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Abstract

We show how some classical static analyses for imperative programs, and the
optimizing transformations which they enable, may be expressed and proved cor-
rect using elementary logical and denotational techniques. The key ingredients
are an interpretation of program properties as relations, rather than predicates,
and a realization that although many program analyses are traditionally for-
mulated in very intensional terms, the associated transformations are actually
enabled by more liberal extensional properties.

We illustrate our approach with formal systems for analysing and transform-
ing while-programs. The first is a simple type system which tracks constancy
and dependency information and can be used to perform dead-code elimination,
constant propagation and program slicing as well as capturing a form of secure
information flow. The second is a relational version of Hoare logic, which sig-
nificantly generalizes our first type system and can also justify optimizations
including hoisting loop invariants. Finally we show how a simple available ex-
pression analysis and redundancy elimination transformation may be justified
by translation into relational Hoare logic.
Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages – Denotational semantics, Par-
tial evaluation, Program analysis; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs – Logics of programs,
Invariants; D.3.4 [Programming Languages]: Processors – Compilers, Optimiza-
tion;
General Terms: Languages, Theory, Verification
Keywords: Program analysis, optimizing compilation, types, denotational se-
mantics, partial equivalence relations, Hoare logic, dependency, information
flow, security
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1 Introduction

Although static program analyses are routinely proved correct, the soundness
of the optimizing transformations which they enable is much less frequently ad-
dressed. Much of the work which has been done on formalizing and validating
analysis-based transformations comes from the functional programming com-
munity (see Section 5 for related work) – the literature on optimizations for
imperative languages contains few formal specifications of transformations, let
alone proofs of their correctness. One might think that this is because the cor-
rectness of most imperative optimizations is entirely trivial, but what literature
there is on the subject [22, 18, 19, 20] (not to mention the occasional behaviour
of real optimizing compilers) indicates that this is not so.

Why is proving correctness of analysis-based transformations hard? We wish
to establish that, given the results of a static analysis, the original program and
the transformed program are observationally equivalent. The first problem is
that many transformations involve locally replacing some part P of a larger pro-
gram C[P ] with a new version P ′ which is not generally observationally equiv-
alent to P (i.e. P 6∼ P ′), though they are equivalent in that particular context:
C[P ] ∼ C[P ′]. Simply having an analysis which (albeit correctly) deduces that
certain predicates ψ(P ) hold of program fragments does not straightforwardly
allow one to justify such transformations unless the predicates ψ(·) also some-
how involve sets of contexts C[·], which is often not the case.

The second difficulty in proving correctness of optimizing transformations is
that program analyses, especially for imperative languages, are often specified
in a very intensional way. For example, “an assignment [x := a]l may reach
a certain program point if there is an execution of the program where x was
last assigned a value at l when the program point is reached”. Notions such as
‘program point’ and ‘where a variable was last assigned’ are not present in nat-
ural operational or denotational semantics, so the correctness of these analyses
is frequently formulated in terms of a new (and essentially bogus) instrumented
semantics which tracks the extra information. Even where the instrumented se-
mantics is related back to the original one, the relation is usually a rather weak
form of adequacy which certainly does not help with establishing equivalences:
the instrumented semantics will generally have a weaker equational theory than
the original one.

This paper demonstrates that, at least in some simple cases, both of these
difficulties can be overcome by use of elementary ideas which are commonplace
in the semantics community, but which have not previously been fully exploited
in the context of compiler analyses and transformations.

The first difficulty is approached by taking seriously the notion of the se-
mantics of types as (special kinds of) relations, rather than predicates. Typed
lambda calculi are routinely presented using judgements of the form

Γ ` M = M ′ : A

which does not assert “under assumptions Γ, M equals M ′ and they both have
type A”, but rather “under assumptions Γ, M and M ′ are equal at type A”.
Such calculi can be modelled by interpreting types as partial equivalence re-
lations over some untyped universe such as D∞. Many program analyses are
presented as non-standard type systems, and partial equivalence relations have
been used to give semantics to these non-standard types (equivalently, elements
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of abstract domains), at least in the cases of binding-time [15] and security anal-
yses [26]. However, even in those cases, the emphasis has been on simple typing
judgements rather than equational reasoning. Our approach is to treat all ab-
stract properties as relations, including those which have naive interpretations
as predicates (e.g. ‘X is 5’), and to present transformations by giving rules for
deriving (non-standard) typed equations in context.

The second difficulty, the apparently intensional nature of properties, is often
something of a red herring, attributable to a confusion between certain analy-
sis algorithms and the semantics of the information they produce. Of course,
analyses relating to properties such as time or space usage can only be justified
relative to semantic models which make those aspects of computation explicit.
But many transformations performed by optimizing compilers can be justified
using more extensional semantics, not only in the weak sense that every in-
put program is provably equivalent to its transformed version, but also in the
stronger sense that there is a generic correctness argument for all programs.
The true preconditions for applying a transformation tend to be extensional
(“this command does not change the value of X+Y”) even if an analysis algo-
rithm only discovers those properties if a stronger intensional property holds
(“this command does not contain any assignments to X or Y”).

As a facetious example of the difference between the intensional and exten-
sional approaches, consider why the following transformation is correct:

X := 7; X := 7;
Y := Y+1; ==> Y := Y+1;
Z := X; Z := 7;

The extensional answer is “when X is evaluated on the last line, its value will
always be 7”. The intensional answer is something like “the only definition of
X which reaches its use on line 3 is the one on line 1, and the right hand side of
that definition does not contain any variable which is assigned to in lines 1 or
2”. This may well be an accurate account of how an algorithm works, but it is
not a good basis for thinking about what it establishes. Things get even worse
if we consider a sequence like

X := 7; X := 7; X := 7;
Y := Y+1; ==> Y := Y+1; ==> Y := Y+1;
X := 7; X := 7;
Z := X; Z := 7; Z := 7;

After the first transformation, the intensional justification for the change to line
4 refers to the definition of X on line 3. But after the second transformation, that
definition has gone, which complicates proving the correctness of the combined
transformation. Problems of this sort occur both in real compilers (keeping
analysis results sound during transformations is notoriously tricky) and in proofs
(see for example the discussion of interference between ‘forward’ analyses and
‘backward’ transformation patterns in [20]).

Another familiar example of the intensional/extensional distinction arises
in optimizing compilation of lazy functional languages [9]. Some analysis algo-
rithms aimed at detecting when CBN can be replaced by CBV look for functions
which always evaluate their arguments (‘neededness’), which is an intensional
property. Their correctness (and that of the associated transformation) can be
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established in terms of the extensional property of strictness, which is much
easier to reason about. Of course, since the extensional property is also weaker
(holds of more functions) one is then naturally led to reformulate the analysis
to establish the extensional property more directly.

2 The Language of while-Programs

The syntax and denotational semantics of the language of while-programs are
entirely standard (see, e.g. [34]). To fix notation, they are briefly summarized
in Figure 1. We sometimes use Fτ as a metavariable ranging over τ exp where
τ ∈ {int, bool}.

The denotational semantics is given in the category of ω-complete partial
orders (predomains) and continuous functions. We write d·e : D → D⊥ for the
injection of a domain into its lift and (·)∗ : (D → D′

⊥) → (D⊥ → D′
⊥) for

the associated extension operation. When R ⊆ D ×D, R⊥ ⊆ D⊥ ×D⊥ is the
relation defined by

R⊥ = {(dxe, dye) | (x, y) ∈ R} ∪ {(⊥,⊥)}

If f : D → E, x ∈ D and y ∈ E then we define f [x 7→ y] : D → E in the usual
way:

(f [x 7→ y])(z) =
{

y if z = x
f(z) otherwise

The denotational semantics is fully abstract with respect to the obvious opera-
tional semantics and definition of observational equivalence.

2.1 Relations

If X is a set, a binary relation R ⊆ X×X is a partial equivalence relation (PER)
if it is symmetric and transitive. A relation on the carrier of a pointed ω-cpo
D is admissible if (⊥,⊥) ∈ R and for all ascending chains 〈di〉 and 〈d′i〉 with
(di, d

′
i) ∈ R, we have (tidi,tid

′
i) ∈ R. If R is a relation on a set X, then R⊥ is

an admissible relation on the flat cpo X⊥ and is a PER if R is. The set of PERs
on a set is closed under arbitrary intersections and disjoint unions. The set
of admissible relations on a pointed cpo is closed under arbitrary intersections
and finite unions. If R and S are relation on predomains D and E respectively,
we write R ⇒ S for the relation on the function space D → E defined by
(f, g) ∈ R ⇒ S iff ∀(x, y) ∈ R.(fx, gy) ∈ S. This is a PER if R and S are. If E
is pointed and S is admissible, then R ⇒ S is admissible.

