
What We Talk About When
We Talk About Types

Nick Benton

Types in everyday programming

26/02/2014 2

public static <T extends Comparable<? super T>>

T max(Collection<T> coll) { … }

- fun map f [] = []

| map f (x::xs) = f x :: map f xs;

val map = fn : ('a -> 'b) -> 'a list -> 'b list

> [] + []

> [] + {}

[object Object]

> {}+[]

0

> {} + {}

Nan

We don't talk about types, we argue
about them...

26/02/2014 3

“Dynamic typing is but a special

case of static typing, one that limits,

rather than liberates, one that shuts

down opportunities, rather than

opening up new vistas.” - Harper

For and against
 Static catches errors early, dynamic catches errors

 Static does away with runtime tests

 Static aids other static analysis and optimization

 IDE exploits types for completion, etc.

 Type info for garbage collection

 Can enforce security-critical invariants (e.g. JVM)

 Code can be generated or inferred from types

 Aids evolution, refactoring

 Documenting, communicating interfaces

 Mental scaffolding, blueprint during design

 Static too complex and bureaucractic

 Static too brittle, hinders "loose coupling"

 Too restrictive: "we don't need no stinkin' types"

26/02/2014 4

In programming language conferences

 Polymorphism, modules, dependent types,
refinements, overloading, subtyping, classes…

 Effect analysis, information flow, access control,
communication protocols, lock usage, reactivity,
distribution, data representation, staging, complexity

 Type theory and logic

26/02/2014 5

The logical, proof-theoretic view, and
propositions as types

26/02/2014 6

𝑥: 𝑥:

𝑀: 𝑁:

𝑀 𝑁 ∶

𝑥: 𝑀:

𝜆𝑥: 𝐴.𝑀:

Logic Types

⊃ →

∧ ×

∨ +

Proof normalization
 Simplify (identify) proofs by removal of "detours"

 Substitution lemma:

 Now reduce intro/elim pairs

 reduces to

 proof simplification = beta reduction
26/02/2014 7

Discussion
 Subject reduction (reduction preserves types)

 Strong normalization (all reduction sequences
terminate, logical consistency)

 Sequent calculus presentations too (cut elimination)

 Very syntactic. Rules of the game given by beautiful
symmetries, etc.

 Types are intrinsic, prescriptive, synthetic - "Church
style". Ill-typed terms aren't considered.

 Hugely successful, influential approach
 Generalizes to lots of other propositional logics (linear, S4 for staged

computation, S5 for distribution, lax logic for monads, classical logic and
control,...)

 Also to richer logics, program extraction in dependent type theory

 Not so easy to extend to "real" PL type systems

 Analogy between proof simplification and operational
semantics imperfect26/02/2014 8

Intrinsic models "bottom up"

 Interpret types as sets (objects)

 𝑥1:𝐴1, … , 𝑥𝑛: 𝐴𝑛 = 𝐴1 ×⋯× 𝐴𝑛 (product)

 𝐴 → 𝐵 = 𝐵 𝐴 (set of functions, exponential)

 Interpret terms as functions (morphisms)

 Γ ⊢ 𝑀:𝐴 ∶ Γ → 𝐴

 Semantics models equations induced by beta & eta -
equivalent proofs/terms interpreted by equal
morphisms

 Denotational models in this general style do work for
richer languages, even when the logical, proof-
theoretic story breaks down

26/02/2014 9

Extrinsic semantics & "well-typed
programs don't go wrong"
 Quite different approach: programs come first

 Give semantics to all type-free programs, which may involve some notion of
dynamic error

 Types are extrinsic, descriptive, analytic properties of
programs

 e.g. Milner starts with semantics of untyped CBV
lambda calculus in a universal domain

 𝑀𝑁 𝜌 = 𝑙𝑒𝑡 𝑓 = 𝑀 𝜌;𝑣 = 𝑁 𝜌 𝑖𝑛 𝑎𝑝𝑝𝑙𝑦(𝑓, 𝑣)

 where, e.g. 𝑎𝑝𝑝𝑙𝑦 𝑖𝑛1 𝑛 , 𝑣 = [𝑖𝑛3 𝑤𝑟𝑜𝑛𝑔]

 Carves out meanings of types as certain subsets of 𝑉
26/02/2014 10

Extrinsic models "top down"

 𝑛𝑎𝑡 = 𝑖𝑛1 𝑛 𝑛 ∈ ℕ

 𝐴 → 𝐵 = 𝑖𝑛2 𝑓 ∀𝑣 ∈ 𝐴 , 𝑓𝑣 ∈ 𝐵 ⊥

 Then not all elements have a type, some have more
than one type (e.g. identity function)

