icrosoft Research

What We Talk About When
We Talk About Types

Nick Benton

Types in everyday programming

-funmapf[l =]
| map f (x:xs) = fx:mapfxs;
val map = fn: (‘a -> 'b) -> 'a list -> 'b list

public static <T extends Comparable<? super T> >
T max(Collection<T> coll) { ... }

>[]+1I
> [] +{}

[object Object]
> {}+]]
0 CASE Ap: { LET f, a = eval(H2!'x, e), eval(H3!x, e)
>0+ {) LET bv, body, env = H1!f, H2!f, H3!f
Nan RESULTIS eval(body, mk3(bv, a, env))

}

26/02/2014

We don't talk about types, we argue
about them...

typed or untyped? (Or unityped?)

static Dynamic typing is but a speagl | gng?
case of static typing, one that limits,
1 rather than liberates, one that shuts | ~_ctri~+?
NOMII down opportunities, rather than N-strict:
opening up new vistas.” - Harper
inferred or explicit? - latent?

type safe? type sound?
memory safe?

26/02/2014 3

For and against

- Static catches errors early, dynamic catches errors
+ Static does away with runtime tests

- Static aids other static analysis and optimization
- IDE exploits types for completion, etc.

- Type info for garbage collection

- Can enforce security-critical invariants (e.g. JVM)
- Code can be generated or inferred from types

- Aids evolution, refactoring

+ Documenting, communicating interfaces

- Mental scaffolding, blueprint during design

+ Static too complex and bureaucractic

- Static too brittle, hinders "loose coupling"

+ Too restrictive: "we don't need no stinkin' types'

26/02/2014

In programming language conferences

- Polymorphism, modules, dependent types,
refinements, overloading, subtyping, classes...

- Effect analysis, information flow, access control,
communication protocols, lock usage, reactivity,
distribution, data representation, staging, complexity

- Type theory and logic

SUB-EXISTS

C<Pi, ..., P,>isasubclass of D<Z1, ..., %>
0 R D<73_-1, s TS| PP BT 725y D, s o
for all v” in ", exists 4 in 1 to n with 6(v") = 0;(v")
foralliinlton, [T : A,AF 7[Pi—11, ..., Pnstm| = 7[0)
forallv <: #in A, TI,T: A, Al—@(u) <: 7]
forallv > 7#in A, T,T: A, A+ #[0] <: 6(v)
T:AFTdC:A(A). C<ty,y ony B> < AT :A(A'). DAY, 7>

26/02/2014

The logical, proof-theoretic view, and
propositions as types

[Lx:A+- M:B
'-Ax:AM:A—-> B
'-FM:A-B T'FN:A
'-MN:B

[Lx:AF x: A

Logic Types

propositions = types ——
proofs = terms A

X

Proof normalization
- Simplify (identify) proofs by removal of "detours'

- Substitution lemma: Tx:A-M:B TEN:A
- M[N/x]:B

- Now reduce intro/elim pairs

ILx:A+- M:B .
FricAMAsE | N4
' (Ax:A.M)N:B

- reduces to I - M[N/x]:B
- proof simplification = beta reduction

Discussion
+ Subject reduction (reduction preserves types)

- Strong normalization (all reduction sequences
terminate, logical consistency)

- Sequent calculus presentations too (cut elimination)

- Very syntactic. Rules of the game given by beautiful
symmetries, etc.

- Types are intrinsic, prescriptive, synthetic - "Church
style". lll-typed terms aren't considered.

+ Hugely successtul, influential approach

- Generalizes to lots of other propositional logics (linear, S4 for staged
computation, S5 for distribution, lax logic for monads, classical logic and

control,...)
- Also to richer logics, program extraction in dependent type theory

- Not so easy to extend to "real" PL type systems

- Analogy between proof simplification and operational
*§Ethantics imperfect

Intrinsic models "bottom up”

+ Interpret types as sets (objects)

g Aq, e x Ayl = [AD X - X [[A,,] (product)
- [A = B] = [B]! (set of functions, exponential)
- Interpret terms as functions (morphisms)

- [T+ M:A] : [T] - [A]

- Semantics models equations induced by beta & eta -
equivalent proofs/terms interpreted by equal
morphisms