3 Dependency, Dead Code and Constants

In this section we present DDCC, a simple analysis and transformation system
for while-programs which tracks dependency and constancy information, en-
abling optimizations such as constant-folding and dead-code elimination. As in-
dicated in the introduction, the system is presented as a non-standard type sys-
tem for deriving typed equalities between expressions and between commands.
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Syntax

X ∈ V = {X, Y, . . .}
n ∈ Z b ∈ B = {true, false}

iop ∈ {+,×,−, . . .} ⊆ Z× Z→ Z
bop ∈ {<,=, . . .} ⊆ Z× Z→ B
lop ∈ {∨,∧, . . .} ⊆ B× B→ B

int exp 3 E := n | X | E iop E

bool exp 3 B := b | E bop E | not B | B lop B

com 3 C := skip | X:=E | C;C | if B then C else C | while B do C

Denotational Semantics

S ∈ S = V→ Z
[[E]] ∈ S→ [[int]] = S→ Z

[[n]]S = n
[[X]]S = S(X)

[[E1 iop E2]]S = ([[E1]]S) iop ([[E2]]S)

[[B]] ∈ S→ [[bool]] = S→ B
[[b]]S = b

[[E1 bop E2]]S = ([[E1]]S) bop ([[E2]]S)
[[B1 lop B2]]S = ([[B1]]S) lop ([[B2]]S)

[[notB]]S = ¬([[B]]S)

[[C]] ∈ S→ S⊥
[[skip]] = λS.dSe

[[X:=E]] = λS.dS[X 7→ [[E]]S]e
[[C1;C2]] = [[C2]]∗ ◦ [[C1]]

[[if B then C1 else C2]] = λS.[[B]]S =⇒ [[C1]]S | [[C2]]S
[[while B do C]] = fix f.λS.[[B]]S =⇒ f∗([[C]]S) | dSe

Figure 1: Syntax and Semantics of while Programs
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3.1 DDCC Syntax and Semantics

3.1.1 Formulae

We begin by defining the syntax of some non-standard types for expressions.
For τ ∈ {int, bool}, c ∈ [[τ ]]:

φτ := Fτ | {c}τ | ∆τ | Tτ

Intuitively, {c}τ is the type of τ -expressions equal to the constant c, ∆τ is the
type of τ -expressions whose value we do not know, whilst Tτ is the type of τ -
expressions whose value we do not care about. Fτ is an empty expression type,
which we have included for completeness.1 Semantically, the denotation of φτ

is a binary relation on [[τ ]]:

[[Fτ ]] = ∅
[[{c}τ ]] = {(c, c)}
[[∆τ ]] = {(x, x) | x ∈ [[τ ]]}
[[Tτ ]] = [[τ ]]× [[τ ]]

Types for states are then finite maps from variables to types for int exps,
written as lists with the usual conventions. In particular, writing Φ, X : φint

implies that X does not occur in Φ.

Φ := − | Φ, X : φint

State types are interpreted as binary relations on S:

[[−]] = S× S
[[Φ, X : φint]] = [[Φ]] ∩ {(S, S′) | (S(X), S′(X)) ∈ [[φint]]}

3.1.2 Entailment

There is a subtyping relation ≤ on expression types, which is axiomatised as
follows:

Fτ ≤ φτ {c}τ ≤ ∆τ

φτ ≤ Tτ φτ ≤ φτ

φτ ≤ φ′τ φ′τ ≤ φ′′τ
φτ ≤ φ′′τ

The above induces a depth- and width-subtyping relation on state types:

Φ ≤ − Φ, X : Fint ≤ Φ′

Φ ≤ Φ′

Φ ≤ Φ′, X : Tint

Φ ≤ Φ′ φint ≤ φ′int
Φ, X : φint ≤ Φ′, X : φ′int

Because Φ, X : Tint ≤ Φ and Φ ≤ Φ, X : Tint, absence of a variable from a state
type is equivalent to it being present with type Tint.

1This is really just a matter of taste. Fτ does not appear in many interesting derivations.
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Lemma 1.

1. For all φτ and Φ, [[φτ ]] and [[Φ]] are partial equivalence relations.

2. The ≤ relation on state types is reflexive and transitive.

3. If φτ ≤ φ′τ then [[φτ ]] ⊆ [[φ′τ ]].

4. If Φ ≤ Φ′ then [[Φ]] ⊆ [[Φ′]].

5. (S, S′) ∈ [[Φ, X : φ]] iff ∀m,n.(S[X 7→ m], S′[X 7→ n]) ∈ [[Φ]] and (S(X), S′(X)) ∈
[[φ]].

Proof. 1. This is immediate for expression types. Then for state types, each
set comprehension in the definition defines a PER on the function space
S→ [[τ ]] and since PERs are closed under intersection we’re done.

2. Reflexivity follows by induction from the first (− ≤ −) and last rules,
and the reflexivity axiom for expression types. Our choice of rules and
the presence of F make showing admissibility of transitivity for state type
entailment not entirely trivial:

First observe that φ ≤ F implies φ = F. Then it’s a simple induction
to show that Φ ≤ Φ′, X : F implies Φ = Φ′′, Y : F for some variable Y .
Hence transitivity is immediate if any of the state types involved contain F.
WLOG we may therefore just show that Φ ≤ Φ′ and Φ′ ≤ Φ′′ implies Φ ≤
Φ′′ assuming there are no Fs in Φ,Φ′ or Φ′′ (so the second rule is not used
in either of the derivations (OK by subformula property)). Then induction
on the other three rules shows Φ ≤ Φ′ implies (*) ∀X ∈ V.Φ(X) ≤ Φ′(X)
where Φ(X) is defined to be φ if Φ = Φ′′, X : φ and T otherwise. The
converse follows by induction on the sum of the length of Φ′. Then since
(*) is transitive, we’re done. Which is embarassingly involved.

3. Immediate from the definition.

4. Simple induction plus the previous bit.

5. Immediate from definition and assumption in writing Φ, X : φ that X does
not appear in Φ.

3.1.3 Judgements

DDCC has two basic forms of judgement. For expressions, with F, F ′ ∈ τ exp,
we have judgements of the form

` F ∼ F ′ : Φ ⇒ φτ

whilst for commands, C,C ′ ∈ com, there are judgements of the form

` C ∼ C ′ : Φ ⇒ Φ′
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We write ` C : Φ ⇒ Φ′ as shorthand for ` C ∼ C : Φ ⇒ Φ′ and similarly for
single-subject expression judgements. If we define

[[Φ ⇒ φτ ]] ⊆ (S→ [[τ ]])× (S→ [[τ ]])
≡ {(f, f ′) | ∀(S, S′) ∈ [[Φ]]. (fS, f ′S′) ∈ [[φτ ]]}

[[Φ ⇒ Φ′]] ⊆ (S→ S⊥)× (S→ S⊥)
≡ {(f, f ′) | ∀(S, S′) ∈ [[Φ]]. (fS, f ′S′) ∈ [[Φ′]]⊥}

then the intended meanings of the judgements are:

|= Fτ ∼ F ′τ : Φ ⇒ φτ ≡ ([[Fτ ]], [[F ′τ ]]) ∈ [[Φ ⇒ φτ ]]
|= C ∼ C ′ : Φ ⇒ Φ′ ≡ ([[C]], [[C ′]]) ∈ [[Φ ⇒ Φ′]]

Lemma 2. [[Φ ⇒ φτ ]] is a PER and [[Φ ⇒ Φ′]] is an admissible PER.

Proof. Immediate from the basic facts in Section 2.1.

Some basic rules for deriving DDCC judgements are shown in Figure 2.
The rules for expressions refer to abstract versions ôp of each primitive binary
operator op in the language. A typical definition is that for multiplication:

×̂ Fint {0}int {n}int ∆int Tint

Fint Fint Fint Fint Fint Fint
{0}int Fint {0}int {0}int {0}int {0}int
{m}int Fint {0}int {m× n}int ∆int Tint

∆int Fint {0}int ∆int ∆int Tint

Tint Fint {0}int Tint Tint Tint

The general correctness condition for abstract operations is familiar from ab-
stract interpretation:

Definition 1. We say ôp soundly abstracts the operation op if

∀(x, x′) ∈ [[φτ ]], (y, y′) ∈ [[φ′τ ]]. (x op y, x′ op y′) ∈ [[φτ ôp φ′τ ]].

The most interesting of the rules in Figure 2 are those for conditionals and
while-loops. Observe that for two conditionals to be related, not only do their
true and false branches have to be pairwise related, but they also have to agree
on which branch is taken; this is expressed by the use of ∆bool in the premises of
the rule. Similar considerations apply to the rule for while-loops, which ensures
that related loops execute in lockstep.

3.2 Equations

Using only the rules in Figure 2, most of the interesting judgements one can
prove relate a phrase to itself at some type. In other words, they constitute
an analysis system but not yet a program transformation system. However,
the advantage of our formulation is that program transformations can now be
specified and justified simply by adding new inference rules whose soundness
may be straightforwardly and independently checked in terms of the semantics.
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Subtyping and Structural

` C ∼ C ′ : Φ, X : Fint ⇒ Φ′ [D-CT] ` Fτ ∼ F ′τ : Φ ⇒ Tτ [D-ET1]

` Fτ ∼ F ′τ : Φ, X : Fint ⇒ φτ [D-ET2]
` Fτ ∼ F ′τ : Φ ⇒ φτ

[D-ESym]
` F ′τ ∼ Fτ : Φ ⇒ φτ

` Fτ ∼ F ′τ : Φ ⇒ φτ Φ′ ≤ Φ φτ ≤ φ′τ
[D-ESub]

` Fτ ∼ F ′τ : Φ′ ⇒ φ′τ
` C ∼ C ′ : Φ1 ⇒ Φ2 Φ′1 ≤ Φ1 Φ2 ≤ Φ′2

[D-CSub]
` C ∼ C ′ : Φ′1 ⇒ Φ′2

` Fτ ∼ F ′τ : Φ ⇒ φτ ` F ′τ ∼ F ′′τ : Φ ⇒ φτ
[D-ETr]

` Fτ ∼ F ′′τ : Φ ⇒ φτ

` C ∼ C ′ : Φ ⇒ Φ′
[D-CSym]

` C ′ ∼ C : Φ ⇒ Φ′

` C ∼ C ′ : Φ ⇒ Φ′ ` C ′ ∼ C ′′ : Φ ⇒ Φ′
[D-CTr]

` C ∼ C ′′ : Φ ⇒ Φ′

Expressions

` X ∼ X : Φ, X : φint ⇒ φint [D-V] ` n ∼ n : Φ ⇒ {n}int [D-N]

` b ∼ b : Φ ⇒ {b}bool [D-B]

` Fτ ∼ Gτ : Φ ⇒ φτ ` F ′τ ∼ G′τ : Φ ⇒ φ′τ
[D-op]

` Fτ op F ′τ ∼ Gτ op G′τ : Φ ⇒ (φτ ôp φ′τ )

Commands

` skip ∼ skip : Φ ⇒ Φ [D-Skip]

` C1 ∼ C ′1 : Φ ⇒ Φ′ ` C2 ∼ C ′2 : Φ′ ⇒ Φ′′
[D-Seq]

` (C1;C2) ∼ (C ′1;C
′
2) : Φ ⇒ Φ′′

` E ∼ E′ : Φ, X : φint ⇒ φ′int
[D-Ass]

` X:=E ∼ X:=E′ : Φ, X : φint ⇒ Φ, X : φ′int
` B ∼ B′ : Φ ⇒ ∆bool ` C ∼ C ′ : Φ ⇒ Φ

[D-Whl]
` (while B do C) ∼ (while B′ do C ′) : Φ ⇒ Φ

` B ∼ B′ : Φ ⇒ ∆bool ` C1 ∼ C ′1 : Φ ⇒ Φ′ ` C2 ∼ C ′2 : Φ ⇒ Φ′
[D-If]

` (if B then C1 else C2) ∼ (if B′ then C ′1 else C ′2) : Φ ⇒ Φ′

Figure 2: Core DDCC System
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3.2.1 Basic equations

Our first set of transformation rules express universally applicable structural
equivalences for while-programs, without requiring any of the extra information
gathered by the analysis.

