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Types in everyday programming
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public static <T extends Comparable<? super T>> 

T max(Collection<T> coll) { … }

- fun map f [] = []

|   map f (x::xs) = f x :: map f xs;

val map = fn : ('a -> 'b) -> 'a list -> 'b list

> [] + []

> [] + {}

[object Object]

> {}+[]

0

> {} + {}

Nan



We don't talk about types, we argue 
about them...
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“Dynamic typing is but a special 

case of static typing, one that limits, 

rather than liberates, one that shuts 

down opportunities, rather than 

opening up new vistas.” - Harper



For and against
 Static catches errors early, dynamic catches errors

 Static does away with runtime tests

 Static aids other static analysis and optimization

 IDE exploits types for completion, etc.

 Type info for garbage collection

 Can enforce security-critical invariants (e.g. JVM)

 Code can be generated or inferred from types

 Aids evolution, refactoring

 Documenting, communicating interfaces

 Mental scaffolding, blueprint during design

 Static too complex and bureaucractic

 Static too brittle, hinders "loose coupling"

 Too restrictive: "we don't need no stinkin' types"
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In programming language conferences

 Polymorphism, modules, dependent types, 
refinements, overloading, subtyping, classes…

 Effect analysis, information flow, access control, 
communication protocols, lock usage, reactivity, 
distribution, data representation, staging, complexity

 Type theory and logic
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The logical, proof-theoretic view, and 
propositions as types
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𝜆𝑥: 𝐴.𝑀:

Logic Types
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Proof normalization
 Simplify (identify) proofs by removal of "detours"

 Substitution lemma:

 Now reduce intro/elim pairs

 reduces to                                    

 proof simplification = beta reduction
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Discussion
 Subject reduction (reduction preserves types)

 Strong normalization (all reduction sequences 
terminate, logical consistency)

 Sequent calculus presentations too (cut elimination)

 Very syntactic. Rules of the game given by beautiful 
symmetries, etc.

 Types are intrinsic, prescriptive, synthetic - "Church 
style". Ill-typed terms aren't considered. 

 Hugely successful, influential approach
 Generalizes to lots of other propositional logics (linear, S4 for staged 

computation, S5 for distribution, lax logic for monads, classical logic and 
control,...)

 Also to richer logics, program extraction in dependent type theory

 Not so easy to extend to "real" PL type systems

 Analogy between proof simplification and operational 
semantics imperfect26/02/2014 8



Intrinsic models "bottom up"

 Interpret types as sets (objects)

 𝑥1:𝐴1, … , 𝑥𝑛: 𝐴𝑛 = 𝐴1 ×⋯× 𝐴𝑛 (product)

 𝐴 → 𝐵 = 𝐵 𝐴 (set of functions, exponential)

 Interpret terms as functions (morphisms)

 Γ ⊢ 𝑀:𝐴 ∶ Γ → 𝐴

 Semantics models equations induced by beta & eta -
equivalent proofs/terms interpreted by equal 
morphisms

 Denotational models in this general style do work for 
richer languages, even when the logical, proof-
theoretic story breaks down
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Extrinsic semantics & "well-typed 
programs don't go wrong"
 Quite different approach: programs come first

 Give semantics to all type-free programs, which may involve some notion of 
dynamic error

 Types are extrinsic, descriptive, analytic properties of 
programs

 e.g. Milner starts with semantics of untyped CBV 
lambda calculus in a universal domain

 𝑀𝑁 𝜌 = 𝑙𝑒𝑡 𝑓 = 𝑀 𝜌;𝑣 = 𝑁 𝜌 𝑖𝑛 𝑎𝑝𝑝𝑙𝑦(𝑓, 𝑣)

 where, e.g. 𝑎𝑝𝑝𝑙𝑦 𝑖𝑛1 𝑛 , 𝑣 = [𝑖𝑛3 𝑤𝑟𝑜𝑛𝑔 ]

 Carves out meanings of types as certain subsets of 𝑉
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Extrinsic models "top down"

 𝑛𝑎𝑡 = 𝑖𝑛1 𝑛 𝑛 ∈ ℕ

 𝐴 → 𝐵 = 𝑖𝑛2 𝑓 ∀𝑣 ∈ 𝐴 , 𝑓𝑣 ∈ 𝐵 ⊥

 Then not all elements have a type, some have more 
than one type (e.g. identity function)

 Give Curry-style type assignment for type-free terms

 If Γ ⊢ 𝑀:𝐴 and 𝜌 ∈ Γ then 𝑀 𝜌 ∈ 𝐴 ⊥

 In particular, well-typed programs don't go wrong
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Γ, 𝑥: 𝐴 ⊢ 𝑀:𝐵

