , is given by

ftv(α) def= {α}
ftv(τ1→ τ2)

def= ftv(τ1) ∪ ftv(τ2)

ftv(∀α (τ)) def= ftv(τ)− {α}.

Any occurrences in M of a variable x become bound in λ x : τ (M). Thus by definition, the
finite set, fv(M), of free variables of an expression M , is given by

fv(x) def= {x}
fv(λ x : τ (M)) def= fv(M)− {x}

fv(M1 M2)
def= fv(M1) ∪ fv(M2)

fv(Λ α (M)) def= fv(M)

fv(M τ) def= fv(M).

Moreover, since types occur in expressions, we have to consider the free type variables
of an expression. The only type variable binding construct at the level of expressions is



50 5 POLYMORPHIC LAMBDA CALCULUS

generalisation: Any occurrences in M of a type variable α become bound in Λ α (M). Thus

ftv(x) def= ∅
ftv(λ x : τ (M)) def= ftv(τ) ∪ ftv(M)

ftv(M1 M2)
def= ftv(M1) ∪ ftv(M2)

ftv(Λ α (M)) def= ftv(M)− {α}
ftv(M τ) def= ftv(M) ∪ ftv(τ).

As usual, we implicitly identify PLC types and expressions up to alpha-conversion of bound
type variables and bound variables. For example

(λ x : α (Λ α (x α))) x and (λ x′ : α (Λ α′ (x′ α′))) x

are alpha-convertible. We will always choose names of bound variable as in the second
expression rather than the first, i.e. distinct from any free variables (and from each other).
There are three forms of (capture-avoiding) substitution, well-defined up to alpha-conversion:

– τ [τ ′/α] denotes the type resulting from substituting a type τ ′ for all free occurrences
of the type variable α in a type τ .

– M [M ′/x] denotes the expression resulting from substituting an expression M ′ for all
free occurrences of the variable x in the expression M .

– M [τ/α] denotes the expression resulting from substituting a type τ for all free
occurrences of the type variable α in an expression M .

(ii) Operator association and scoping:
As in the ordinary lambda calculus, one often writes a series of applications without
parentheses, using the convention that application associates to the left. Thus M1 M2 M3

means (M1 M2)M3, and M1 M2 τ3 means (M1 M2)τ3. Note that an expression like
M1 τ2 M3 can only associate as (M1 τ2)M3, since association the other way involves an
ill-formed expression (τ2M3). Similarly M1 τ2 τ3 can only be associated as (M1 τ2)τ3 (since
τ1 τ2 is an ill-formed type).
On the other hand it is conventional to associate a series of function types to the right. Thus
τ1→ τ2→ τ3 means τ1→ (τ2→ τ3).
We delimit the scope of ∀-, λ-, and Λ-binders with parentheses. Another common way of
writing these binders employs ‘dot’ notation

∀α .τ λx : τ . M Λα . M

with the convention that the scope extends as far to the right as possible. For example

∀α1 . (∀α2 . τ → α1)→ α1

means
∀α1 (∀α2 (τ → α1)→ α1).
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(iii) One often writes iterated binders using lists of bound (type) variables:

∀α1, α2 (τ) def= ∀α1 (∀α2 (τ))

λ x1 : τ1, x2 : τ2 (M) def= λ x1 : τ1 (λ x2 : τ2 (M))

Λ α1, α2 (M) def= Λ α1 (Λ α2 (M)) .

(iv) It is common to write a type specialisation by subscripting the type:

Mτ
def= M τ.

The PLC type system uses typing judgements of the form shown on Slide 43. Its typing
relation is the collection of such judgements inductively defined by the axiom and rules in
Figure 6. By now there should be no surprises here: the axiom for variables and rules for
function abstraction and application are just like those for the simple type system we used
in Section 1.3; the rules for generalisation and specialisation are just the explicitly typed
versions of the ones on Slide 38.

PLC typing judgement

takes the form Γ �M : τ where

• the typing environment Γ is a finite function from variables to

PLC types.

(We write Γ = {x1 : τ1, . . . , xn : τn} to indicate that Γ has

domain of definition dom(Γ) = {x1, . . . , xn} and maps

each xi to the PLC type τi for i = 1..n.)

• M is a PLC expression

• τ is a PLC type.

Slide 43
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Γ � x : τ if (x : τ) ∈ Γ(var)

Γ, x : τ1 �M : τ2

Γ � λ x : τ1 (M) : τ1→ τ2

if x /∈ dom(Γ)(fn)

Γ �M1 : τ1→ τ2 Γ �M2 : τ1

Γ �M1 M2 : τ2

(app)

Γ �M : τ

Γ � Λ α (M) : ∀α (τ)
if α /∈ ftv(Γ)(gen)

Γ �M : ∀α (τ1)

Γ �M τ2 : τ1[τ2/α]
(spec)

Figure 6: Axiom and rules of the PLC type system

An incorrect ‘proof’

x1 : α, x2 : α � x2 : α
(var)

x1 : α � λ x2 : α (x2) : α→ α
(fn)

x1 : α � Λ α (λ x2 : α (x2)) : ∀α (α→ α)
(wrong!)