Sequential unit laws:

` C : Φ ⇒ Φ′
[D-SU1]

` (skip;C) ∼ C : Φ ⇒ Φ′

` C : Φ ⇒ Φ′
[D-SU2]

` (C;skip) ∼ C : Φ ⇒ Φ′

Associativity:

` (C1;C2);C3 : Φ ⇒ Φ′

` ((C1;C2);C3) ∼ (C1;(C2;C3)) : Φ ⇒ Φ′

In practice, one usually identifies programs up to associativity of sequential
composition, rather than making explicit use of the rule above.

Commuting conversion for conditional:

` if B then C1 else C2 : Φ ⇒ Φ′ ` C3 : Φ′ ⇒ Φ′′
[D-CC]

` (if B then C1 else C2);C3

∼ if B then (C1;C3) else (C2;C3) : Φ ⇒ Φ′′

Loop unrolling:

` while B do C : Φ ⇒ Φ′ [D-LU1]

` while B do C
∼ if B then C;(while B do C) else skip : Φ ⇒ Φ′

` while B do C : Φ ⇒ Φ′ [D-LU2]

` while B do C
∼ while B do (C;if B then C else skip) : Φ ⇒ Φ′

Self-assignment elimination:

` X:=X ∼ skip : Φ, X : φint ⇒ Φ, X : φint [D-SAs]

In conjunction with the core rules, the rules above can be used to derive many of
the basic equalities one might expect.2 From a pragmatic point of view, however,
they are somewhat unwieldy: even very simple proofs get quite large, with
many applications of the symmetry and transitivity rules and many repeated
sub-derivations. Reformulating the rules as logically equivalent versions which

2Though the rules presented are in no sense complete. There are sound rules (arithmetic
identities and equivalences for nested conditionals, for example) which are not consequences
of the ones we have given.
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can be applied in more general contexts helps immensely. For example, a better
formulation of one of the skip rules is the following:

` C ∼ skip : Φ ⇒ Φ′ ` C ′ ∼ C ′′ : Φ′ ⇒ Φ′′
[D-SU1’]

` (C;C ′) ∼ C ′′ : Φ ⇒ Φ′′

Presenting rules in this style is essentially trying to produce a system with a kind
of cut-elimination property, but we leave serious consideration of proof-theoretic
matters to future work.

3.2.2 Optimizing Transformations

In this section we consider some more interesting rules, in which equations are
predicated on information in the type system.

Dead assignment elimination:

` (X:=E) ∼ skip : Φ, X : φint ⇒ Φ, X : Tint [D-DAs]

Intuitively, the dead assignment rule says that an assignment to a variable
is equivalent to skip if we are in a context in which the value of that
variable does not matter.

Equivalent branches for conditional:

` C1 ∼ C2 : Φ ⇒ Φ′
[D-BrE]

` if B then C1 else C2 ∼ C1 : Φ ⇒ Φ′

An alternative form of this rule, which is a bit prettier, is

` C1 ∼ C : Φ ⇒ Φ′ ` C2 ∼ C : Φ ⇒ Φ′
[D-BrE’]

` if B then C1 else C2 ∼ C : Φ ⇒ Φ′

Constant folding:
` Fτ : Φ ⇒ {c}τ

[D-CF]
` Fτ ∼ c : Φ ⇒ {c}τ

Known branch:

` B : Φ ⇒ {true} ` C1 ∼ C ′ : Φ ⇒ Φ′
[D-KBT]

` (if B then C1 else C2) ∼ C ′ : Φ ⇒ Φ′

` B : Φ ⇒ {false} ` C2 ∼ C ′ : Φ ⇒ Φ′
[D-KBF]

` (if B then C1 else C2) ∼ C ′ : Φ ⇒ Φ′

Dead while:
` B : Φ ⇒ {false}

[D-DWh]
` (while B do C) ∼ skip : Φ ⇒ Φ

This is actually derivable using loop unrolling [D-LU1] and known branch
[D-KBF].
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Divergence:
` B : Φ ⇒ {true} ` C : Φ ⇒ Φ

[D-Div]
` (while B do C) : Φ ⇒ Φ′

The type Φ′ in the conclusion of the rule above is arbitrary because the
loop will diverge when executed in any state in the domain of Φ.

The following is an easy induction, relying on Lemmas 1 and 2:

Theorem 1. Assuming the abstract operations satisfy the correctness condition
given in Definition 1, the core DDCC rules of Figure 2 and the additional rules
of Section 3.2 are all sound:

` Fτ ∼ F ′τ : Φ ⇒ φτ =⇒ |= Fτ ∼ F ′τ : Φ ⇒ φτ

` C ∼ C ′ : Φ ⇒ Φ′ =⇒ |= C ∼ C ′ : Φ ⇒ Φ′

Proof. Induction on derivations, we show that each rule preserves semantic va-
lidity.

D-CT [[Φ, X : Fint]] = ∅ so [[Φ, X : Fint ⇒ Φ′]] = (S→ S⊥)× (S→ S⊥).

D-ET1 [[Φ ⇒ Tτ ]] = (S→ [[τ ]])× (S→ [[τ ]]).

D-ET2 [[Φ, X : Fint]] = ∅ so [[Φ, X : Fint ⇒ φτ ]] = (S→ [[τ ]])× (S→ [[τ ]]).

D-ESym [[Φ → φτ ]] is symmetric as it’s a PER, Lemma 2.

D-ESub If (S, S′) ∈ [[Φ′]] and Φ′ ≤ Φ then by Lemma 1, (S, S′) ∈ [[Φ]]. Thus by
induction ([[Fτ ]]S, [[F ′τ ]]S′) ∈ [[φτ ]]. Since φτ ≤ φ′τ , by Lemma 1 we have
([[Fτ ]]S, [[F ′τ ]]S′) ∈ [[φ′τ ]] as required.

D-CSub Observe that [[Φ]] ⊆ [[Φ′]] implies [[Φ]]⊥ ⊆ [[Φ′]]⊥, and reason as above.

D-ETr [[Φ → φτ ]] is transitive because it’s a PER, Lemma 2.

D-CSym [[Φ → Φ′]] is symmetric because it’s a PER.

D-CTr [[Φ → Φ′]] is transitive because it’s a PER.

D-V (S, S′) ∈ [[Φ, X : φint]] implies (S(X), S′(X)) ∈ [[φint]]. So ([[X]]S, [[X]]S′) ∈
[[φint]] as required.

D-N If (S, S′) ∈ [[Φ]], ([[n]]S, [[n]]S′) = (n, n) ∈ [[{n}int]] as required.

D-B As above.

D-op Assume (S, S′) ∈ [[Φ]], then by induction ([[F ]]S, [[G]]S′) ∈ [[φ]] and ([[F ′]]S, [[G′]]S′) ∈
[[φ′]]. Now, ([[FopF ′]]S, [[GopG′]]S′) = ([[F ]]S op [[F ′]]S, [[G]]S′ op [[G′]]S′) ∈
[[φ ôp φ′]] by the definition of soundness for abstract operations.

D-Skip If (S, S′) ∈ [[Φ]] then ([[skip]]S, [[skip]]S′) = (dSe, dS′e) ∈ [[Φ]]⊥.

D-Seq Assume (S, S′) ∈ [[Φ]]. By induction ([[C1]]S, [[C2]]S′) ∈ [[Φ′]]⊥ so ([[C1]]S, [[C2]]S′)
is either equal to (⊥,⊥) or to (dT e, dT ′e) with (T, T ′) ∈ [[Φ′]]. In the first
case, ([[C1;C2]]S, [[C ′1;C

′
2]]S

′) = (⊥,⊥) ∈ [[Φ′′]]⊥ as required. In the second
case ([[C1;C2]]S, [[C ′1;C

′
2]]S

′) = ([[C2]]T, [[C ′2]]T
′) ∈ [[Φ′′]]⊥ by induction.
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D-Ass If (S, S′) ∈ [[Φ, X : φ]] then by induction ([[E]]S, [[E′]]S′) ∈ [[φ′]]. Thus
([[X:=E]]S, [[X:=E′]]S′) = (S[X 7→ [[E]]S], S′[X 7→ [[E′]]S′]) ∈ [[Φ, X : φ′]]
(last part of Lemma 1).

