
What We Talk About When
We Talk About Types

Nick Benton

Types in everyday programming

26/02/2014 2

public static <T extends Comparable<? super T>>

T max(Collection<T> coll) { … }

- fun map f [] = []

| map f (x::xs) = f x :: map f xs;

val map = fn : ('a -> 'b) -> 'a list -> 'b list

> [] + []

> [] + {}

[object Object]

> {}+[]

0

> {} + {}

Nan

We don't talk about types, we argue
about them...

26/02/2014 3

“Dynamic typing is but a special

case of static typing, one that limits,

rather than liberates, one that shuts

down opportunities, rather than

opening up new vistas.” - Harper

For and against
 Static catches errors early, dynamic catches errors

 Static does away with runtime tests

 Static aids other static analysis and optimization

 IDE exploits types for completion, etc.

 Type info for garbage collection

 Can enforce security-critical invariants (e.g. JVM)

 Code can be generated or inferred from types

 Aids evolution, refactoring

 Documenting, communicating interfaces

 Mental scaffolding, blueprint during design

 Static too complex and bureaucractic

 Static too brittle, hinders "loose coupling"

 Too restrictive: "we don't need no stinkin' types"

26/02/2014 4

In programming language conferences

 Polymorphism, modules, dependent types,
refinements, overloading, subtyping, classes…

 Effect analysis, information flow, access control,
communication protocols, lock usage, reactivity,
distribution, data representation, staging, complexity

 Type theory and logic

26/02/2014 5

The logical, proof-theoretic view, and
propositions as types

26/02/2014 6

𝑥: 𝑥:

𝑀: 𝑁:

𝑀 𝑁 ∶

𝑥: 𝑀:

𝜆𝑥: 𝐴.𝑀:

Logic Types

⊃ →

∧ ×

∨ +

Proof normalization
 Simplify (identify) proofs by removal of "detours"

 Substitution lemma:

 Now reduce intro/elim pairs

 reduces to

 proof simplification = beta reduction
26/02/2014 7

Discussion
 Subject reduction (reduction preserves types)

 Strong normalization (all reduction sequences
terminate, logical consistency)

 Sequent calculus presentations too (cut elimination)

 Very syntactic. Rules of the game given by beautiful
symmetries, etc.

 Types are intrinsic, prescriptive, synthetic - "Church
style". Ill-typed terms aren't considered.

 Hugely successful, influential approach
 Generalizes to lots of other propositional logics (linear, S4 for staged

computation, S5 for distribution, lax logic for monads, classical logic and
control,...)

 Also to richer logics, program extraction in dependent type theory

 Not so easy to extend to "real" PL type systems

 Analogy between proof simplification and operational
semantics imperfect26/02/2014 8

Intrinsic models "bottom up"

 Interpret types as sets (objects)

 𝑥1:𝐴1, … , 𝑥𝑛: 𝐴𝑛 = 𝐴1 ×⋯× 𝐴𝑛 (product)

 𝐴 → 𝐵 = 𝐵 𝐴 (set of functions, exponential)

 Interpret terms as functions (morphisms)

 Γ ⊢ 𝑀:𝐴 ∶ Γ → 𝐴

 Semantics models equations induced by beta & eta -
equivalent proofs/terms interpreted by equal
morphisms

 Denotational models in this general style do work for
richer languages, even when the logical, proof-
theoretic story breaks down

26/02/2014 9

Extrinsic semantics & "well-typed
programs don't go wrong"
 Quite different approach: programs come first

 Give semantics to all type-free programs, which may involve some notion of
dynamic error

 Types are extrinsic, descriptive, analytic properties of
programs

 e.g. Milner starts with semantics of untyped CBV
lambda calculus in a universal domain

 𝑀𝑁 𝜌 = 𝑙𝑒𝑡 𝑓 = 𝑀 𝜌;𝑣 = 𝑁 𝜌 𝑖𝑛 𝑎𝑝𝑝𝑙𝑦(𝑓, 𝑣)

 where, e.g. 𝑎𝑝𝑝𝑙𝑦 𝑖𝑛1 𝑛 , 𝑣 = [𝑖𝑛3 𝑤𝑟𝑜𝑛𝑔]

 Carves out meanings of types as certain subsets of 𝑉
26/02/2014 10

Extrinsic models "top down"

 𝑛𝑎𝑡 = 𝑖𝑛1 𝑛 𝑛 ∈ ℕ

 𝐴 → 𝐵 = 𝑖𝑛2 𝑓 ∀𝑣 ∈ 𝐴 , 𝑓𝑣 ∈ 𝐵 ⊥

 Then not all elements have a type, some have more
than one type (e.g. identity function)