Slide 44
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Remark 5.2.3 (Side-condition on rule (gen)). To illustrate the force of the side-condition
on rule (gen), consider the last step of the ‘proof’ on Slide 44. It is not a correct instance of
the (gen) rule, because the concluding judgement, whose typing environment Γ = {x1 : α},
does not satisfy α /∈ ftv(Γ) (since ftv(Γ) = {α} in this case). On the other hand, the
expression Λ α (λ x2 : α (x2)) does have type ∀α (α→ α) given the typing environment
{x1 : α}. Here is a correct proof of that fact:

x1 : α, x2 : α′ � x2 : α′ (var)

x1 : α � λ x2 : α′ (x2) : α′→ α′ (fn)

x1 : α � Λ α′ (λ x2 : α′ (x2)) : ∀α′ (α′→ α′)
(gen)

where we have used the freedom afforded by alpha-conversion to rename the bound type
variable to make it distinct from the free type variables of the typing environment: since we
identify types and expressions up to alpha-conversion, the judgement

x1 : α � Λ α (λ x2 : α (x2)) : ∀α (α→ α)

is the same as

x1 : α � Λ α′ (λ x2 : α′ (x2)) : ∀α′ (α′→ α′)

and indeed, is the same as

x1 : α � Λ α′ (λ x2 : α′ (x2)) : ∀α′′ (α′′→ α′′).

Example 5.2.4. On Slide 40 we claimed that λ f : ∀α1 (α1) (Λ α2 (f(α2 → α2)(f α2)))
has type ∀α (α)→∀α (α). Here is a proof of that in the PLC type system:

f : ∀α1 (α1) � f : ∀α1 (α1)
(var)

f : ∀α1 (α1) � f(α2→ α2) : α2→ α2

(spec)
f : ∀α1 (α1) � f : ∀α1 (α1)

(var)

f : ∀α1 (α1) � f α2 : α2

(spec)

f : ∀α1 (α1) � f(α2→ α2)(f α2) : α2

(app)

f : ∀α1 (α1) � Λ α2 (f(α2→ α2)(f α2)) : ∀α2 (α2)
(gen)

∅ � λ f : ∀α1 (α1) (Λ α2 (f(α2→ α2)(f α2))) : (∀α1 (α1))→∀α2 (α2)
(fn).

Example 5.2.5. There is no PLC type τ for which

(14) ∅ � Λ α ((λ x : α (x)) α) : τ

is provable within the PLC type system.
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Proof. Because of the syntax-directed nature of the axiom and rules of the PLC type system,
any proof of (14) would have to look like

x : α � x : α
(var)

∅ � λ x : α (x) : τ ′′ (fn)

∅ � (λ x : α (x)) α : τ ′ (spec)

∅ � Λ α ((λ x : α (x)) α) : τ
(gen)

for some types τ , τ ′ and τ ′′. For the application of rule (fn) to be correct, it must be that
τ ′′ = α→ α. But then the application of rule (spec) is impossible, because α→ α is not a
∀-type. So no such proof can exist.

Decidability of the PLC typeability

and type checking problems

Theorem.

For each PLC typing problem, Γ �M : ?, there is at most one

PLC type τ for which Γ �M : τ is provable. Moreover there is

an algorithm, typ, which when given any Γ �M : ? as input,

returns such a τ if it exists and FAILs otherwise.

Corollary.

The PLC type checking problem is decidable: we can decide

whether or not Γ �M : τ is provable by checking whether

typ(Γ �M : ?) = τ .

(N.B. equality of PLC types up to alpha-conversion is decidable.)