D-Whl Define fn : S → S⊥ by f0 = λS.⊥, fn+1 = λS.[[B]]S =⇒ f∗n([[C]]S) | dSe
and similarly for f ′n. Clearly (f0, f

′
0) ∈ [[Φ → Φ]]. Now assume (fn, f ′n) ∈

[[Φ → Φ]] and (S, S′) ∈ Φ. By assumption ([[B]]S, [[B′]]S′) ∈ [[∆bool]], so
they’re either both true or both false. In the latter case, (fn+1S, f ′n+1S

′) =
(dSe, dS′e) ∈ [[Φ]]⊥. In the former case, (fn+1S, f ′n+1S

′) = (f∗n([[C]]S), f ′n
∗([[C ′]]S′)).

By induction either [[C]]S = [[C ′]]S′ = ⊥, in which case (fn+1S, f ′n+1S
′) =

(⊥,⊥) ∈ [[Φ]]⊥, or ([[C]]S, [[C ′]]S′) = (dT e, dT ′e), with (T, T ′) ∈ [[Φ]], in
which case (fn+1S, f ′n+1S

′) = (fnT, f ′nT ′) ∈ [[Φ]]⊥. Hence by mathe-
matical induction, (fn, f ′n) ∈ [[Φ → Φ]] for all n and by admissibility
(tnfn,tnfn) ∈ [[Φ → Φ]] as required.

D-If If (S, S′) ∈ [[Φ]] then by assumption ([[B]]S, [[B′]]S′) ∈ [[∆int]]. Assume that
they’re both true, then ([[if B then C1 else C2]]S, [[if B′ then C ′1 else C ′2]]S

′) =
([[C1]]S, [[C ′1]]S

′) ∈ [[Φ]]⊥ by the assumption about the true branches. Sim-
ilar reasoning holds for the false branches, so we’re done.

Basic equations These are all of the form: if ([[C]], [[C]]) ∈ [[Φ → Φ′]] then ([[C]], [[C ′]]) ∈
[[Φ → Φ′]] where [[C]] = [[C ′]].

D-DAs Assume (S, S′) ∈ [[Φ, X : φ]] then ([[X:=E]]S, [[skip]]S′) = (dS[X 7→
[[E]]S]e, dS′e). By Lemma 1 (S[X 7→ [[E]]S], S′) ∈ [[Φ]] and since ([[E]]S, S′(X)) ∈
[[Tint]] we have (dS[X 7→ [[E]]S]e, dS′e) ∈ [[Φ, X : Tint]]⊥ as required.

D-BrE Assume (S, S′) ∈ [[Φ]] so we know ([[C1]]S, [[C2]]S′) ∈ [[Φ′]]⊥. If [[B]]S = true
we have ([[if B then C1 else C2]]S, [[C1]]S′) = ([[C1]]S, [[C1]]S′). Now,
labouring the relational reasoning a bit (this is essentially just the relex-
ivity on the domain of [[Φ → Φ′]], which should be proved explicitly in
the general bit about relations), (S′S′) ∈ [[Φ]] because [[Φ]] is a PER.
Hence ([[C2]]S′, [[C1]]S′) ∈ [[Φ′]]⊥ by assumption and symmetry of [[Φ′]]⊥
and so ([[C1]]S, [[C1]]S′) ∈ [[Φ′]]⊥ by transitivity of [[Φ′]]⊥. If, on the other
hand, [[B]]S = false we have ([[if B then C1 else C2]]S, [[C1]]S′) =
([[C2]]S, [[C1]]S′) and we’re done by symmetry of [[Φ → Φ′]].

D-BrE’ This is much easier than the above - better to take this one as primitive
in fact, and then just have [D-BrE] as a derived rule in the system (so
the semantic reasoning above becomes syntactic reasoning in the proof
system). Moreover, this version matches the one for RHL more closely.

D-CF If (S, S′) ∈ [[Φ]] then by assumption ([[F ]]S, [[F ]]S′) ∈ [[{c}]] = {(c, c)} so
([[F ]]S, [[c]]S′) ∈ [[{c}]].

D-KBT If (S, S′) ∈ [[Φ]], by the first premiss [[B]]S = [[B]]S′ = true so

([[if B then C1 else C2]]S, [[C ′]]S′) = ([[C1]]S, [[C ′]]S′) ∈ [[Φ′]]⊥

by the second premiss.

D-KBF As above.
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D-DWh If (S, S′) ∈ [[Φ]], by assumption [[B]]S = [[B]]S′ = false so

([[while B do C]]S, [[skip]]S′) = (dSe, dS′e) ∈ [[Φ]]⊥.

D-Div Define f0 = λS.⊥, fn+1 = λS.[[B]]S =⇒ f∗n([[C]]S) | dSe. Then we
show that ∀n.∀(S, S′) ∈ [[Φ]].(fnS, fnS′) = (⊥,⊥), from which the re-
sult follows. The case n = 0 is obvious. Then by the assumption on B
we know (fn+1S, fn+1S

′) = (f∗n([[C]]S), (f∗n([[C]]S′) and by the assump-
tion on C, either ([[C]]S, [[C]]S′) = (⊥,⊥) and the result follows by the
definition of (·)∗, or ([[C]]S, [[C]]S′) = (dT e, dT ′e) with (T, T ′) ∈ [[Φ]] so
(fn+1S, fn+1S

′) = (fnT, fnT ′) and we’re done by induction.

3.3 Example Transformations

These rules are sufficient to capture some non-trivial transformations, including
constant propagation, dead-code elimination and program slicing [33]. Some
example derivations are shown in Figure 3. We leave it as an exercise to prove
larger examples, such as the slicing transformation:

I := 1; I := 1;
S := 0;
P := 1; P := 1
while I<N do ( ==> while I<N do (
S := S+I;
P := P*I; P := P*I;
I := I+1;) I := I+1;)

at type N : ∆int ⇒ P : ∆int. Here we expressed the fact that we were only
interested in the final value of P simply by transforming it at a result type which
only constrains the value of that variable to be preserved – all the others (in
particular S) are typed at Tint and so are allowed to take any value.

Proof. Let Φ0 = I : Tint, S : Tint, P : Tint, N : ∆int and Φ1 = I : ∆int, S :
Tint, P : Tint, N : ∆int. Then

` 1 ∼ 1 : Φ0 ⇒ {1} {1} ≤ ∆int
[D-ESub]

` 1 ∼ 1 : Φ0 ⇒ ∆int
[D-Ass]

` I :=1 ∼ I :=1 : Φ0 ⇒ Φ1

Then as
` S := 0 ∼ skip : Φ1 ⇒ Φ1 [D-DAs]

We can deduce
` (I := 1;S := 0) ∼ (I := 1) : Φ0 ⇒ Φ1

by [D-SU2’]. Now let Φ2 = I : ∆int, S : Tint, P : ∆int, N : ∆int and similar
reasoning yields

` (I := 1;S := 0;P:=1) ∼ (I := 1;P:=1) : Φ0 ⇒ Φ2
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γ, X : σint ` X : σint γ ` n : σint γ ` b : σbool

γ ` E : σint γ ` E′ : σint
+ similar for bop and lop

γ ` E iopE′ : σint

γ,X : σint ` E : σint

γ, X : σint ` X:=E : σcom

γ ` C : σcom γ ` C ′ : σcom

γ ` C;C ′ : σcom

γ ` B : σbool γ ` C : σcom γ ` C ′ : σcom

γ ` if B then C else C ′ : σcom

γ ` B : Lbool γ ` C : Lcom

γ ` while B do C : Lcom

γ ` F : Lτ

γ ` F : Hτ

γ ` C : Hcom

γ ` C : Lcom

Figure 4: Smith/Volpano Type System

Next we show
` I < N ∼ I < N : Φ2 ⇒ ∆bool

and

` (S := S + 1; P := P ∗ I; I := I + 1) ∼ (P := P ∗ I; I := I + 1) : Φ2 ⇒ Φ2

so that, by [D-Whl]:

` (while I < N do (S := S + 1; P := P ∗ I; I := I + 1)) ∼
(while I < N do (P := P ∗ I; I := I + 1)) : Φ2 ⇒ Φ2

Then as N : ∆int ≤ Φ0 and Φ2 ≤ P : ∆int we can plug the bits together with
[D-Seq] and [D-CSub] and we’re done.

3.4 Secure Information Flow

It is worth observing that the T,∆ fragment of our calculus can be seen as
a non-interference type system. Figure 4 presents a version of a type system
for secure information flow due to Smith and Volpano [27]. In this system, a
security level, σ, is either low (L) or high (H). A context γ is then a finite map
from variables to security levels:

γ := − | γ,X : σint

Given such a context, the type system assigns a security level (σint or σbool)
to each expression and (σcom) to each command. The property which the type
system ensures is that any typeable command does not allow information to
flow (either directly, via assignment, or indirectly, via control flow) from high
security variables to low security ones. We define a translation (·)∗ from the
Smith/Volpano system into DDCC as follows:
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Expression types: L∗τ = ∆τ and H∗
τ = Tτ .

Contexts: −∗ = − and (γ,X : σint)∗ = γ∗, X : σ∗int.

Judgements:

(γ ` F : στ )∗ = ` F ∼ F : γ∗ ⇒ σ∗τ
(γ ` C : Lcom)∗ = ` C ∼ C : γ∗ ⇒ γ∗

(γ ` C : Hcom)∗ = ` C ∼ skip : γ∗ ⇒ γ∗

Theorem 2. For any judgement J derivable in the Smith/Volpano system, J∗

is derivable in DDCC

Proof. This is a simple induction, relying on the dead assignment axiom in the
case of high assignment statements, sequential unit for high sequential compo-
sitions and the equivalent branch rule for high conditionals.

Variables (γ, X : σint ` X : σint)∗ = ` X ∼ X : γ∗, X : σ∗int ⇒ σ∗int [D-V].