Γ ⊢ 𝜆𝑥. 𝐵 ∶ 𝐴 → 𝐵



Syntactic type soundness

 Can construct extrinsic models of types over 
operational semantics too

 but Wright and Felleisen ('94) came up with 
something simpler
 Work with small step operational semantics

 Define `proper' values (fully evaluated expressions)

 Instead of explicitly saying 3 𝑡𝑟𝑢𝑒 → 𝑤𝑟𝑜𝑛𝑔 just allow the semantics to get 
stuck, so 3 𝑡𝑟𝑢𝑒 ↛

 Prove preservation, if 𝑀:𝐴 and 𝑀 → 𝑀′ then 𝑀′: 𝐴 (cf. subject reduction)

 Prove progress, if 𝑀:𝐴 and 𝑀is not a value, then ∃𝑀′,𝑀 → 𝑀′

 Hence, well-typed programs don't get stuck

 This is widely held to be the definition of type 
safety/soundness
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Discussion
 It is simple, and superficially natural for simple types (think of 

writing an interpreter in ML)

 Only talks about specific type rules and internal details of 
specific operational semantics

 Have to extend typing rules to objects that only appear in 
operational semantics (heaps, stacks, pointers, 
configurations)

 For fancier types (effects, locks,...) have to instrument
operational semantics, introducing new, fictitious stuck states 
that weren't there before
 Gets silly, e.g. for TAL - machine code programs don't go wrong

 Never says what types mean, fails to capture compositional 
role as interface contracts (functions = functions?)

 Reduces static types to dynamic types
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Intensional versus extensional

 What do we think we're doing when we write an 
operational semantics? 
 We're defining a language, but do we take the intermediate configurations 

seriously? 

 The compiler only cares about observable behaviour. If performs optimizing 
transformations and then emits machine code whose traces bear only a loose 
similarity with the original operational semantics

 Milner's semantics is mostly extensional. There are 
terms that inhabit a semantic type without being 
typable in the original system 
𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 3 𝑒𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 ∶ 𝑛𝑎𝑡

 But still assumes dynamic test on summands of 
universal type 
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Parametricity and abstraction
 "Type structure is a syntactic discipline for enforcing 

levels of abstraction" - Reynolds

 Collection of techniques originating in study of 
abstract datatypes, representation independence and 
parametric polymorphism
 What does it mean to say complex numbers are an abstract type?

 When are two implementations of complex numbers equivalent?

 In what sense do polymorphic functions behave "uniformly"?

 Central idea: go from types as subsets to types as 
relations (and type operators as operators on 
relations)
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Free theorems

 Any function f of type ∀𝑋.𝑋 → 𝑋is the identity

 ∀𝐴,𝐵,𝑅 ⊆ 𝐴 × 𝐵, a, b ∈ 𝑅, 𝑓𝐴𝑎, 𝑓𝐵𝑏 ∈ 𝑅
 Write 𝑓𝐴, 𝑓𝐵 ∈ 𝑅 → 𝑅

 Any function of type ∀𝑋. 𝐿𝑖𝑠𝑡 𝑋 → 𝐿𝑖𝑠𝑡 𝑋 just 
reorganizes its input in a fixed way

 ∀𝐴,𝐵, 𝑅 ⊆ 𝐴 × 𝐵, 𝑎𝑠, 𝑏𝑠 ∈ 𝐿𝑖𝑠𝑡 𝑅, 𝑓𝐴𝑎𝑠, 𝑓𝐵𝑏𝑠 ∈
𝐿𝑖𝑠𝑡 𝑅

 ∀𝐴,𝐵, 𝑎𝑠: 𝐿𝑖𝑠𝑡 𝐴, ℎ:𝐴 → 𝐵,𝑓𝐵 𝑚𝑎𝑝 ℎ 𝑎𝑠 =
𝑚𝑎𝑝 ℎ 𝑓𝐴𝑎𝑠
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Top-down relational models of types

 Carve out meanings of types as relations over an 
untyped model (these days, often just operational 
semantics)

 𝐴 → 𝐵 = 𝐴 → 𝐵 (n.b. relational →!)