Slide 45

5.3 PLC type inference

As Examples 5.2.4 and 5.2.5 suggest, the type checking and typeability problems (Slide 8) are
very easy to solve for the PLC type system. This is because of the explicit type information
contained in PLC expressions together with the syntax-directed nature of the typing rules.
The situation is very similar to that for the simple type system of Section 1.3 (Exercise 1.4.3)
and is summarised on Slide 45. The ‘uniqueness of types’ property stated on the slide is easy
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Variables:
typ(Γ, x : τ � x : ?) def= τ

Function abstractions:

typ(Γ � λ x : τ1 (M) : ?) def= let τ2 = typ(Γ, x : τ1 �M : ?) in τ1→ τ2

Function applications:

typ(Γ �M1 M2 : ?) def= let
τ1 = typ(Γ �M1 : ?);
τ2 = typ(Γ �M2 : ?)

in case τ1 of τ2→ τ ⇒ τ
| ⇒ FAIL

Type generalisations:

typ(Γ � Λ α (M) : ?) def= let τ = typ(Γ �M : ?) in ∀α (τ)

Type specialisations:

typ(Γ �M τ2 : ?) def= let
τ = typ(Γ �M : ?)

in case τ of ∀α (τ1) ⇒ τ1[τ2/α]
| ⇒ FAIL

Figure 7: Definition of typ

to prove by induction on the structure of the expression M , exploiting the syntax-directed
nature of the axiom and rules of the PLC type system. Moreover, the type inference algorithm
typ emerges naturally from this proof, defined recursively according to the structure of PLC
expressions. The clauses of its definition are given in Figure 7. The definition relies upon
the easily verified fact that equality of PLC types up to alpha-conversion is decidable. It
also assumes that the various implicit choices of names of bound variables and bound type
variables are made so as to keep them distinct from the relevant free variables and free type
variables. For example, in the clause for type generalisations Λ α (M), we assume the bound
type variable α is chosen so that α /∈ ftv(Γ).
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5.4 Exercises

Exercise 5.4.1. Give a proof inference tree for (12) in Example 5.1.1. Show that

∀α1 (α1→∀α2 (α2))→ bool list

is another possible polymorphic type for λf((f true) :: (f nil)).

Exercise 5.4.2. In PLC, defining the expression letx = M1 : τ inM2 to be an abbreviation
for (λ x : τ (M2)) M1, show that the typing rule

Γ �M1 : τ1 Γ, x : τ1 �M2 : τ2

Γ � (letx = M1 : τ1 inM2) : τ2

if x /∈ dom(Γ)

is admissible—in the sense that the conclusion is provable if the hypotheses are.

Exercise 5.4.3. The erasure, erase(M), of a PLC expression M is the expression of the
untyped lambda calculus obtained by deleting all type information from M :

erase(x) def= x

erase(λ x : τ (M)) def= λ x (erase(M))

erase(M1 M2)
def= erase(M1) erase(M2)

erase(Λ α (M)) def= erase(M)

erase(M τ) def= erase(M).

(i) Find PLC expressions M1 and M2 satisfying erase(M1) = λ x (x) = erase(M2) such that
�M1 : ∀α (α→ α) and �M2 : ∀α1 ((α1→∀α2 (α1))) are provable PLC typings.

(ii) We saw in Example 5.2.4 that there is a closed PLC expression M of type ∀α (α)→∀α (α)
satisfying erase(M) = λ f (f f). Find some other closed, typeable PLC expressions with
this property.

(iii) [For this part you will need to recall, from the CST Part IB ‘Foundations of Functional
Programming’ course, some properties of beta reduction of expressions in the untyped
lambda calculus.] A theorem of Girard says that if � M : τ is provable in the PLC type
system, then erase(M) is strongly normalisable in the untyped lambda calculus, i.e. there are
no infinite chains of beta-reductions starting from erase(M). Assuming this result, exhibit
an expression of the untyped lambda calculus which is not equal to erase(M) for any closed,
typeable PLC expression M .

Exercise 5.4.4. Attack or defend the following statement.

A typed programming language is polymorphic if a well-formed phrase of the language may
have several different types.

[Hint: consider the property of PLC given in the theorem on Slide 45.]
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The aim of this section is to give some impression of just how expressive is the PLC type
system. Many kinds of datatype, including both concrete data (booleans, natural numbers,
lists, various kinds of tree, . . . ) and also abstract datatypes involving information hiding, can
be represented in PLC. Such representations involve

• defining a suitable PLC type for the data,

• defining some PLC expressions for the various operations associated with the data,

• demonstrating that these expressions have both the correct typings and the expected
computational behaviour.

In order to deal with the last point, we first have to consider some operational semantics
for PLC.

Beta-reduction of PLC expressions

M beta-reduces to M ′ in one step, M →M ′ , means

M ′ can be obtained from M (up to alpha-conversion, of course)

by replacing a subexpression which is a redex by its

corresponding reduct . The redex-reduct pairs are of two forms:

(λ x : τ (M1))M2 →M1[M2/x]

(Λ α (M)) τ →M [τ/α].

M →∗ M ′ indicates a chain of finitely† many beta-reductions.

(† possibly zero—which just means M and M ′ are alpha-convertible).

M is in beta-normal form if it contains no redexes.

Slide 46

6.1 PLC dynamics

Most studies of the computational properties of polymorphic lambda calculus have been
based on the PLC analogue of the notion of beta-reduction from untyped lambda calculus.
This is defined on Slide 46.