Constants
` n ∼ n : γ∗ ⇒ {n} {n} ≤ σ∗int

[D-ESub]
(γ ` n : σint)∗ = ` n ∼ n : γ∗ ⇒ σ∗int

And similarly for booleans.

Ops By induction have derivations of

(γ ` E : σint)∗ = ` E ∼ E : γ∗ ⇒ σ∗int
(γ ` E′ : σint)∗ = ` E′ ∼ E′ : γ∗ ⇒ σ∗int

And hence can derive

` E iop E′ ∼ E iop E′ : γ∗ ⇒ σ∗int îop σ∗int

by [D-iop]. Now observe that for any operation iop : Z×Z→ Z, there is a
sound abstraction îop such that ∆int îop ∆int ≤ ∆int and Tint îopTint ≤
Tint so for either value of σ, we can get

(γ ` E iop E′ : σint)∗ = ` E iop E′ ∼ E iop E′ : γ∗ ⇒ σ∗int

by [D-ESub].

Assign (L)

(γ, X : Lint ` E : Lint)∗ = ` E ∼ E : γ∗, X : ∆int ⇒ ∆int
[D-Ass]

(γ, X : Lint ` X:=E : Lcom)∗ = ` X:=E ∼ X:=E : γ∗, X : ∆int ⇒ γ∗, X : ∆int

Assign (H) We don’t even need the inductive hypothesis here:

(γ, X : Hint ` X:=E : Hcom)∗ = ` X:=E ∼ skip : γ∗, X : Tint ⇒ γ∗, X : Tint [D-DAs]

Seq L
(γ ` C : Lcom)∗ =` C ∼ C : γ∗ ⇒ γ∗ (γ ` C ′ : Lcom)∗ =` C ′ ∼ C ′ : γ∗ ⇒ γ∗

[D-Seq]
(γ ` C;C ′ : Lcom)∗ =` C;C ′ ∼ C;C ′ : γ∗ ⇒ γ∗
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Seq H
(γ ` C : Hcom)∗ =` C ∼ skip : γ∗ ⇒ γ∗ (γ ` C ′ : Hcom)∗ =` C ′ ∼ skip : γ∗ ⇒ γ∗

[D-SU1’]
(γ ` C;C ′ : Hcom)∗ =` C;C ′ ∼ skip : γ∗ ⇒ γ∗

Cond L We have by assumption

(γ ` B : Lbool)∗ = ` B ∼ B : γ∗ ⇒ ∆bool

(γ ` C : Lcom)∗ = ` C ∼ C : γ∗ ⇒ γ∗

(γ ` C ′ : Lcom)∗ = ` C ′ ∼ C ′ : γ∗ ⇒ γ∗

So applying [D-If] yields

` if B then C else C ′ ∼ if B then C else C ′ : γ∗ ⇒ γ∗

which is (γ ` if B then C else C ′ : Lcom)∗ as required.

Cond H We have by assumption

(γ ` C : Hcom)∗ = ` C ∼ skip : γ∗ ⇒ γ∗

(γ ` C ′ : Hcom)∗ = ` C ′ ∼ skip : γ∗ ⇒ γ∗

The inductive assumption on B is not needed in this case, as we can just
apply [D-BrE’] to the above to deduce

` if B then C else C ′ ∼ skip : γ∗ ⇒ γ∗

which is (γ ` if B then C else C ′ : Hcom)∗ as required.

While By assumption we have

(γ ` B : Lbool)∗ = ` B ∼ B : γ∗ ⇒ ∆bool

(γ ` C : Lcom)∗ = ` C ∼ C : γ∗ ⇒ γ∗

so we can apply [D-Whl] to deduce

` while B do C ∼ while B do C : γ∗ ⇒ γ∗

which is (γ ` while B do C : Lcom)∗ as required.

Exp-Sub
(γ ` F : Lτ )∗ = ` F ∼ F : γ∗ ⇒ ∆τ ∆τ ≤ Tτ

(γ ` F : Hτ )∗ = ` F ∼ F : γ∗ ⇒ Tτ

Com-Sub By induction have derivation of

(γ ` C : Hcom)∗ = ` C ∼ skip : γ∗ ⇒ γ∗

so we can apply [D-CSym] to get

` skip ∼ C : γ∗ ⇒ γ∗

and then [D-CTr] to yield

` C ∼ C : γ∗ ⇒ γ∗

which is (γ ` C : Lcom)∗ as required.
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Definition 2. In the context of a security type assignment γ, a command C
satisfies strong sequential noninterference if |= C ∼ C : γ∗ ⇒ γ∗.

This version of non-interference is the semantic security property intended
by Smith and Volpano, though the actual property established by the sound-
ness proof in [27] is more syntactic and intensional, as it is defined in terms
of their particular typing rules. Our notion of intereference is strong because
it is termination-sensitive: varying the high-security inputs affects neither the
low-security outputs nor the termination behaviour. In the absence of any ter-
mination analysis, this is enforced by the rather brutal approach of making all
high-security commands total. The weaker notion of non-interference that is
achieved by the earlier system of Volpano, Smith and Irvine [29] does not seem
to translate directly into DDCC.

Even without constant tracking, DDCC is marginally more powerful than
the Smith/Volpano system. For example, if H is a high-security variable, and L
is low-security then the following are easily shown to satisfy non-interference in
DDCC, but would be rejected by the Smith/Volpano system:

1. if H > 3 then H := L ; L := 1 else L := 1

2. L := H ; L := 3

4 Relational Hoare Logic

There are many common optimizing transformations which are not captured by
DDCC. In particular:

• It does not capture any transformations that take advantage of the fact
that one knows statically which way a boolean test must have evaluated
if one is within a particular branch of a conditional, or either in the body
of or have just left a while-loop. For example, the judgement

` (if X = 3 then Y :=X else Y :=3)
∼ (Y :=3) : X : ∆ ⇒ Y : {3}

is semantically valid but not derivable.

• It cannot express the preservation of the values of expressions, except
where they are statically known to be a particular constant. These means
even trivial code-motion transformations cannot be derived.

We can address these shortcomings by making piecemeal additions to the sys-
tem, such as quantification over variables ranging over integers or PERs. How-
ever, there is a simple and elegant system, which we call Relational Hoare Logic
(RHL), into which many of these extensions or alternative type systems can be
embedded.

Unlike DDCC, RHL does not look like a conventional type-based analysis
system – it has a rather general syntax for relations and is parameterized on
some system for deciding the entailment relation between them. The intention
is that more specific analyses and transformations can be formulated as sub-
systems of RHL by restricting the syntax of assertions and providing particular
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approximations to the entailment relation. Another way in which RHL goes
beyond DDCC is that it is not restricted to partial equivalence relations, which
deserves some comment.

PERs are certainly privileged: they are the basis of equational reasoning, and
we will nearly always be trying to prove that one program phrase is related to
another by a PER so that we can perform a rewrite in some context. However,
in order to establish that two phrases are related by a PER, we often have
to do some local reasoning using more general relations. This is familiar in
the semantics of polymorphic type theories: types are interpreted by PERs,
and polymorphism by quantification over PERs, but parametricity theorems
and equivalence results for implementations of abstract dataypes arise from
substituting more general relations. To give some intuition for why this might
be so, consider proving the equivalence

X := -Y; X := Y;
Z := Z-X; ==> Z := Z+X;
X := -X;

at, say, Y : ∆int, Z : ∆int ⇒ X : ∆int, Y : ∆int, Z : ∆int. If we try to
to establish that the two commands are related by this PER by relating their
intermediate states (though this is not the only approach one could take), we
will need to use the relation that the value of X in one state is the negation of
that in the other, which is not a PER.

RHL is an extremely simple variation on traditional Floyd-Hoare logic [13].
Instead of assertions which denote predicates on states and judgements which
say that terminating execution of a command in a state satisfying a precondi-
tion will yield a state satisfying a postcondition, we directly axiomatise when a
pair of commands map a given pre-relation into a given post-relation. Binary
relations on states are simply specified by boolean expressions of the language
over variables tagged with an indication of which of the two states they refer
to. At first sight, this may seem frighteningly simple-minded, but it actually
works rather nicely. In this presentation we do not consider quantification over
metavariables (“ghost variables”) denoting integers: their addition is straigh-
forward, but simple global analyses seem to be expressible without them.

4.1 RHL Syntax and Semantics

4.1.1 Syntax

We define generalized expressions and relational assertions as follows:

gexp 3 GE := n | X〈1〉 | X〈2〉 | GE iop GE

relexp 3 Φ := b | GE bop GE | notΦ | Φ lop Φ

We overload the notation (·)〈1〉 and (·)〈2〉 to stand for homomorphic embeddings
int exp → gexp and bool exp → relexp in the obvious way. The basic
judgement form is ` C ∼ C ′ : Φ ⇒ Φ′ (though the use of ∼ for arbitrary
relations is arguably bad).
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` skip ∼ skip : Φ ⇒ Φ [R-Skip]

` C ∼ C ′ : Φ ∧ (B〈1〉 ∧B′〈2〉) ⇒ Φ′ ` D ∼ D′ : Φ ∧ not(B〈1〉 ∨B′〈2〉) ⇒ Φ′
[R-If]

` if B then C else D ∼ if B′ then C ′ else D′ : Φ ∧ (B〈1〉 = B′〈2〉) ⇒ Φ′

` C ∼ C ′ : Φ ⇒ Φ′ ` D ∼ D′ : Φ′ ⇒ Φ′′
[R-Seq]

` C ; D ∼ C ′ ; D′ : Φ ⇒ Φ′′

` X := E ∼ Y := E′ : Φ[E〈1〉/X〈1〉, E′〈2〉/Y 〈2〉] ⇒ Φ [R-Ass]

` C ∼ C ′ : Φ ∧ (B〈1〉 ∧B′〈2〉) ⇒ Φ ∧ (B〈1〉 = B′〈2〉)
[R-Whl]