 Give Curry-style type assignment for type-free terms

 If Γ ⊢ 𝑀:𝐴 and 𝜌 ∈ Γ then 𝑀 𝜌 ∈ 𝐴 ⊥

 In particular, well-typed programs don't go wrong

26/02/2014 11

Γ, 𝑥: 𝐴 ⊢ 𝑀:𝐵

Γ ⊢ 𝜆𝑥. 𝐵 ∶ 𝐴 → 𝐵

Syntactic type soundness

 Can construct extrinsic models of types over
operational semantics too

 but Wright and Felleisen ('94) came up with
something simpler
 Work with small step operational semantics

 Define `proper' values (fully evaluated expressions)

 Instead of explicitly saying 3 𝑡𝑟𝑢𝑒 → 𝑤𝑟𝑜𝑛𝑔 just allow the semantics to get
stuck, so 3 𝑡𝑟𝑢𝑒 ↛

 Prove preservation, if 𝑀:𝐴 and 𝑀 → 𝑀′ then 𝑀′: 𝐴 (cf. subject reduction)

 Prove progress, if 𝑀:𝐴 and 𝑀is not a value, then ∃𝑀′,𝑀 → 𝑀′

 Hence, well-typed programs don't get stuck

 This is widely held to be the definition of type
safety/soundness

26/02/2014 12

Discussion
 It is simple, and superficially natural for simple types (think of

writing an interpreter in ML)

 Only talks about specific type rules and internal details of
specific operational semantics

 Have to extend typing rules to objects that only appear in
operational semantics (heaps, stacks, pointers,
configurations)

 For fancier types (effects, locks,...) have to instrument
operational semantics, introducing new, fictitious stuck states
that weren't there before
 Gets silly, e.g. for TAL - machine code programs don't go wrong

 Never says what types mean, fails to capture compositional
role as interface contracts (functions = functions?)

 Reduces static types to dynamic types
26/02/2014 13

Intensional versus extensional

 What do we think we're doing when we write an
operational semantics?
 We're defining a language, but do we take the intermediate configurations

seriously?

 The compiler only cares about observable behaviour. If performs optimizing
transformations and then emits machine code whose traces bear only a loose
similarity with the original operational semantics

 Milner's semantics is mostly extensional. There are
terms that inhabit a semantic type without being
typable in the original system
𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 3 𝑒𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 ∶ 𝑛𝑎𝑡

 But still assumes dynamic test on summands of
universal type

26/02/2014 14

Parametricity and abstraction
 "Type structure is a syntactic discipline for enforcing

levels of abstraction" - Reynolds

 Collection of techniques originating in study of
abstract datatypes, representation independence and
parametric polymorphism
 What does it mean to say complex numbers are an abstract type?

 When are two implementations of complex numbers equivalent?

 In what sense do polymorphic functions behave "uniformly"?

 Central idea: go from types as subsets to types as
relations (and type operators as operators on
relations)

26/02/2014 15

Free theorems

 Any function f of type ∀𝑋.𝑋 → 𝑋is the identity

 ∀𝐴,𝐵,𝑅 ⊆ 𝐴 × 𝐵, a, b ∈ 𝑅, 𝑓𝐴𝑎, 𝑓𝐵𝑏 ∈ 𝑅
 Write 𝑓𝐴, 𝑓𝐵 ∈ 𝑅 → 𝑅

 Any function of type ∀𝑋. 𝐿𝑖𝑠𝑡 𝑋 → 𝐿𝑖𝑠𝑡 𝑋 just
reorganizes its input in a fixed way

 ∀𝐴,𝐵, 𝑅 ⊆ 𝐴 × 𝐵, 𝑎𝑠, 𝑏𝑠 ∈ 𝐿𝑖𝑠𝑡 𝑅, 𝑓𝐴𝑎𝑠, 𝑓𝐵𝑏𝑠 ∈
𝐿𝑖𝑠𝑡 𝑅

 ∀𝐴,𝐵, 𝑎𝑠: 𝐿𝑖𝑠𝑡 𝐴, ℎ:𝐴 → 𝐵,𝑓𝐵 𝑚𝑎𝑝 ℎ 𝑎𝑠 =
𝑚𝑎𝑝 ℎ 𝑓𝐴𝑎𝑠

26/02/2014 16

Top-down relational models of types

 Carve out meanings of types as relations over an
untyped model (these days, often just operational
semantics)

 𝐴 → 𝐵 = 𝐴 → 𝐵 (n.b. relational →!)