57
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Example 6.1.1. Here are some examples of beta-reductions. The various redexes are shown
boxed. Clearly, the final expression y is in beta-normal form.

(λ x : α1 (x y)) (Λ α2 (λ z : α2 (z)))α1

(Λ α2 (λ z : α2 (z)))α1 y (λ x : α1 (x y)) (λ z : α1 (z))

(λ z : α1 (z))y

y

Properties of PLC beta-reduction on typeable expressions

Suppose Γ �M : τ is provable in the PLC type system. Then

the following properties hold:

Subject Reduction. If M →M ′, then Γ �M ′ : τ is also a

provable typing.

Church Rosser Property. If M →∗ M1 and M →∗ M2, then

there is M ′ with M1 →∗ M ′ and M2 →∗ M ′.

Strong Normalisation Property. There is no infinite chain

M →M1 →M2 → . . . of beta-reductions starting from M .

Slide 47

Slide 47 lists some important properties of typeable PLC expressions. The first is a weak
form of type soundness result (Slide 4) and its proof is sufficiently straightforward that it
may be set as an exercise (Exercise 6.3.1). We do not give the proofs of the Church Rosser
and Strong Normalisations properties here. The latter is a very difficult result.1 It was first

1Since it in fact implies the consistency of second order arithmetic, it furnishes a concrete example
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proved by (Girard 1972) using a clever technique called ‘reducibility candidates’; if you are
interested in seeing the details, look at (Girard 1989, Chapter 14) for an accessible account
of the proof.

PLC beta-conversion, =β

By definition, M =β M ′ holds if there is a finite chain

M − · − · · · − · −M ′

where each− is either→ or←, i.e. a beta-reduction in one

direction or the other. (A chain of length zero is allowed—in which

case M and M ′ are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for

typeable PLC expressions, M =β M ′ holds if and only if there is

some beta-normal form N with

M →∗ N ∗←M ′

Slide 48

Theorem 6.1.2. The properties listed on Slide 47 have the following consequences.

(i) Each typeable PLC expression, M , possesses a beta-normal form, i.e. an N such that
M →∗ N � , which is unique (up to alpha-conversion).

(ii) The equivalence relation of beta-conversion (Slide 48) between typeable PLC expressions
is decidable, i.e. there is an algorithm which, when given two typeable PLC expressions,
decides whether or not they are beta-convertible.

Proof. For (i), first note that such a beta-normal form exists because if we start reducing re-
dexes in M (in any order) the chain of reductions cannot be infinite (by Strong Normalisation)
and hence terminates in a beta-normal form. Uniqueness of the beta-normal form follows by
the Church Rosser property: if M →∗ N1 and M →∗ N2, then N1 →∗ M ′ ∗← N2 holds
for some M ′; so if N1 and N2 are beta-normal forms, then it must be that N1 →∗ M ′ and
N2 →∗ M ′ are chains of beta-reductions of zero length and hence N1 = M ′ = N2 (equality
up to alpha-conversion).

For (ii), we can use an algorithm which reduces the beta-redexes of each expression in
any order until beta-normal forms are reached (in finitely many steps, by Strong Normal-
isation); these normal forms are equal (up to alpha-conversion) if and only if the original

of Gödel’s famous incompleteness theorem: the strong normalisation property of PLC is a statement
that can be formalised within second order arithmetic, is true (as witnessed by a proof that goes outside
second order arithmetic), but cannot be proved within that system.
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expressions are beta-convertible. (And of course, the relation of alpha-convertibility is de-
cidable.)

Remark 6.1.3. In fact, the Church Rosser property holds for all PLC expressions, whether
or not they are typeable. However, the Strong Normalisation properties definitely fails for
untypeable expressions. For example, consider

Ωα
def= (λ f : α (f f))(λ f : α (f f))

from which there is an infinite chain of beta-reductions, namely

Ωα → Ωα → Ωα → · · · .

As with the untyped lambda calculus, one can regard polymorphic lambda calculus as a
rather pure kind of typed functional programming language in which computation consists
of reducing typeable expressions to beta-normal form. From this viewpoint, the properties
on Slide 47 tell us that (unlike the case of untyped lambda calculus) PLC cannot be
‘Turing powerful’, i.e. not all partial recursive functions can be programmed in it (using a
suitable encoding of numbers). This is simply because, by virtue of Strong Normalisation,
computation always terminates on well-typed programs.