` while B do C ∼ while B′ do C ′ : Φ ∧ (B〈1〉 = B′〈2〉) ⇒ Φ ∧ not(B〈1〉 ∨B′〈2〉)

` C ∼ C ′ : Φ1 ⇒ Φ2 |= Φ′1 ≤ Φ1 |= Φ2 ≤ Φ′2
[R-Sub]

` C ∼ C ′ : Φ′1 ⇒ Φ′2
` C ∼ C ′ : Φ ⇒ Φ′ |= PER(Φ ⇒ Φ′)

[R-Sym]
` C ′ ∼ C : Φ ⇒ Φ′

` C ∼ C ′ : Φ ⇒ Φ′ ` C ′ ∼ C ′′ : Φ ⇒ Φ′ |= PER(Φ ⇒ Φ′)
[R-Tr]

` C ∼ C ′′ : Φ ⇒ Φ′

Figure 5: Core Relational Hoare Logic
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4.1.2 Semantics

The semantics of generalized expressions as integer-valued functions of two
states, and of relational assertions as relations on states is unsurprising:

[[GE]] ∈ S× S→ Z
[[n]](S1, S2) = n

[[X〈1〉]](S1, S2) = S1(X)
[[X〈2〉]](S1, S2) = S2(X)

[[E iop F ]](S1, S2) = ([[E]](S1, S2)) iop ([[F ]](S1, S2))

[[Φ]] ⊆ S× S
= {(S, S′) | χΦ(S, S′) = true}

χtrue(S′S′) = true
χfalse(S, S′) = false

χE bop F (S, S′) = [[E]](S, S′) bop [[F ]](S, S′)
χΦ lop Φ′(S, S′) = χΦ(S, S′) lop χΦ′(S, S′)

χnotΦ(S, S′) = ¬(χΦ(S, S′))

The intended meaning of judgements is given by

|= C ∼ C ′ : Φ ⇒ Φ′

≡ ∀(S1, S2) ∈ [[Φ]]. ([[C]](S1), [[C ′]](S2)) ∈ [[Φ′]]⊥

We will also need some auxiliary semantic judgements, whose meanings are as
follows:

|= Φ ≤ Φ′ ≡ [[Φ]] ⊆ [[Φ′]]
|= PER(Φ) ≡ ([[Φ]] ◦ [[Φ]] ⊆ [[Φ]]) and ([[Φ]]−1 ⊆ [[Φ]])

Lemma 3.

1. For all GE,GE′,X,S,S′:

[[GE[GE′/X〈1〉]]](S, S′)
= [[GE]](S[X 7→ [[GE′]](S, S′)], S′)

And similarly for X〈2〉 and S′.

2. For all Φ, GE,X,S,S′:

χΦ[GE/X〈1〉](S, S′) = χΦ(S[X 7→ [[GE]](S, S′)], S′)

And similarly for X〈2〉 and S′.

3. For all Φ and Φ′, [[Φ ⇒ Φ′]] is an admissible relation.

4. For any E ∈ int exp,S,S′, [[E〈1〉]](S, S′) = [[E]]S and similarly for E〈2〉
and S′. For any B ∈ bool exp, χB〈1〉(S, S′) = [[B]]S and similarly for
B〈2〉 and S’.

Proof. 1. Induction on GE:
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• constants

LHS = [[n[GE′/X〈1〉]]](S, S′)
= [[n]](S, S′)
= n

RHS = [[n]](S[X 7→ [[GE′]](S, S′)], S′)
= n

• variable X〈1〉

LHS = [[X〈1〉[GE′/X〈1〉]]](S, S′)
= [[GE′]](S, S′)

RHS = [[X〈1〉]](S[X 7→ [[GE′]](S, S′)], S′)
= S[X 7→ [[GE′]](S, S′)](X)
= [[GE′]](S, S′)

• variable Y 〈1〉, X 6= Y

LHS = [[Y 〈1〉[GE′/X〈1〉]]](S, S′)
= [[Y 〈1〉]](S, S′)
= S(Y )

RHS = [[Y 〈1〉]](S[X 7→ [[GE′]](S, S′)], S′)
= S[X 7→ [[GE′]](S, S′)](Y )
= S(Y )

• variable Y 〈2〉 (any Y )

LHS = [[Y 〈2〉[GE′/X〈1〉]]](S, S′)
= [[Y 〈2〉]](S, S′)
= S′(Y )

RHS = [[Y 〈2〉]](S[X 7→ [[GE′]](S, S′)], S′)
= S′(Y )

• E iop F

LHS = [[(EiopF )[GE′/X〈1〉]]](S, S′)
= [[E[GE′/X〈1〉]iopF [GE′/X〈1〉]]](S, S′)
= [[E[GE′/X〈1〉]](S′S′) iop [[F [GE′/X〈1〉]]](S, S′)
= [[E]](S[X 7→ [[GE′]](S, S′)], S′) iop [[F ]](S[X 7→ [[GE′]](S, S′)], S′) induction
= [[EiopF ]](S[X 7→ [[GE′]](S, S′)], S′)
= RHS

2. Induction on Φ:
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• true

LHS = χtrue[GE/X〈1〉](S, S′)
= χtrue(S, S′)
= true

= χtrue(S[X 7→ [[GE]](S, S′)], S′)
= RHS

• false

LHS = χfalse[GE/X〈1〉](S, S′)
= χfalse(S, S′)
= false

= χfalse(S[X 7→ [[GE]](S, S′)], S′)
= RHS

• EbopF

LHS = χ(EbopF )[GE/X〈1〉](S, S′)
= χE[GE/X〈1〉]bopF [GE/X〈1〉](S, S′)
= [[E[GE/X〈1〉]]](S, S′) bop [[F [GE/X〈1〉]]](S, S′)
= [[E]](S[X 7→ [[GE]](S, S′)], S′) bop [[F ]](S[X 7→ [[GE]](S, S′)], S′) part1
= [[EbopF ]](S[X 7→ [[GE]](S, S′)], S′)
= RHS

• ΦlopΦ′

LHS = χ(ΦlopΦ′)[GE/X〈1〉](S, S′)
= χΦ[GE/X〈1〉]lopΦ′[GE/X〈1〉](S, S′)
= χΦ[GE/X〈1〉](S, S′) lop χΦ′[GE/X〈1〉](S, S′)
= χΦ(S[X 7→ [[GE]](S, S′)], S′) lop χΦ′(S[X 7→ [[GE]](S, S′)], S′) induction
= χΦlopΦ′(S[X 7→ [[GE]](S, S′)], S′)
= RHS

• notΦ

LHS = χ(notΦ)[GE/X〈1〉](S, S′)
= χnot(Φ[GE/X〈1〉])(S, S′)
= ¬(χΦ[GE/X〈1〉](S, S′))
= ¬(χΦ(S[X 7→ [[GE]](S, S′)], S′)) induction
= χnotΦ(S[X 7→ [[GE]](S, S′)], S′)
= RHS

3. Basic facts about relations on flat domains.

4. Another trivial induction.
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4.1.3 Inference Rules

The core rules for RHL are shown in Figure 5. Observe that, as was the case in
DDCC, the basic rules ensure that the same conditional branches are taken and
that loops are executed the same number of times on the two sides. Note also
that one could add distinct semantic judgements for symmetry and transitivity,
rather than requiring both. The assignment rule is surprisingly liberal, but there
is no reason to require the assigned variables to be the same in both commands.

4.2 Equations

As with DDCC, we will specify optimizing transformations by adding extra
(sound) rules to the core. But even before we do that, RHL can justify some
useful transformations. Here’s an example of removing a redundant evaluation:

1. ` Z:=Y +1
∼ Z:=X

:
X〈1〉 = X〈2〉∧
Y 〈1〉+ 1 = X〈2〉 ⇒ X〈1〉 = X〈2〉∧

Z〈1〉 = Z〈2〉 by [R-Ass]

2. ` X:=Y +1
∼ X:=Y +1

:
Y 〈1〉+ 1 = Y 〈2〉+ 1∧
Y 〈1〉+ 1 = Y 〈2〉+ 1 ⇒ X〈1〉 = X〈2〉∧

Y 〈1〉+ 1 = X〈2〉 by [R-Ass]

3. |= (Y 〈1〉 = Y 〈2〉) ≤ Y 〈1〉+ 1 = Y 〈2〉+ 1∧
Y 〈1〉+ 1 = Y 〈2〉+ 1 by logic

4. ` X:=Y +1
∼ X:=Y +1

: Y 〈1〉 = Y 〈2〉 ⇒ X〈1〉 = X〈2〉∧
Y 〈1〉+ 1 = X〈2〉 by [R-Sub] applied

to 2. and 3.

5. ` X:=Y +1;Z:=Y +1
∼ X:=Y +1;Z:=X

: Y 〈1〉 = Y 〈2〉 ⇒ X〈1〉 = X〈2〉∧
Z〈1〉 = Z〈2〉 by [R-Seq] ap-

plied to 4. and 1.

4.2.1 Basic Equations

The basic equations we presented in the context of DDCC are still valid for
RHL, with the exception of self-assignment elimination, though the contextual
versions are now more powerful than the simple ones, so we take [R-SU1’L] and
[R-SU2’L] (and their symmetric versions) as basic.