 Give Curry-style type assignment for type-free terms

 If Γ ⊢ 𝑀:𝐴 and 𝜌 ∈ Γ then 𝑀 𝜌 ∈ 𝐴 ⊥

 In particular, well-typed programs don't go wrong

26/02/2014 11

Γ, 𝑥: 𝐴 ⊢ 𝑀:𝐵

Γ ⊢ 𝜆𝑥. 𝐵 ∶ 𝐴 → 𝐵

Syntactic type soundness

 Can construct extrinsic models of types over
operational semantics too

 but Wright and Felleisen ('94) came up with
something simpler
 Work with small step operational semantics

 Define `proper' values (fully evaluated expressions)

 Instead of explicitly saying 3 𝑡𝑟𝑢𝑒 → 𝑤𝑟𝑜𝑛𝑔 just allow the semantics to get
stuck, so 3 𝑡𝑟𝑢𝑒 ↛

 Prove preservation, if 𝑀:𝐴 and 𝑀 → 𝑀′ then 𝑀′: 𝐴 (cf. subject reduction)

 Prove progress, if 𝑀:𝐴 and 𝑀is not a value, then ∃𝑀′,𝑀 → 𝑀′

 Hence, well-typed programs don't get stuck

 This is widely held to be the definition of type
safety/soundness

26/02/2014 12

Discussion
 It is simple, and superficially natural for simple types (think of

writing an interpreter in ML)

 Only talks about specific type rules and internal details of
specific operational semantics

 Have to extend typing rules to objects that only appear in
operational semantics (heaps, stacks, pointers,
configurations)

 For fancier types (effects, locks,...) have to instrument
operational semantics, introducing new, fictitious stuck states
that weren't there before
 Gets silly, e.g. for TAL - machine code programs don't go wrong

 Never says what types mean, fails to capture compositional
role as interface contracts (functions = functions?)

 Reduces static types to dynamic types
26/02/2014 13

Intensional versus extensional

 What do we think we're doing when we write an
operational semantics?
 We're defining a language, but do we take the intermediate configurations

seriously?

 The compiler only cares about observable behaviour. If performs optimizing
transformations and then emits machine code whose traces bear only a loose
similarity with the original operational semantics

 Milner's semantics is mostly extensional. There are
terms that inhabit a semantic type without being
typable in the original system
𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 3 𝑒𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 ∶ 𝑛𝑎𝑡

 But still assumes dynamic test on summands of
universal type

26/02/2014 14

Parametricity and abstraction
 "Type structure is a syntactic discipline for enforcing

levels of abstraction" - Reynolds

 Collection of techniques originating in study of
abstract datatypes, representation independence and
parametric polymorphism
 What does it mean to say complex numbers are an abstract type?

 When are two implementations of complex numbers equivalent?

 In what sense do polymorphic functions behave "uniformly"?

 Central idea: go from types as subsets to types as
relations (and type operators as operators on
relations)

26/02/2014 15

Free theorems

 Any function f of type ∀𝑋.𝑋 → 𝑋is the identity

 ∀𝐴,𝐵,𝑅 ⊆ 𝐴 × 𝐵, a, b ∈ 𝑅, 𝑓𝐴𝑎, 𝑓𝐵𝑏 ∈ 𝑅
 Write 𝑓𝐴, 𝑓𝐵 ∈ 𝑅 → 𝑅

 Any function of type ∀𝑋. 𝐿𝑖𝑠𝑡 𝑋 → 𝐿𝑖𝑠𝑡 𝑋 just
reorganizes its input in a fixed way

 ∀𝐴,𝐵, 𝑅 ⊆ 𝐴 × 𝐵, 𝑎𝑠, 𝑏𝑠 ∈ 𝐿𝑖𝑠𝑡 𝑅, 𝑓𝐴𝑎𝑠, 𝑓𝐵𝑏𝑠 ∈
𝐿𝑖𝑠𝑡 𝑅

 ∀𝐴,𝐵, 𝑎𝑠: 𝐿𝑖𝑠𝑡 𝐴, ℎ:𝐴 → 𝐵,𝑓𝐵 𝑚𝑎𝑝 ℎ 𝑎𝑠 =
𝑚𝑎𝑝 ℎ 𝑓𝐴𝑎𝑠

26/02/2014 16

Top-down relational models of types

 Carve out meanings of types as relations over an
untyped model (these days, often just operational
semantics)

 𝐴 → 𝐵 = 𝐴 → 𝐵 (n.b. relational →!)