6.2 Algebraic datatypes

Roughly speaking an algebraic datatype (or datatype constructor) is one which is defined
(usually recursively) using products, sums and previously defined algebraic datatype con-
structors. Thus in Standard ML such a datatype constructor (called alg , with constructors
C1, . . . , Cm) might be declared by

datatype (α1, . . . , αn)alg = C1 of τ1 | · · · | Cm of τm;

where the types τ1, . . . , τm are built up from the type variables α1, . . . , αn and the type
(α1, . . . , αn)alg itself, just using products and previously defined algebraic datatype con-
structors, but not, for example, using function types. Such algebraic datatypes can be rep-
resented in polymorphic lambda calculus. We indicate this by giving some examples. For a
more systematic treatment see (Girard 1989, Sections 11.3–5).
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Polymorphic booleans

bool def= ∀α (α→ (α→ α))

True def= Λ α (λ x1 : α, x2 : α (x1))

False def= Λ α (λ x1 : α, x2 : α (x2))

if def= Λ α (λ b : bool , x1 : α, x2 : α (b α x1 x2))

Slide 49

Example 6.2.1 (Booleans). The polymorphic type corresponding to the ML algebraic type

datatype bool = True | False;

is shown on Slide 49. The idea behind this representation is that the ‘algorithmic essence’ of
a boolean, b, is the operation λx1 : α, x2 : α(if b thenx1 elsex2) (of type α→ α→ α1),
which takes a pair of expressions of the same type and returns one or other of them. Clearly,
this operation is parametrically polymorphic in the type α, so in PLC we can take the step of
identifying booleans with expressions of the corresponding ∀-type, ∀α (α→ α→ α). Note
that for the PLC expressions True and False defined on Slide 49 the typings

∅ � True : ∀α (α→ α→ α) and ∅ � False : ∀α (α→ α→ α)

are both provable. The if then else construct, given for the above ML algebraic datatype by
a case-expression

caseM1 of True ⇒M2 | False ⇒M3

has an explicitly typed analogue in PLC, viz. if τ M1 M2 M3, where τ is supposed to be the
common type of M2 and M3 and if is the PLC expression given on Slide 49. It is not hard
to see that

∅ � if : ∀α (bool → (α→ (α→ α))).

1Recall the notational conventions of Notes 5.2.2: α → α → α means α → (α → α).
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Thus if Γ � M1 : bool , Γ � M2 : τ and Γ � M3 : τ , then Γ � if τ M1 M2 M3 : τ . (Cf.
the typing rule (if) on Slide 6.) Furthermore, the expressions True , False , and if have the
expected dynamic behaviour: if

M1 →∗ True and M2 →∗ N

or

M1 →∗ False and M3 →∗ N

then it is not hard to see that

if τ M1 M2 M3 →∗ N.

(Cf. the transition rules in Figure 1.) It is the case that True and False are the only closed
beta-normal forms in PLC of type bool (up to alpha-conversion, of course), but it is beyond
the scope of this course to prove it.

Polymorphic lists

α list def= ∀α′ (α′→ (α→ α′→ α′)→ α′)

Nil def= Λ α,α′ (λ x′ : α′, f : α→ α′→ α′ (x′))

Cons def= Λα(λx : α, � : α list(Λα′(

λx′ : α′, f : α→ α′→ α′(

f x (� α′ x′ f)))))

Slide 50
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Iteratively defined functions on finite lists

A∗ def= finite lists of elements of the set A

Given a set A′, an element x′ ∈ A′, and a function

f : A→ A′→A′, the iteratively defined function listIter x′ f
is the unique function g : A∗→A′ satisfying:

g Nil = x′

g (x :: �) = f x (g �).

for all x ∈ A and � ∈ A∗.

Slide 51

Example 6.2.2 (Lists). The polymorphic type corresponding to the ML algebraic datatype

datatype α list = Nil | Cons of α ∗ (α list);

is shown on Slide 50. Undoubtedly it looks rather mysterious at first sight. The idea behind
this representation has to do with the operation of iteration over a list shown on Slide 51.
The existence of such functions listIter x′ f does in fact characterise the set A∗ of finite lists
over a set A uniquely up to bijection.

We can take the operation

(15) λx′ : α′, f : α→ α′→ α′(listIter x′ f �)

(of type α′ → (α → α′ → α′) → α′) as the ‘algorithmic essence’ of the list � : α list .
Clearly this operation is parametrically polymorphic in α′ and so we are led to the ∀-type
given on Slide 50 as the polymorphic type of lists represented via the iterator operations they
determine. Note that from the perspective of this representation, the nil list is characterised as
that list which when any listIter x′ f is applied to it yields x′. This motivates the definition
of the PLC expression Nil on Slide 50. Similarly for the constructor Cons for adding an
element to the head of a list. It is not hard to prove the typings:

∅ � Nil : ∀α (α list)
∅ � Cons : ∀α (α→ α list → α list).
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As shown on Slide 52, an explicitly typed version of the operation of list iteration can
be defined in PLC: iter αα′ x′ f satisfies the defining equations for an iteratively defined
function (15) up to beta-conversion.