I believe an RHL version of [D-CC] is probably admissible given the other
RHL rules presented here, but admissibility is not preserved by adding further
rules, so it seems easiest to add something explicit, at least to make sure that the
DDCC embedding theorem is valid. There are a number of choices for natural
RHL rules which imply [D-CC]. The following is one:

` if B then C1 else C2 ∼ C : Φ ⇒ Φ′
[R-CBInvTL]

` C1 ∼ C : Φ ∧B〈1〉 ⇒ Φ′

` if B then C1 else C2 ∼ C : Φ ⇒ Φ′
[R-CBInvFL]

` C2 ∼ C : Φ ∧ notB〈1〉 ⇒ Φ′

Plus the obvious ones the other way around. These are the inverted versions of
[R-CB] (see later).
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We also add the loop unrolling rules [R-LU1L] and [R-LU2L] and their right-
handed versions, mainly to ensure that the embedding of DDCC in RHL works.
A better treatment of loops in RHL is to have a more powerful inductive rule,
but that is not discussed here since this report is intended to match the POPL
paper. In passing, it should also be remarked that the messy business of having
left and right variants of rules can also be avoided by use of a Φ−1 rule, which
swaps 1 and 2. (There’s also a case to be made for adding syntactic relational
composition.)

4.2.2 Optimizing Transformations

Falsity:
` C ∼ C ′ : false⇒ Φ [R-F]

Dead assignment:

` X:=E ∼ skip : Φ[E〈1〉/X〈1〉] ⇒ Φ [R-DAssL]

` skip ∼ X:=E : Φ[E〈2〉/X〈2〉] ⇒ Φ [R-DAssR]

These rules subsume our previous dead-assignment and self-assignment
rules. With the basic rules for skip, they subsume the [R-Ass] rule too.

Common branch:

` C ∼ D : Φ ∧B〈1〉 ⇒ Φ′ ` C ′ ∼ D : Φ ∧ notB〈1〉 ⇒ Φ′
[R-CBL]

` if B then C else C ′ ∼ D : Φ ⇒ Φ′

Plus a version with the conditional on the right. These subsume our earlier
equivalent branch rule, and (via the falsity equation) the known-branch
rules and the [R-If] rule.

Dead while:

` while B do C ∼ skip : Φ ∧ notB〈1〉 ⇒ Φ ∧ notB〈1〉 [R-DWhl]

Plus the variant with skip on the left.

Soundness is a simple induction, relying on Lemma 3:

Theorem 3. For all C,C ′,Φ,Φ′, if ` C ∼ C ′ : Φ ⇒ Φ′ is derivable using the
rules in Figure 5 and Section 4.2 then |= C ∼ C ′ : Φ ⇒ Φ′.

Proof. Induction on derivations.

R-Skip If (S, S′) ∈ [[Φ]] then ([[skip]]S, [[skip]]S′) = (dSe, dS′e) ∈ [[Φ]]⊥.

R-If If (S, S′) ∈ [[Φ∧ (B〈1〉 = B′〈2〉)]] then (S, S′) ∈ [[Φ]] and (by Lemma 3 part
4) [[B]]S = [[B′]]S′. Assume the common value is true, then

([[if B then C else D]]S, [[if B′ then C ′ else D′]]S′) = ([[C]]S, [[C ′]]S′)

and we have (S, S′) ∈ [[Φ∧(B〈1〉∧B′〈2〉)]] so that by assumption ([[C]]S, [[C ′]]S′) ∈
[[Φ]]⊥ as required. The false case is similar.
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R-Seq This is just the same as the case of [D-Seq].

R-Ass Assume (S, S′) ∈ [[Φ[E〈1〉/X〈1〉, E〈2〉/Y 〈2〉]]]. Then

χΦ(S[X 7→ [[E]]S], S′[Y 7→ [[E′]]S′])
= χΦ(S[X 7→ [[E〈1〉]](S, S′)], S′[Y 7→ [[E′〈2〉]](S, S′)])
= χΦ[E〈1〉/X〈1〉,E′〈2〉/Y 〈2〉](S, S′)
= true

So that ([[X:=E]]S, [[Y :=E′]]S′) ∈ [[Φ]]⊥ as required.

R-Whl Let f0 = λS.⊥, fn+1 = λS.[[B]]S =⇒ f∗n([[C]]S) | dSe and similarly for f ′n.
We prove by induction that for all n, for all (S, S′) ∈ [[Φ∧(B〈1〉 = B′〈2〉)]],
(fnS, f ′nS′) ∈ [[Φ ∧ ¬(B〈1〉 ∨ B′〈2〉)]]⊥. The case n = 0 is immedi-
ate. Then (fn+1S, f ′n+1S

′) = ([[B]]S =⇒ f∗n([[C]]S) | dSe, [[B′]]S′ =⇒
f ′n
∗([[C ′]]S′) | dS′e). Since (S, S′) ∈ [[B〈1〉 = B′〈2〉]], [[B]]S = [[B′]]S′. If

the common value is false then (fn+1S, f ′n+1S
′) = (dSe, dS′e) ∈ [[Φ ∧

¬(B〈1〉 ∨ B′〈2〉)]]⊥ as required. Otherwise the common value is true, so
(S, S′) ∈ [[Φ ∧ (B〈1〉 ∧ B′〈2〉)]]. Thus by assumption ([[C]]S, [[C ′]]S′) ∈
[[Φ ∧ (B〈1〉 = B′〈2〉)]]⊥. Either ([[C]]S, [[C ′]]S′) = (⊥,⊥), in which case
(fn+1S, f ′n+1S

′) = (⊥,⊥) and we’re done, or ([[C]]S, [[C ′]]S′) = (dT e, dT ′e)
with (T, T ′) ∈ [[Φ∧(B〈1〉 = B′〈2〉)]]. Then by induction (fn+1S, f ′n+1S

′) =
(fnT, f ′nT ′) ∈ [[Φ ∧ ¬(B〈1〉 ∨B′〈2〉)]]⊥ as required.

Finally, by admissibility, for all (S, S′) ∈ [[Φ∧(B〈1〉 = B′〈2〉)]], (tnfnS,tnf ′nS′) ∈
[[Φ ∧ ¬(B〈1〉 ∨B′〈2〉)]]⊥ as required.

R-Sub Immediate.

R-Sym PERs are symmetric.

R-Tr PERs are transitive.

R-F ∀(S, S′) ∈ ∅.([[C]]S, [[C ′]]S′) ∈ [[Φ]]⊥.

R-DAssL Assume (S, S′) ∈ [[Φ[E〈1〉/X〈1〉]]]. Then

χΦ(S[X 7→ [[E]]S], S′)
= χΦ(S[X 7→ [[E〈1〉]](S, S′)], S′)
= χΦ[E〈1〉/X〈1〉](S, S′)
= true

So ([[X:=E]]S, [[skip]]S′) ∈ [[Φ]]⊥ as required.

R-CBL Assume (S, S′) ∈ [[Φ]]. If [[B]]S = true then (S, S′) ∈ [[Φ ∧B〈1〉]] and

([[if B then C else C ′]]S, [[D]]S′)
= ([[C]]S, [[D]]S′)
∈ [[Φ′]]⊥ by assumption

Similar reasoning applies in the false case.

R-CBInvTL If (S, S′) ∈ [[Φ ∧ B〈1〉]] then (S, S′) ∈ [[Φ]] and [[B]]S = true. Hence
([[if B then C1 else C2]]S, [[C]]S′) ∈ [[Φ′]]⊥ and [[if B then C1 else C2]]S =
[[C1]]S so that

([[C1]]S, [[C]]S′) ∈ [[Φ′]]⊥
as required.
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R-DWhlL If (S, S′) ∈ [[Φ ∧ notB〈1〉]] then [[B]]S = false so (strictly speaking by a
trivial fixpoint induction)

([[while B do C]]S, [[skip]]S′)
= (dSe, dS′e)
∈ [[Φ ∧ notB〈1〉]]⊥

4.3 Examples

With these rules, one can prove the correctness of many traditional compiler
optimizations, including various forms of code motion and predicated transfor-
mation. Producing proofs in RHL is fairly straightforward, so we just give a
couple of small examples of the sort of thing one can prove.

Invariant hoisting:

while I<N do X := Y+1;
X := Y+1; ==> while I<N do
I := I+X; I := I+X;

at type Φ ⇒ Φ where Φ is I〈1〉 = I〈2〉∧N〈1〉 = N〈2〉∧Y 〈1〉 = Y 〈2〉. Note
that the lifting is only valid because we do not care about the final value
of X. The proof makes two uses of the dead-assignment rule, which is a
common pattern for performing code-motion in RHL: one effectively adds
skips to both sides to make them the same ‘shape’, shows the equivalence
using the congruence rules and then removes the skips.

Proof. Let Φ be as defined above, B = (I < N) and Φ′ = Φ ∧ (X〈2〉 =
Y 〈2〉+ 1) ∧ (B〈1〉 = B〈2〉). Now by [R-Ass]

` I := I+X ∼ I := I+X : Φ′[(I〈1〉+X〈1〉)/I〈1〉, (I〈2〉+X〈2〉)/X〈2〉] ⇒ Φ′

and by [R-DAs]

` X := Y+1
∼ skip

:
Φ′[(I〈1〉+ X〈1〉)/I〈1〉, (I〈2〉+ X〈2〉)/X〈2〉][(Y 〈1〉+ 1)/X〈1〉]
⇒ Φ′[(I〈1〉+ X〈1〉)/I〈1〉, (I〈2〉+ X〈2〉)/X〈2〉]

so by [R-SU1’L]

` (X := Y+1; I := I+X) ∼ (I := I+X)
: Φ′[(I〈1〉+ X〈1〉)/I〈1〉, (I〈2〉+ X〈2〉)/X〈2〉][(Y 〈1〉+ 1)/X〈1〉] ⇒ Φ′

Expanding the substitution on the left gives

Φ′′ = (I〈1〉+ Y 〈1〉+ 1) = (I〈2〉+ X〈2〉)
∧ N〈1〉 = N〈2〉
∧ Y 〈1〉 = Y 〈2〉
∧ X〈2〉 = Y 〈2〉+ 1
∧ ((I〈1〉+ (Y 〈1〉+ 1)) < N〈1〉) = (I〈2〉+ X〈2〉 < N〈2〉)
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Logic and arithmetic then give |= (Φ∧(X〈2〉 = Y 〈2〉+1)∧B〈1〉∧B〈2〉) ≤
Φ′′, so by [R-Sub] and [R-Whl]

` while I<N do (X :=Y+1;I:=I+X) ∼ while I<N do I := I+X
: Φ′ ⇒ Φ ∧ (X〈2〉 = Y 〈2〉+ 1) ∧ not(B〈1〉 ∨B〈2〉)

Now by [R-DAs]

skip ∼ X := Y+1 : Φ′[(Y 〈2〉+ 1)/X〈2〉] ⇒ Φ′

and |= Φ ≤ Φ′[(Y 〈2〉+ 1)/X〈2〉]. So by [R-Sub] and [R-SU1’]

` while I<N do (X :=Y+1;I:=I+X) ∼ X := Y+1; while I<N do I := I+X
: Φ ⇒ Φ ∧ (X〈2〉 = Y 〈2〉+ 1) ∧ not(B〈1〉 ∨B〈2〉)

and clearly |= (Φ ∧ (X〈2〉 = Y 〈2〉 + 1) ∧ not(B〈1〉 ∨ B〈2〉)) ≤ Φ so we’re
done by [R-Sub].