 ∀𝑋.𝐴 𝜌 = 𝑅 𝐴 𝜌[𝑋 ↦ 𝑅]

 Want type meanings to be partial equivalence
relations (PERs)

 So subset of values together with a coarser notion of
equality

 Defined together as values inhabiting compound
types must respect equality on components

26/02/2014 17

Discussion

 No need to ever talk about errors

 Relational semantics neither stronger nor weaker
than syntactic safety
 Syntactically untypable expressions can inhabit semantic types

 Syntactically type-safe operations that break abstraction are ruled out

 𝜆𝑓: 𝑛𝑎𝑡 → 𝑛𝑎𝑡. 𝑖𝑓 𝑓 = 𝜆𝑥. 𝑥 𝑡ℎ𝑒𝑛 3 𝑒𝑙𝑠𝑒 4 ∉ 𝑛𝑎𝑡 → 𝑛𝑎𝑡 → 𝑛𝑎𝑡

 We get equational rules as well as inhabitation

 Traditionally started with system then looked for
model, but these are the properties we wanted all
along

26/02/2014 18

Example: Information flow

 Want to ensure no information flows from high-
security variables to low-security ones

 This is not something one can naturally even explain
in terms of runtime errors

 𝐶 :ℕℎ ×ℕ𝑙 → ℕh ×ℕ𝑙
 ∀ 𝑛ℎ, 𝑛𝑙 , 𝑛ℎ

′ , 𝑛𝑙
′ , 𝑖𝑓 𝑛𝑙 = 𝑛𝑙

′ 𝑡ℎ𝑒𝑛 𝜋2 𝐶 𝑛ℎ, 𝑛𝑙 =
𝜋2 𝐶 (𝑛ℎ

′ , 𝑛𝑙
′)

 (𝐶 , 𝐶) ∈ 𝑇 × Δ → 𝑇 × Δ

 There's a very natural relational logic that captures
this and many other static analyses and the
transformations they enable

26/02/2014 19

Dimensions, etc.
 Kennedy. Incorporate physical dimensions (mass, length,

time) into polymorphic type system that checks for
dimensional consistency
 real<d> is reals indexed by dimension d

 Purely syntactically, this is interesting because there are equations on dimension
expressions

 Implemented in F#

 But what does it mean?
 Nature doesn't carry dimension tags around and raise an exception if they don't match

up

 Essence of dimensional correctness is extensional, and rather beautiful: invariance under
scaling

 If 𝑓: 𝑟𝑒𝑎𝑙 < 𝑎 >→ 𝑟𝑒𝑎𝑙 < 𝑎2 > then ∀𝑘 > 0, 𝑥, 𝑓 𝑘 ∗ 𝑥 = 𝑘2 ∗ 𝑓(𝑥)

 Relational semantics also gives (non)definability results

 Generalizes to e.g. geometry (invariance under
transformations, AJK)

 And even to physics (laws of motion from conservation laws,
Atkey)!

26/02/2014 20

Compositional type soundness of
compilers
 Express meaning of high-level types as relational,

extensional constraints on the behaviour of compiled
code

 What does it mean to say a word in memory
contains an integer, Boolean, code pointer, data
structure pointer?

 It's a constraint on what information code that uses it
is allowed to depend on

 This way of doing things supports cross-language
linking

26/02/2014 21

- 42 - --

Allocator’s

heap

Heap

stack_size

current frame

parent frame

[arg]< - 2

[ret]< - l+3

jmp alloc

[[ret]+1]< - [env]

[env]< - ret

é

Program

2

a
rg

re
t w
k

e
n
v

s
p

-

call

stack
…

3 t

f

Effect systems

£ ; x : X ` M : T" Y

£ ` ¸ x : U(X):M : X ! T" Y

£ ` V1 : X ! T" Y £ ` V2 : X

£ ` V1 V2 : T" Y

£ ` V : X

£ ` val V : T; X

£ ` M : T" X £ ; x : X ` N : T" 0Y

£ ` l et x (M i n N : T" [" 0Y

£ ` V : bool £ ` M : T" X £ ` N : T" X

£ ` i f V t hen M el se N : T" X

£ ` r ead(`) : Tf r ` g(i nt)

£ ` V : i nt

£ ` wr i t e(`; V) : Tf ẁ g(uni t)

£ ` V : X X āX 0

£ ` V : X 0

£ ` M : T" X T" X āT" 0X 0

£ ` M : T" 0X 0

[[X]] µ [[U(X)]] £ [[U(X)]]

[[i nt]] = ¢ Z

[[bool]] = ¢ B

[[uni t]] = ¢ 1

[[X £ Y]] = [[X]] £ [[Y]]

[[X ! T" Y]] = [[X]] ! [[T" Y]]