List iteration in PLC

iter def= Λα,α′(λx′ : α′, f : α→ α′→ α′(

λ � : α list (� α′ x′ f)))

satisfies:

∅ � iter : ∀α,α′ (α′→ (α→ α′→ α′)→ α list → α′)

iter α α′ x′ f (Nil α) =β x′

iter α α′ x′ f (Cons α x �) =β f x (iter α α′ x′ f �).

Slide 52

Remark 6.2.3. The syntax of ML expressions we used in Section 2 featured the usual case-
expressions for lists. In PLC we might hope to define an expression case of type

∀α, α′′ (α′′→ (α→ α list → α′′)→ α list → α′′)

such that

case αα′′ x′′ g (Nil α) = x′′

case α α′′ x′′ g (Cons α x �) = g x �.

This is possible (but not too easy), by defining an operator for list primitive recursion.
This is alluded to on page 92 of (Girard 1989); product types are mentioned there because
the definition of the primitive recursion operator can be done by a simultaneous iterative
definition of the operator itself and an auxiliary function. We omit the details. However,
it is important to note that the above equations will hold up to beta-conversion only for x
and � restricted to range over beta-normal forms. (Alternatively, the equations hold in full
generality so long as ‘=’ is taken to be some form of contextual equivalence.)

Figure 8 gives some other algebraic datatypes and their representations as polymorphic
types. See (Girard 1989, Sections 11.3–5) for more details.
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ML PLC

datatype null = ; null def= ∀α (α)

datatype unit = Unit ; unit def= ∀α (α→ α)

α1 ∗ α2 α1 ∗ α2
def= ∀α ((α1→ α2→ α)→ α)

datatype (α1, α2)sum = (α1, α2)sum
def=

Inl of α1 | Inr of α2; ∀α ((α1→ α)→ (α2→ α)→ α)

datatype nat = nat def=
Zero | Succ of nat ; ∀α (α→ (α→ α)→ α)

datatype binTree = binTree def=
Leaf | Node of binTree ∗ binTree; ∀α (α→ (α→ α→ α)→ α)

Figure 8: Some more algebraic datatypes

6.3 Exercises

Exercise 6.3.1. Prove the various typings and beta-reductions asserted in Example 6.2.1.

Exercise 6.3.2. Prove the various typings asserted in Example 6.2.2 and the beta-conversions
on Slide 52.

Exercise 6.3.3. For the polymorphic product type α1 ∗ α2 defined in the right-hand column
of Figure 8, show that there are PLC expressions Pair , fst , and snd satisfying:

∅ � Pair : ∀α1, α2 (α1→ α2→ (α1 ∗ α2))
∅ � fst : ∀α1, α2 ((α1 ∗ α2)→ α1)
∅ � snd : ∀α1, α2 ((α1 ∗ α2)→ α2)
fst α1 α2(Pair α1 α2 x1 x2) =β x1

snd α1 α2(Pair α1 α2 x1 x2) =β x2.

Exercise∗ 6.3.4. Suppose that τ is a PLC type with a single free type variable, α. Suppose
also that T is a closed PLC expression satisfying

∅ � T : ∀α1, α2 ((α1→ α2)→ (τ [α1/α]→ τ [α2/α])).

Define ι to be the closed PLC type

ι
def= ∀α ((τ → α)→ α).
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Show how to define PLC expressions R and I satisfying

∅ � R : ∀α ((τ → α)→ ι→ α)
∅ � I : τ [ι/α]→ ι

(R α f)(I x)→∗ f (T ι α (R α f) x).



7 Further Topics

The study of types forms a very vigorous area of computer science research, both for
computing theory and in the application of theory to practice. This course has aimed
at reasonably detailed coverage of a few selected topics, centred around the notion of
polymorphism in programming languages. In this section I enumerate some of the other
topics which have been, or may be, important in the development of the theory and application
of type systems in computer science, together with some pointers to the literature.

Logical type theories

The concept of ‘type’ first arose in the logical foundations of mathematics. Russell (1903)
circumvented the paradox he discovered in Frege’s set theory by stratifying the universe
of untyped sets into levels, or types. Church (1940) proposed a typed, higher order logic
based on functions rather than sets and which is capable of formalising large areas of
mathematics. A version of this logic is the one underlying the HOL system (Gordon and
Melham 1993). More generally, logical type theories have been used extensively in computer
systems for formalising mathematics, for proof construction, and for checking the correctness
of proofs. In this respect Martin-Löf’s intuitionistic type theory has been highly influential:
see Nordström, Petersson, and Smith 1990 for an introduction to it. See (Lamport and Paulson
1999) for a stimulating discussion of the pros and cons of untyped logics (typically, set theory)
versus typed logics for mechanising mathematics.