 ∀𝑋.𝐴 𝜌 = 𝑅 𝐴 𝜌[𝑋 ↦ 𝑅]

 Want type meanings to be partial equivalence
relations (PERs)

 So subset of values together with a coarser notion of
equality

 Defined together as values inhabiting compound
types must respect equality on components

26/02/2014 17

Discussion

 No need to ever talk about errors

 Relational semantics neither stronger nor weaker
than syntactic safety
 Syntactically untypable expressions can inhabit semantic types

 Syntactically type-safe operations that break abstraction are ruled out

 𝜆𝑓: 𝑛𝑎𝑡 → 𝑛𝑎𝑡. 𝑖𝑓 𝑓 = 𝜆𝑥. 𝑥 𝑡ℎ𝑒𝑛 3 𝑒𝑙𝑠𝑒 4 ∉ 𝑛𝑎𝑡 → 𝑛𝑎𝑡 → 𝑛𝑎𝑡

 We get equational rules as well as inhabitation

 Traditionally started with system then looked for
model, but these are the properties we wanted all
along

26/02/2014 18

Example: Information flow

 Want to ensure no information flows from high-
security variables to low-security ones

 This is not something one can naturally even explain
in terms of runtime errors

 𝐶 :ℕℎ ×ℕ𝑙 → ℕh ×ℕ𝑙
 ∀ 𝑛ℎ, 𝑛𝑙 , 𝑛ℎ

′ , 𝑛𝑙
′ , 𝑖𝑓 𝑛𝑙 = 𝑛𝑙

′ 𝑡ℎ𝑒𝑛 𝜋2 𝐶 𝑛ℎ, 𝑛𝑙 =
𝜋2 𝐶 (𝑛ℎ

′ , 𝑛𝑙
′)

 (𝐶 , 𝐶) ∈ 𝑇 × Δ → 𝑇 × Δ

 There's a very natural relational logic that captures
this and many other static analyses and the
transformations they enable

26/02/2014 19

Dimensions, etc.
 Kennedy. Incorporate physical dimensions (mass, length,

time) into polymorphic type system that checks for
dimensional consistency
 real<d> is reals indexed by dimension d

 Purely syntactically, this is interesting because there are equations on dimension
expressions

 Implemented in F#

 But what does it mean?
 Nature doesn't carry dimension tags around and raise an exception if they don't match

up

 Essence of dimensional correctness is extensional, and rather beautiful: invariance under
scaling

 If 𝑓: 𝑟𝑒𝑎𝑙 < 𝑎 >→ 𝑟𝑒𝑎𝑙 < 𝑎2 > then ∀𝑘 > 0, 𝑥, 𝑓 𝑘 ∗ 𝑥 = 𝑘2 ∗ 𝑓(𝑥)

 Relational semantics also gives (non)definability results

 Generalizes to e.g. geometry (invariance under
transformations, AJK)

 And even to physics (laws of motion from conservation laws,
Atkey)!

26/02/2014 20

Compositional type soundness of
compilers
 Express meaning of high-level types as relational,

extensional constraints on the behaviour of compiled
code

 What does it mean to say a word in memory
contains an integer, Boolean, code pointer, data
structure pointer?

 It's a constraint on what information code that uses it
is allowed to depend on

 This way of doing things supports cross-language
linking

26/02/2014 21

- 42 - --

Allocator’s

heap

Heap

stack_size

current frame

parent frame

[arg]< - 2

[ret]< - l+3

jmp alloc

[[ret]+1]< - [env]

[env]< - ret

é

Program

2

a
rg

re
t w
k

e
n
v

s
p

-

call

stack
…

3 t

f

Effect systems

£ ; x : X ` M : T" Y

£ ` ¸ x : U(X):M : X ! T" Y

£ ` V1 : X ! T" Y £ ` V2 : X

£ ` V1 V2 : T" Y

£ ` V : X

£ ` val V : T; X

£ ` M : T" X £ ; x : X ` N : T" 0Y

£ ` l et x (M i n N : T" [" 0Y

£ ` V : bool £ ` M : T" X £ ` N : T" X

£ ` i f V t hen M el se N : T" X

£ ` r ead(`) : Tf r ` g(i nt)

£ ` V : i nt

£ ` wr i t e(`; V) : Tf ẁ g(uni t)

£ ` V : X X āX 0

£ ` V : X 0

£ ` M : T" X T" X āT" 0X 0

£ ` M : T" 0X 0

[[X]] µ [[U(X)]] £ [[U(X)]]

[[i nt]] = ¢ Z

[[bool]] = ¢ B

[[uni t]] = ¢ 1

[[X £ Y]] = [[X]] £ [[Y]]

[[X ! T" Y]] = [[X]] ! [[T" Y]]