- Denotational models in this general style do work for
richer languages, even when the logical, proof-
theoretic story breaks down

26/02/2014 9

Extrinsic semantics & "well- typed

programs don't go wrong'
- Quite different approach: programs come first

- Give semantics to all type-free programs, which may involve some notion of
dynamic error

- Types are extrinsic, descriptive, analytic properties of
programs

- e.g. Milner starts with semantics of untyped CBV
lambda calculus in a universal domain

V==N+lV->V,)+ {wrong}
- [IM N]p=letf =[Ml]p;v=I[N]pinapply(f,v)
- where, e.q. apply(in;(n),v) = [ing(wrong)]
- Carves out meanings of types as certain subsets of V

26/02/2014 10

Extrinsic models "top down'

- [nat] = {in;(n)|n € N}

- [A - B] = {in,(f)|vv € [A], fv € [B] , }

- Then not all elements have a type, some have more
than one type (e.g. identity function)

- Give Curry-style type assignment for type-free terms

I'x:A+- M:B
[FAx.B:A—-> B

-IfI"' - M: A and p € [I']then [M]p € [A],
- In particular, well-typed programs don't go wrong

26/02/2014

Syntactic type soundness

- Can construct extrinsic models of types over
operational semantics too

- but Wright and Felleisen ('94) came up with
something simpler

- Work with small step operational semantics
- Define "proper’ values (fully evaluated expressions)

- Instead of explicitly saying (3 true) —» wrong just allow the semantics to get
stuck, so (3 true) »

- Prove preservation, if M: Aand M - M’ then M': A (cf. subject reduction)
- Prove progress, if M: A and Mis not a value, then AaM',M - M’
- Hence, well-typed programs don't get stuck

- This is widely held to be the definition of type
safety/soundness

26/02/2014 12

Discussion

- It is simple, and superficially natural for simple types (think of
writing an interpreter in ML)

- Only talks about specific type rules and internal details of
specific operational semantics

- Have to extend typing rules to objects that only appear in
operational semantics (heaps, stacks, pointers,
configurations)

- For fancier types (effects, locks,...) have to instrument
operational semantics, introducing new, fictitious stuck states
that weren't there before

- Gets silly, e.g. for TAL - machine code programs don't go wrong

- Never says what types mean, fails to capture compositional
role as interface contracts (functions = functions?)

+ Reduces static types to dynamic types

26/02/2014 13

Intensional versus extensional

- What do we think we're doing when we write an
operational semantics?

- We're defining a language, but do we take the intermediate configurations
seriously?

- The compiler only cares about observable behaviour. If performs optimizing
transformations and then emits machine code whose traces bear only a loose
similarity with the original operational semantics

- Milner's semantics is mostly extensional. There are
terms that inhabit a semantic type without being
typable in the original system
if true then 3 else false : nat

- But still assumes dynamic test on summands of
universal type

26/02/2014 14

Parametricity and abstraction

- "Type structure is a syntactic discipline for enforcing
levels of abstraction" - Reynolds

- Collection of techniques originating in study of
abstract datatypes, representation independence and
parametric polymorphism

- What does it mean to say complex numbers are an abstract type?
- When are two implementations of complex numbers equivalent?
- In what sense do polymorphic functions behave "uniformly"?

- Central idea: go from types as subsets to types as
relations (and type operators as operators on
relations)

26/02/2014 15

Free theorems

- Any function f of type VX. X — Xis the identity
*VA,B,R € AX B,(a,b) € R,(fya, fgb) ER

- Write (f4,fg) ER—>R

- Any function of type VX. List X — List X just
reorganizes its input in a fixed way

- VA,B,R € A X B, (as, bs) € List R, (f,as, fgbs) €
List R

- VA,B,as: List A h:A - B, fg(map has) =
map h (fyas)

26/02/2014

Top-down relational models of types

- Carve out meanings of types as relations over an
untyped model (these days, often just operational
semantics)

- [A = B] = [A] - [B] (n.b. relational »!)
- [vX. Alp = Ngl[Alp[X - R]

- Want type meanings to be partial equivalence
relations (PERs)

- SO subset of values together with a coarser notion of
equality

- Defined together as values inhabiting compound
types must respect equality on components