The interplay between logic and types has often been mediated by the ‘propositions-as-
types’ correspondence. If one identifies a logical proposition with the set of all its proofs,
then propositions can be regarded as (maybe special kinds of) types, and “p is a proof of
φ” gets replaced by “M is an expression of type τ”. A formal version of this idea is the
so-called Curry-Howard correspondence between certain systems of constructive logic and
certain typed lambda calculi: see (Girard 1989, Chapter 3). The correspondence cuts both
ways: in one direction it has proved very helpful to use lambda terms as notations for proofs
in mechanised proof assistants; in the other it has helped to suggest new type systems for
programming and specification languages.

Abstract types and types for objects

Existentially quantified types, ∃α (τ), are dual to the ∀-types we considered in the poly-
morphic lambda calculus (Section 5). Roughly speaking the values of such a type are pairs
(τ ′, M) where τ ′ is a type and M is a value of type τ [τ ′/α].1 Such ∃-types are like ML’s
notion of signature: they classify implementations of abstract data types: see (Mitchell and
Plotkin 1988). It is another indication of the expressive power of polymorphic lambda calcu-
lus that ∃-types can in fact be encoded in PLC via the formula

∃α (τ) def= ∀α′ (∀α (τ → α′)→ α′)

1In an explicitly typed language, such as PLC, one has to include some extra type information with
such a pair; see (Cardelli 1997, Section 5), for example.

67
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(where α′ /∈ ftv(τ)).
Existential types have also proved useful in formulating type systems for object-oriented

languages: see (Pierce and Turner 1994) for example. Such languages inevitably involve
consideration of a subtype relation between types, τ <: τ ′. This relation is often motivated
by the simple notion of a set (of values of some type) being a subset of another set (of values
of some other type). However, its use in type systems for programming languages is more
often tied up with the notion of subsumption given on Slide 11. In class-based object-oriented
languages one also has similar-looking notions of subclassing and inheritance. Type systems
have been used to analyse the meaning and inter-relationship of concepts like ‘subtype’,
‘subsumption’, ‘subclass’, and ‘inheritance’ as they occur in object-oriented languages (and
their relationship to the dynamic semantics of such languages). This is currently a vigorous
area of research: see the book by Abadi and Cardelli (1996).

Concurrency and distributed systems

The typing of languages involving concurrent threads of computation and associated notions
of mobility and distribution is so current a topic of research that it is difficult to give pointers
to well-digested accounts (and the references in this section will certainly be more accessible
after you have attended the Part II Topics in Concurrency course). A basic motivation for the
use of type systems here is the same as for more traditional languages: to avoid unsafe or
undesirable behaviour via static checks. However the kinds of unsafe behaviour are now much
more complicated, or at least, less well-understood. For classical concurrent programming,
there are, for example, type systems which can ensure that locks are used correctly (Flanagan
and Abadi 1999). In distributed (and possibly mobile) settings, there are a number of type
systems which further classify values by the place at which they reside in a network and/or
the resources to which they have access, see Hennessy and Riely (2002), for example.

Another direction of research looks at type systems which can be used to express and
check that a sequence of interactions between two systems adheres to some protocol. The
technical report by Gay, Vasconcelos, and Ravara (2003) is fairly readable, see also Chaki,
Rajamani, and Rehof (2002). In the case that the two systems belong to different organisations
(for example, a travel agent and an airline) such type systems suggest the idea of a type as
a kind of contract being taken rather literally. This is not only a very interesting and a very
challenging area, but also one of rather immediate practical concern.

Types and security

We have seen how static type checking can ensure that certain kinds of error will never
happen when a program is executed. Such basic safety guarantees (for example, proving
that an integer will never be treated as a pointer) are the foundation of many systems for
deciding whether code obtained from a potentially untrustworthy source is safe to execute.
Both the Java virtual machine and the .NET CLR include type checkers (or verifiers), which
are run before code is executed. A nice overview of the internals of JVM verification has
been written by Leroy (2003). The correctness of higher-level security operations (such as
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the management of explicit permissions to perform potentially-unsafe operations) relies on
the typability of any untrusted code which will be allowed to execute.

Type systems are also being used to formalise and check properties which are more
security-specific. One line of research classifies the inputs and outputs of a program as either
high-security and low-security. A type system can then be used to ensure that high-security
information cannot affect low-security outputs (imagine downloading a banking application
which has to communicate over the network to retrieve current tax rates, etc., but which you
wish to be sure will not leak any of your personal information). See Volpano, Smith, and
Irvine (1996) for example. There are also type systems which can statically check access-
control systems such as that of Java – if a program typechecks in such a system then one can
be sure that all the dynamic permission tests will succeed (and can therefore be removed).
See the paper by Skalka and Smith (2000) for example.