[[T" X]] =
\

R 2 R "

R ! R £ [[X]]

Values of base type are related just to themselves

(diagonal relation)

Functions are related in the usual

“logical” fashion: related arguments
 related results

Computations are related if they preserve all
state relations that respect the effectR " ; R e µ P(S £ S)

R " =
\

e2 "

R e

R r `
= f R j 8(s; s0) 2 R; s ` = s0`g

R ẁ = f R j 8(s; s0) 2 R; 8n 2 Z: (s[` 7! n]; s0[` 7! n]) 2 Rg

Semantics of refined types

Effect-dependent equivalences (1)

Dead Computat ion:

£ ` M : T" X £ ` N : T" 0Y
x 62 £ ; wrs(") = ;

£ ` l et x (M i n N = N : T" 0Y

Duplicated Computat ion:

£ ` M : T" X £ ; x : X ; y : X ` N : T" 0Y
rds(") \ wrs(") = ;

£ ` l et x (M i n l et y (M i n N

= l et x (M i n N [x=y]
: T" [" 0Y

Effect-dependent equivalences (2)

Commut ing Computat ions:

£ ` M 1 : T" 1
X 1 £ ` M 2 : T" 2

X 2 £ ; x1 : X 1; x2 : X 2 ` N : T" 0Y rds("1) \ wrs("2) = ;
wrs("1) \ rds("2) = ;
wrs("1) \ wrs("2) = ;£ ` l et x1 (M 1 i n l et x2 (M 2 i n N

= l et x2 (M 2 i n l et x1 (M 1 i n N
: T" 1 [" 2 [" 0Y

Pure Lambda Hoist :

£ ` M : Tf gZ £ ; x : X ; y : Z ` N : T" Y

£ ` val (¸ x : U(X):l et y (M i n N)

= l et y (M i n val (¸ x : U(X):N)
: Tf g(X ! T" Y)

Summary

 Please stop doing syntactic type soundness proofs!

 Types are about abstractions not about errors

 Can make that precise using relational parametricity

 All types are abstract, all type systems about
information flow

 This way of doing things works at multiple levels of
abstraction, from source to machine code

 Recent work on relations for languages with store,
control, polymorphism, generativity, concurrency

 Approach yields useful, deep results, including
contextual equational laws

26/02/2014 28

Thank you

26/02/2014 29

Standard typing rules

¡ ` V1 : A ¡ ` V2 : B

¡ ` (V1; V2) : A £ B

¡ ` V : A1 £ A2

¡ ` ¼i V : A i

¡ ; x : A ` M : TB

¡ ` ¸ x : A:M : A ! TB

¡ ` V1 : A ! TB ¡ ` V2 : A

¡ ` V1 V2 : TB

¡ ` V : A

¡ ` val V : TA

¡ ` M : TA ¡ ; x : A ` N : TB

¡ ` l et x (M i n N : TB

¡ ` V : bool ¡ ` M : TA ¡ ` N : TA

¡ ` i f V t hen M el se N : TA

¡ ` r ead(`) : T i nt

¡ ` V : i nt

¡ ` wr i t e(`; V) : Tuni t

Base semantics in Set

S = Locs ! Z

[[uni t]] = 1

[[i nt]] = Z

[[bool]] = B

[[A £ B]] = [[A]] £ [[B]]

[[A ! TB]] = [[A]] ! [[TB]]

[[TA]] = S ! S £ [[A]]

Refined types and subtyping

 Subtyping

X āX

X āY Y āZ

X āZ

X āX 0 Y āY 0

X £ Y āX 0£ Y 0

X 0āX T" Y āT" 0Y 0

(X ! T" Y) ā(X 0 ! T" 0Y 0)

" µ "0 X āX 0

T" X āT" 0X 0

·Types

X ; Y := uni t j i nt j bool j X £ Y j X ! T" Y

£ := x1 : X 1; : : : ; xn : X n

" µ
[

` 2 L
f r ` ; ẁ g

Results

 Soundness of subtyping: If X āY then [[X]] µ [[Y]].

· Fundamental theorem:

If £ ` V : X ; (½; ½0) 2 [[£]]

then ([[U(£) ` V : U(X)]] ½; [[U(£) ` V : U(X)]] ½0) 2 [[X]]:

· Meaning of top effect:

· Equivalences

ƁEffect-independent: congruence rules, b, hrules,
commuting conversions

ƁEffect-dependent: dead computation, duplicated
computation, commuting computations, pure
lambda hoist

ƁReasoning is quite intricate, involving construction
of specific effect-respecting relations.

[[G(A)]] = ¢ [[A]].