26/02/2014

Discussion

- No need to ever talk about errors

- Relational semantics neither stronger nor weaker
than syntactic safety

- Syntactically untypable expressions can inhabit semantic types
- Syntactically type-safe operations that break abstraction are ruled out
- Afinat - nat.if f = (Ax.x) then 3 else 4 ¢ [(nat — nat) - nat]

- We get equational rules as well as inhabitation

- Traditionally started with system then looked for
model, but these are the properties we wanted all
along

26/02/2014 18

Example: Information flow

- Want to ensure no information flows from high-
security variables to low-security ones

- This is not something one can naturally even explain
in terms of runtime errors

- [C]: N, x N; - Nj, X N;

-V (g,), (g,), if ny = ny then o [CT(ny, my) =
1, [CT(np,)

-(ICT,ICH ETXA—->T XA

- There's a very natural relational logic that captures

this and many other static analyses and the
transformations they enable

26/02/2014 19

Dimensions, etc.
- Kennedy. Incorporate physical dimensions (mass, length,

time) into polymorphic type system that checks for
dimensional consistency

- real<d> is reals indexed by dimension d

- Purely syntactically, this is interesting because there are equations on dimension
expressions

- Implemented in F#

- But what does it mean?
- Nature doesn't carry dimension tags around and raise an exception if they don't match
up
- Essence of dimensional correctness is extensional, and rather beautiful: invariance under
scaling

- If frreal < a > - real < a? >then Vk > 0,x, f(k * x) = k? * f(x)
- Relational semantics also gives (non)definability results

- Generalizes to e.qg. geometry (invariance under
transformations, AJK)

- And even to physics (laws of motion from conservation laws,
Atkey)!

26/02/2014 20

Compositional type soundness of
compilers

- Express meaning of high-level types as relational,
extensional constraints on the behaviour of compiled
code

- What does it mean to say a word in memory
contains an integer, Boolean, code pointer, data
structure pointer?

- It's a constraint on what information code that uses it
is allowed to depend on

- This way of doing things supports cross-language
linking

26/02/2014

@
Heap Program

[argl< -2

[retlc - 143
jmp alloc
[[ret]+1]< - [env]
[envl< - ret

I é

e

/

H (| current frame
T RT T TN T T

= parent frame ¥ -
[~

stack_size

[0}
-+
o
(@)
=
arg
et
wk
env
sp

Fixpoint semantics_of_types (t:ExpType) (Ra:stateRel) ptr ptr’ struct t
match t with
| Int P = 1lift (P ptr A (ptr = ptr’))
| Bool P = 1ift (P (n2b ptr) A (n2b ptr = n2b ptr’))
| a x b = Ex value, Ex value2, Ex value’, Ex value2’,
(ptr,ptr’+—value,value’) X
(ptr+1,ptr’+l—value2,value2’) x [b] Ra value value’ x [a] Ra value2 value2’)

| a — b = Ex Rprivate,
(ptr,ptr’ — Later (Perp (Pre_arrow Rprivate ptr ptr’ Ra ([a]) ([b]))) x Rprivate)

end
where "’[’ t ’]’" := (semantics_of_types t).

Definition Post_arrow b (Ra Rc: stateRel) Rc_cloud (n n’ stack_ptr stack_ptr’: nat):=

Ex ptr_result, Ex ptr_result’,
(stack_ptr,stack_ptr’ +— ptr_result,ptr_result’) ® (stack_ptr+l,stack_ptr’+l—-) ®

((b Ra ptr_result ptr_result’) X Rc_cloud) ® Ra ® Rc ® (spreg— stack_ptr,stack_ptr’) &

(envreg— n,n’) ® unused_space.

Definition Pre_arrow R_private ptr_function ptr_function’ Ra a b:=
Ex Rc, Ex Rc_cloud, Ex n, Ex n’, Ex ptr_arg, Ex ptr_arg’, Ex stack_ptr, Ex stack_ptr’,

(stack_ptr,stack_ptr’+— ptr_arg,ptr_arg’) &
(stack_ptr+1,stack_ptr’+1— ptr_function,ptr_function’)

® (R_private X a Ra ptr_arg ptr_arg’ x Rc_cloud) ®
((n+4,n’+4 — Later (Perp (Post_arrow b Ra Rc Rc_cloud n n’ stack_ptr stack_ptr’))) X Rc) &

Ra ® (spreg— stack_ptr+l,stack_ptr’+1) & (envreg— n,n’) ® unused_space.