Types for low-level languages

Traditionally, sophisticated type systems have been associated with high-level programming
languages. Low-level languages such as C or assembler have made do with either no types
or type systems which are both inexpressive and unsafe. In particular, high-level, safe, typed
languages have been compiled into low-level, untyped, unsafe ones. Recent years have seen
a great deal of research activity on typed assembly language (TAL) and type-preserving
compilation (Morrisett, Walker, Crary, and Glew 1999). The idea here is to compile an ML
program, for example, into a typed assembly language program in such a way that checking
the types on the assembly code gives the same safety guarantees as one gets from the ML type
system with respect to a high-level operational semantics for ML. This is clearly similar to the
use of bytecode verification discussed above; the difference is that the intermediate languages
of the JVM and CLR are fairly high-level, so verification is similar to type checking Java or C�

source (and therefore not too difficult) but the interpreter or JIT compiler which runs after the
verifier has to be part of the trusted computing base (TCB). In the type-preserving compilation
approach, the types (and hence the type checker) for the low-level code tend to be rather more
complex, but only the type-checker need be part of the TCB: bugs or maliciousness in the
compiler are either benign or yield TAL programs which fail to typecheck; see also work on
proof-carrying code, such as Necula (1997).

An active area of related work concerns designing C-like languages with safe type
systems (and which may be compiled to TAL). Examples include CCured (Necula, McPeak,
and Weimer 2002) and Cyclone (Jim, Morrisett, Grossman, Hicks, Cheney, and Wang 2002).
These languages vary in their degree of compatibility with legacy C code and in the extent to
which safety is ensured by static, rather than dynamic, checks.

Static analysis and optimizing compilation

Many compile-time program analyses which are performed by optimizing compilers have
been formulated as non-standard type inference problems. These often take the form of type
and effect systems, which further classify expressions according to a static approximation
of their possible side-effects. A function in such a system will have a type something like
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τ1
ε→ τ2 which is the type of functions which take arguments of type τ1, return results of

type τ2 and have side-effects at most ε. The precise grammar of effects ε will be different for
different analyses, but might include information about reading, writing or allocating mutable
storage or throwing particular exceptions. Type and effect systems are discussed in the Part
II Optimizing Compilers course and the book by Nielson, Nielson, and Hankin (1999).

One particularly impressive application of effect inference is region-based memory
management (Tofte and Talpin 1997). Types for values are extended with an abstraction
of the region of memory in which they are allocated, and type and effect inference is used
to track which regions are potentially read and written by each expression in the program.
This information can then be used by the compiler to soundly insert calls for allocating and
freeing regions into the compiled code (the safety condition being that there will be no further
accesses to a region after it has been freed). This static approach to memory management can
be used instead of, or as well as, the dynamic approach of using a garbage collector. Region-
based memory management has been implemented in the ML Kit compiler and in the Cyclone
language mentioned above (Grossman, Morrisett, Jim, Hicks, Wang, and Cheney 2002), and
sometimes performs dramatically better than garbage collection alone.

Types for schema and query languages

Schema for relational databases or DTDs for XML documents are a kind of type. The last few
years have seen a great deal of research on integrating types for these sorts of data into the type
systems of (new and existing) programming languages. This has many potential advantages,
such as being able to check statically that a program which transforms XML documents
always produces valid output (e.g. well-formed HTML) from valid input. Languages such
as XDuce, CDuce (Benzaken, Castagna, and Frisch 2003) and Xtatic have types which
can express regular expressions over tree-structured data; language inclusion thus induces
a subtype relation, and type inference and checking involve computing with these regular
expressions. In CDuce, for example, we can define types like

type Bib = <bib>[ Book* ];;
type Book = <book>[ Title Year Author+ ];;
type Year = <year>[ ’0’--’9’+ ];;
type Title = <title>[ PCDATA ];;
type Author = <author>[ PCDATA ];;

These declarations say that Bib is the type of XML trees consisting of a <bib> tag
containing a sequence of zero or more Books, each of which is a <book> tag containing a
Title, a Year and one or more Authors, and so on. An example of an XML document
having type Bib is

<bib>
<book>
<title>Persistent Object Systems</title>
<year>1994</year>
<author>M. Atkinson</author>
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<author>V. Benzaken</author>
<author>D. Maier</author>

</book>
<book>
<title>OOP: a unified foundation</title>
<year>1997</year>
<author>G. Castagna</author>

</book>
</bib>
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