[[T" X]] =
\

R 2 R "

R ! R £ [[X]]

Values of base type are related just to themselves

(diagonal relation)

Functions are related in the usual

“logical” fashion: related arguments
­ related results

Computations are related if they preserve all
state relations that respect the effectR " ; R e µ P(S £ S)

R " =
\

e2 "

R e

R r `
= f R j 8(s; s0) 2 R; s ` = s0`g

R ẁ = f R j 8(s; s0) 2 R; 8n 2 Z: (s[` 7! n]; s0[` 7! n]) 2 Rg

Semantics of refined types

Effect-dependent equivalences (1)

Dead Computat ion:

£ ` M : T" X £ ` N : T" 0Y
x 62 £ ; wrs(") = ;

£ ` l et x (M i n N = N : T" 0Y

Duplicated Computat ion:

£ ` M : T" X £ ; x : X ; y : X ` N : T" 0Y
rds(") \ wrs(") = ;

£ ` l et x (M i n l et y (M i n N

= l et x (M i n N [x=y]
: T" [" 0Y

Effect-dependent equivalences (2)

Commut ing Computat ions:

£ ` M 1 : T" 1
X 1 £ ` M 2 : T" 2

X 2 £ ; x1 : X 1; x2 : X 2 ` N : T" 0Y rds("1) \ wrs("2) = ;
wrs("1) \ rds("2) = ;
wrs("1) \ wrs("2) = ;£ ` l et x1 (M 1 i n l et x2 (M 2 i n N

= l et x2 (M 2 i n l et x1 (M 1 i n N
: T" 1 [" 2 [" 0Y

Pure Lambda Hoist :

£ ` M : Tf gZ £ ; x : X ; y : Z ` N : T" Y

£ ` val (¸ x : U(X):l et y (M i n N)

= l et y (M i n val (¸ x : U(X):N)
: Tf g(X ! T" Y)

Summary

 Please stop doing syntactic type soundness proofs!

 Types are about abstractions not about errors

 Can make that precise using relational parametricity

 All types are abstract, all type systems about
information flow

 This way of doing things works at multiple levels of
abstraction, from source to machine code

 Recent work on relations for languages with store,
control, polymorphism, generativity, concurrency

 Approach yields useful, deep results, including
contextual equational laws

26/02/2014 28

Thank you

26/02/2014 29

Standard typing rules

¡ ` V1 : A ¡ ` V2 : B

¡ ` (V1; V2) : A £ B

¡ ` V : A1 £ A2

¡ ` ¼i V : A i

¡ ; x : A ` M : TB

¡ ` ¸ x : A:M : A ! TB

¡ ` V1 : A ! TB ¡ ` V2 : A

¡ ` V1 V2 : TB

¡ ` V : A

¡ ` val V : TA

¡ ` M : TA ¡ ; x : A ` N : TB

¡ ` l et x (M i n N : TB

¡ ` V : bool ¡ ` M : TA ¡ ` N : TA

¡ ` i f V t hen M el se N : TA

¡ ` r ead(`) : T i nt

¡ ` V : i nt

¡ ` wr i t e(`; V) : Tuni t

Base semantics in Set

S = Locs ! Z

[[uni t]] = 1

[[i nt]] = Z

[[bool]] = B

[[A £ B]] = [[A]] £ [[B]]

[[A ! TB]] = [[A]] ! [[TB]]

[[TA]] = S ! S £ [[A]]

Refined types and subtyping

 Subtyping

X āX

X āY Y āZ

X āZ

X āX 0 Y āY 0

X £ Y āX 0£ Y 0

X 0āX T" Y āT" 0Y 0

(X ! T" Y) ā(X 0 ! T" 0Y 0)

" µ "0 X āX 0

T" X āT" 0X 0

·Types

X ; Y := uni t j i nt j bool j X £ Y j X ! T" Y

£ := x1 : X 1; : : : ; xn : X n

" µ
[

` 2 L
f r ` ; ẁ g

Results

 Soundness of subtyping: If X āY then [[X]] µ [[Y]].

· Fundamental theorem:

If £ ` V : X ; (½; ½0) 2 [[£]]

then ([[U(£) ` V : U(X)]] ½; [[U(£) ` V : U(X)]] ½0) 2 [[X]]:

· Meaning of top effect:

· Equivalences

ƁEffect-independent: congruence rules, b, hrules,
commuting conversions

ƁEffect-dependent: dead computation, duplicated
computation, commuting computations, pure
lambda hoist

ƁReasoning is quite intricate, involving construction
of specific effect-respecting relations.

[[G(A)]] = ¢ [[A]].