Effect systems

£:x: X M :T.Y £ Vi : X! T.Y £ V,:X
£ x:UX)M: X! T.Y £ ViV TY
£ V:X £ M :T-X £:x:X N :Two¥Y
£ val V:T.X £ letx(MinN :TioY

£ V:boo £ M:T-X £ N:T-X
£ ifVthenM elseN :T-X

£ V:int
£ read(’) : Tgr g(int) £ wite(;V): Tryg(unit)
£ V:X Xax° £ M :T-X T.X a T.oX?

£V : X0 £ M :ToXP©

Semantics of refined types

X1 » [UC)ITE [U(X)]
[int] =

[bool] =

[unit] =

[X£Y]l = [XI1£1Y]

[X! T-Y] = [)\(]l! [T-Y]
[T-X] = R! RE [X]
R2R-

R-;Re W I\D(SE S)

R" = Re
e2"
R, = fRj8(s:sH2R;s =s"g
Ry = fRj8(s:s92R:;8n2Z:(s[7 n:sT 7 n])2Rg

Effectdependent equivalences (1)

Dead Computation:
£ M :T-X £ N :TwoY
£ letx(MinN =N :ToY

x 8 £;wrs(") = ;

Duplicated Computation:
£ M :T-X £;x:X;¥y:X N :ToY

let x(Minlety(MinN
= let x(M inN|[x=y]

rds(")\ wrs(") = ;

£ . T"["OY

Effectdependent equivalences (2)

Commuting Computations:

£ My:To Xy £ My:ToXo £:%1:X1:X2: X N :Toy Fas("s)\ wr("z) =
: lllt (MZ' | t2 (I\/T | 1N2 : W)t 1) <

~ et X1 pintet X, 21N T WrS("]_)\ Wrs("z) =
- let xo(Mzinlet x;(M1inN P T rroY

Pure Lambda Hoist:
£ M TigZ £;x:X;y:Z N:T-Y

val ([x:UX)lety(MinN)
= lety(Minval (,x:U(X):N)

Tig(X ! T-Y)

Summary

- Please stop doing syntactic type soundness proofs!
- Types are about abstractions not about errors
- Can make that precise using relational parametricity

- All types are abstract, all type systems about
information flow

+ This way of doing things works at multiple levels of
abstraction, from source to machine code

- Recent work on relations for languages with store,
control, polymorphism, generativity, concurrency

- Approach yields useful, deep results, including
contextual equational laws

26/02/2014

28

Thank you

26/02/2014

Standard typing rules

i Vi:A | V,:B i VIALEA
i (Vi;V2) tAEB i VeV oA
i X:A M :TB i Vi:A! TB | V,:A
i . X:AM:A! TB i Vi1V,:TB
i V:IA i M:TA j;x:A N:TB
i val V:TA i letx(MinN:TB

i V:bool i M:TA j N:TA
i ifVthenM elseN :TA

i V:int
i read(’) :Tint i wite(;V):Tunit

Base semantics in Set

S = Locs! Z
unit] = 1
[int] = Z
[bool] = B
[A£B] = I[Al£ [B]
[A! TB] = [A]! [TB]
[TA] = S! SE£J[A]

Refined types and subtyping

- Subtyping
- Types
X535 = wunitjintjbool j X £Y X! T.Y
£ = >f1:X1;:::;xn:Xn
M fr-;wg
"2L
XayY Yaz Xax®®vyvay®
Xax Xaz XE£YaX°£ YO
X% X T.Y a TwoY® "n"? X axo

(X! T-Y)a (X% T.oY9 T.X & TwoX?

Results

- Soundness afubtyping If X & Y then [X]u [Y].

Fundamental theorem:

If£° V:X; %A 2[E]

then (JUE) * V :U(X)]% [UE) " V :UX)IA 2 [X]:
Meaning of top effecfG(A)] = ¢ (a7

Equivalences

B Effectindependent: congruence ruldsh rules,
commuting conversions

B Effectdependent: dead computation, duplicated
computation, commuting computations, pure
lambda hoist

B Reasoning is quite intricate, involving construction
of specific effeetespecting relations.