 ∀𝑋.𝐴 𝜌 =  𝑅 𝐴 𝜌[𝑋 ↦ 𝑅]

 Want type meanings to be partial equivalence 
relations (PERs)

 So subset of values together with a coarser notion of 
equality

 Defined together as values inhabiting compound 
types must respect equality on components
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Discussion

 No need to ever talk about errors

 Relational semantics neither stronger nor weaker 
than syntactic safety
 Syntactically untypable expressions can inhabit semantic types

 Syntactically type-safe operations that break abstraction are ruled out

 𝜆𝑓: 𝑛𝑎𝑡 → 𝑛𝑎𝑡. 𝑖𝑓 𝑓 = 𝜆𝑥. 𝑥 𝑡ℎ𝑒𝑛 3 𝑒𝑙𝑠𝑒 4 ∉ 𝑛𝑎𝑡 → 𝑛𝑎𝑡 → 𝑛𝑎𝑡

 We get equational rules as well as inhabitation

 Traditionally started with system then looked for 
model, but these are the properties we wanted all 
along
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Example: Information flow

 Want to ensure no information flows from high-
security variables to low-security ones

 This is not something one can naturally even explain 
in terms of runtime errors

 𝐶 :ℕℎ ×ℕ𝑙 → ℕh ×ℕ𝑙
 ∀ 𝑛ℎ, 𝑛𝑙 , 𝑛ℎ

′ , 𝑛𝑙
′ , 𝑖𝑓 𝑛𝑙 = 𝑛𝑙

′ 𝑡ℎ𝑒𝑛 𝜋2 𝐶 𝑛ℎ, 𝑛𝑙 =
𝜋2 𝐶 (𝑛ℎ

′ , 𝑛𝑙
′)

 ( 𝐶 , 𝐶 ) ∈ 𝑇 × Δ → 𝑇 × Δ

 There's a very natural relational logic that captures 
this and many other static analyses and the 
transformations they enable
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Dimensions, etc.
 Kennedy. Incorporate physical dimensions (mass, length, 

time) into polymorphic type system that checks for 
dimensional consistency
 real<d> is reals indexed by dimension d

 Purely syntactically, this is interesting because there are equations on dimension 
expressions

 Implemented in F#

 But what does it mean?
 Nature doesn't carry dimension tags around and raise an exception if they don't match 

up

 Essence of dimensional correctness is extensional, and rather beautiful: invariance under 
scaling

 If 𝑓: 𝑟𝑒𝑎𝑙 < 𝑎 >→ 𝑟𝑒𝑎𝑙 < 𝑎2 > then ∀𝑘 > 0, 𝑥, 𝑓 𝑘 ∗ 𝑥 = 𝑘2 ∗ 𝑓(𝑥)

 Relational semantics also gives (non)definability results

 Generalizes to e.g. geometry (invariance under 
transformations, AJK)

 And even to physics (laws of motion from conservation laws, 
Atkey)!
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Compositional type soundness of 
compilers
 Express meaning of high-level types as relational, 

extensional constraints on the behaviour of compiled 
code

 What does it mean to say a word in memory 
contains an integer, Boolean, code pointer, data 
structure pointer? 

 It's a constraint on what information code that uses it 
is allowed to depend on

 This way of doing things supports cross-language 
linking

26/02/2014 21



- 42 - --

Allocator’s 

heap

Heap

stack_size

current frame

parent frame

[arg]< - 2

[ret]< - l+3

jmp alloc

[[ret]+1]< - [env]

[env]< - ret

é

Program

2

a
rg

re
t w
k

e
n
v

s
p

-

call 

stack
…

3 t

f





Effect systems

£ ; x : X ` M : T" Y

£ ` ¸ x : U(X ):M : X ! T" Y

£ ` V1 : X ! T" Y £ ` V2 : X

£ ` V1 V2 : T" Y

£ ` V : X

£ ` val V : T; X

£ ` M : T" X £ ; x : X ` N : T" 0Y

£ ` l et x ( M i n N : T" [ " 0Y

£ ` V : bool £ ` M : T" X £ ` N : T" X

£ ` i f V t hen M el se N : T" X

£ ` r ead(`) : Tf r ` g(i nt )

£ ` V : i nt

£ ` wr i t e(`; V ) : Tf ẁ g(uni t )

£ ` V : X X āX 0

£ ` V : X 0

£ ` M : T" X T" X āT" 0X 0

£ ` M : T" 0X 0



[[X ]] µ [[U(X )]] £ [[U(X )]]

[[i nt ]] = ¢ Z

[[bool ]] = ¢ B

[[uni t ]] = ¢ 1

[[X £ Y ]] = [[X ]] £ [[Y ]]

[[X ! T" Y ]] = [[X ]] ! [[T" Y ]]

[[T" X ]] =
\

R 2 R "

R ! R £ [[X ]]

Values of base type are related just to themselves 

(diagonal relation)

Functions are related in the usual 

“logical” fashion: related arguments 
 related results

Computations are related if they preserve all 
state relations that respect the effectR " ; R e µ P(S £ S)

R " =
\

e2 "

R e

R r `
= f R j 8(s; s0) 2 R; s ` = s0`g

R ẁ = f R j 8(s; s0) 2 R; 8n 2 Z: (s[` 7! n]; s0[` 7! n]) 2 Rg

Semantics of refined types



Effect-dependent equivalences (1)

Dead Computat ion:

£ ` M : T" X £ ` N : T" 0Y
x 62 £ ; wrs(" ) = ;

£ ` l et x ( M i n N = N : T" 0Y

Duplicated Computat ion:

£ ` M : T" X £ ; x : X ; y : X ` N : T" 0Y
rds(" ) \ wrs(" ) = ;

£ ` l et x ( M i n l et y ( M i n N

= l et x ( M i n N [x=y]
: T" [ " 0Y



Effect-dependent equivalences (2)

Commut ing Computat ions:

£ ` M 1 : T" 1
X 1 £ ` M 2 : T" 2

X 2 £ ; x1 : X 1; x2 : X 2 ` N : T" 0Y rds("1) \ wrs("2) = ;
wrs("1) \ rds("2) = ;
wrs("1) \ wrs("2) = ;£ ` l et x1 ( M 1 i n l et x2 ( M 2 i n N

= l et x2 ( M 2 i n l et x1 ( M 1 i n N
: T" 1 [ " 2 [ " 0Y

Pure Lambda Hoist :

£ ` M : Tf gZ £ ; x : X ; y : Z ` N : T" Y

£ ` val (¸ x : U(X ):l et y ( M i n N )

= l et y ( M i n val (¸ x : U(X ):N )
: Tf g(X ! T" Y )



Summary

 Please stop doing syntactic type soundness proofs!

 Types are about abstractions not about errors

 Can make that precise using relational parametricity

 All types are abstract, all type systems about 
information flow

 This way of doing things works at multiple levels of 
abstraction, from source to machine code

 Recent work on relations for languages with store, 
control, polymorphism, generativity, concurrency

 Approach yields useful, deep results, including 
contextual equational laws
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Thank you
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Standard typing rules

¡ ` V1 : A ¡ ` V2 : B

¡ ` (V1; V2) : A £ B

¡ ` V : A1 £ A2

¡ ` ¼i V : A i

¡ ; x : A ` M : TB

¡ ` ¸ x : A:M : A ! TB

¡ ` V1 : A ! TB ¡ ` V2 : A

¡ ` V1 V2 : TB

¡ ` V : A

¡ ` val V : TA

¡ ` M : TA ¡ ; x : A ` N : TB

¡ ` l et x ( M i n N : TB

¡ ` V : bool ¡ ` M : TA ¡ ` N : TA

¡ ` i f V t hen M el se N : TA

¡ ` r ead(`) : T i nt

¡ ` V : i nt

¡ ` wr i t e(`; V ) : Tuni t



Base semantics in Set

S = Locs ! Z

[[uni t ]] = 1

[[i nt ]] = Z

[[bool ]] = B

[[A £ B ]] = [[A ]] £ [[B ]]

[[A ! TB ]] = [[A ]] ! [[TB ]]

[[TA ]] = S ! S £ [[A ]]



Refined types and subtyping

 Subtyping

X āX

X āY Y āZ

X āZ

X āX 0 Y āY 0

X £ Y āX 0£ Y 0

X 0āX T" Y āT" 0Y 0

(X ! T" Y ) ā(X 0 ! T" 0Y 0)

" µ "0 X āX 0

T" X āT" 0X 0

·Types

X ; Y := uni t j i nt j bool j X £ Y j X ! T" Y

£ := x1 : X 1; : : : ; xn : X n

" µ
[

` 2 L
f r ` ; ẁ g



Results

 Soundness of subtyping: If X āY then [[X ]] µ [[Y ]].

· Fundamental theorem:

If £ ` V : X ; (½; ½0) 2 [[£ ]]

then ([[U(£ ) ` V : U(X )]] ½; [[U(£ ) ` V : U(X )]] ½0) 2 [[X ]]:

· Meaning of top effect:

· Equivalences

ƁEffect-independent: congruence rules, b, hrules, 
commuting conversions

ƁEffect-dependent: dead computation, duplicated 
computation, commuting computations, pure 
lambda hoist

ƁReasoning is quite intricate, involving construction 
of specific effect-respecting relations.

[[G(A)]] = ¢ [[A ]].