Sophisticated dead-code:

if X>3 then Y := X else Y := 7 ==> skip

at type (X〈1〉 = X〈2〉 ∧ Y 〈1〉 > 2 ∧ Y 〈2〉 > 2) ⇒ (Y 〈1〉 > 2 ∧ Y 〈2〉 > 2).
I.e. if all that matters about the value of Y in the rest of the derivation
is that it is greater than 2, then the conditional has no effect.

Proof. Write Φ for (X〈1〉 = X〈2〉 ∧ Y 〈1〉 > 2 ∧ Y 〈2〉 > 2) and Φ′ for
(Y 〈1〉 > 2 ∧ Y 〈2〉 > 2). By [R-DAssL]

` Y :=X ∼ skip : Φ′[X〈1〉/Y 〈1〉] ⇒ Φ′

and
` Y :=7 ∼ skip : Φ′[7/Y 〈1〉] ⇒ Φ′

It is then trivial to check

|= Φ ∧ (X〈1〉 > 3) ≤ Φ′[X〈1〉/Y 〈1〉] and
|= Φ ∧ not(X〈1〉 > 3) ≤ Φ′[7/Y 〈1〉]

so that by two applications of [R-Sub] and one of [R-CBL] we are done.

The main weakness of RHL as presented here relates to its treatment of loops.
Since we insist that transformed programs have the same termination behaviour
as the original, but have no non-trivial termination analysis, this is hardly supris-
ing. I believe it is possible to add sound rules which can justify some cases of
loop distribution/fusion, but more ambitious loop optimizations seem to require
either a language with restricted iteration constructs or a logic which can reason
about termination.
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4.4 Embedding Simpler Logics in RHL

RHL is powerful but hardly suitable for direct implementation in a compiler.
However, it can provide a useful framework for developing sound type and trans-
formation systems which are more specific. One would start by identifying a
restricted sublanguage of relational assertions. For example, several useful anal-
yses can be formulated using only partial equivalence relations generated from
axioms such as:

` PER(E〈1〉 = E〈2〉) ` PER(B〈1〉 = B〈2〉)

` PER(B〈1〉 ∧B〈2〉)

plus rules stating that PERs are closed under conjunction, disjoint union and
the arrow constructor. Our earlier DDCC system is of this form, with state
relations being formed as conjunctions of primitive assertions of the forms
X〈1〉 = X〈2〉 and X〈1〉 = n ∧ X〈2〉 = n. The rules of DDCC can then be
presented as derived rules in RHL.

For F, F ′ ∈ τ exp and DDCC expression type φτ , define the RHL relation
(F ∼ F ′ : φτ )∗ as follows:

(F ∼ F : F)∗ = false
(F ∼ F ′ : {c})∗ = (F 〈1〉 = c) ∧ (F ′〈2〉 = c)
(F ∼ F ′ : ∆)∗ = (F 〈1〉 = F ′〈2〉)
(F ∼ F ′ : T)∗ = true

Then for a DDCC state type Φ, define the RHL relation Φ∗ by

(−)∗ = true

(Φ, X : φint)∗ = Φ∗ ∧ (X ∼ X : φint)∗

Lemma 4. For all F, F ′, S, S′, Φ, φ:

1. (S, S′) ∈ [[(F ∼ F ′ : φ)∗]]RHL ⇐⇒ ([[F ]]S, [[F ′]]S′) ∈ [[φ]]DDCC .

2. |= PER((F ∼ F : φ)∗) (NB. firstly, it’s the same F and, secondly, we
don’t actually use this in the sequel.)

3. [[Φ]]DDCC = [[Φ∗]]RHL

4. |= PER(Φ∗) and if ` Φ ≤ Φ′ then |= Φ∗ ≤ Φ′∗.

Proof. 1. Consider each case for φ. T and F are obvious. For {c} we get
(missing out some steps)

[[(F ∼ F ′ : {c})∗]]RHL

= {(S, S′) | [[F 〈1〉 = c]](S, S′) = true & [[F ′〈2〉 = c]](S, S′) = true}
= {(S, S′) | [[F ]]S = c & [[F ′]]S′ = c}
= {(S, S′) | ([[F ]]S, [[F ′]]S′) ∈ [[{c}]]}

The case φ = ∆ is similar.
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2. For symmetry:

(S, S′) ∈ [[(F ∼ F : φ)∗]]
⇐⇒ ([[F ]]S, [[F ]]S′) ∈ [[φ]]
⇐⇒ ([[F ]]S′, [[F ]]S) ∈ [[φ]] as [[φ]] is a PER
⇐⇒ (S′, S) ∈ [[(F ∼ F : φ)∗]]

The reasoning is similar for transitivity.

3. This follows immediately from the first part and induction on the length
of Φ:

(S, S′) ∈ [[Φ, X : φ]]DDCC

⇐⇒ (S, S′) ∈ [[Φ]]DDCC & (S(X), S′(X)) ∈ [[φ]]DDCC

⇐⇒ (S, S′) ∈ [[Φ∗]]RHL & ([[X]]S, [[X]]S′) ∈ [[φ]]DDCC

⇐⇒ (S, S′) ∈ [[Φ∗]]RHL & (S, S′) ∈ [[(X ∼ X : φ)∗]]RHL

⇐⇒ (S, S′) ∈ [[Φ∗ ∧ (X ∼ X : φ)∗]]RHL

⇐⇒ (S, S′) ∈ [[(Φ, X : φ)∗]]RHL

4. Immediate from previous bit, the fact that [[Φ]]DDCC is a PER, and the
soundness of entailment in DDCC (Lemma 1).

Theorem 4. For all F, F ′, Φ, Φ′, C, C ′, φ:

1. If ` F ∼ F ′ : Φ ⇒ φ then |= Φ∗ ≤ (F ∼ F ′ : φ)∗.

2. If ` C ∼ C ′ : Φ ⇒ Φ′ in DDCC then ` C ∼ C ′ : Φ∗ ⇒ Φ′∗ in RHL.

Proof. 1. This follows from soundness of DDCC expression judgements:

` E ∼ E′ : Φ ⇒ φ
=⇒ ∀(S, S′) ∈ [[Φ]]DDCC .([[E]]S, [[E′]]S′) ∈ [[φ]]DDCC (Theorem 1)
⇐⇒ ∀(S, S′) ∈ [[Φ]]DDCC .(S, S′) ∈ [[(E ∼ E′ : φ)∗]]RHL

⇐⇒ ∀(S, S′) ∈ [[Φ∗]]RHL.(S, S′) ∈ [[(E ∼ E′ : φ)∗]]RHL

⇐⇒ |= Φ∗ ≤ (E ∼ E′ : φ)∗

2. Induction on derivations

D-CT (Φ, X : F)∗ = Φ∗ ∧ (X ∼ X : F)∗ = Φ∗ ∧ false So |= (Φ, X : F)∗ ≤
false and we’re done by [R-F] and [R-Sub].

D-CSub Lemma 4 and [R-Sub].

D-CSym Lemma 4 and [R-Sym].

D-CTr Lemma 4 and [R-Tr].

D-Skip Immediate by [R-Skip]

D-Seq Immediate by [R-Seq]

D-Ass By [R-Ass],

` X:=E ∼ X:=E′ : (Φ, X : φ′)∗[E〈1〉/X〈1〉, E′〈2〉/X〈2〉] ⇒ (Φ, X : φ′)∗

and examination of the definition of (·)∗ shows

(Φ, X : φ′)∗[E〈1〉/X〈1〉, E′〈2〉/X〈2〉] = Φ∗ ∧ (E ∼ E′ : φ′)∗
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By part 1 and the hypothesis we know |= (Φ, X : φ)∗ ≤ (E ∼ E′ :
φ′)∗, and clearly |= (Φ, X : φ)∗ ≤ Φ∗ so

|= (Φ, X : φ)∗ ≤ Φ∗ ∧ (E ∼ E′ : φ′)∗

so we’re done by [R-Sub].

D-Whl By part 1, |= Φ∗ ≤ (B ∼ B′ : ∆bool)∗ which is |= Φ∗ ≤ (B〈1〉 =
B′〈2〉), so |= Φ∗ ≤ Φ∗∧(B〈1〉 = B′〈2〉). Clearly Φ∗∧(B〈1〉∧B′〈2〉) ≤
Φ∗ and, by hypothesis, ` C ∼ C ′ : Φ∗ ⇒ Φ∗. Thus by [R-Sub]

` C ∼ C ′ : Φ∗ ∧ (B〈1〉 ∧B′〈2〉) ⇒ Φ∗ ∧ (B〈1〉 = B′〈2〉)

so by [R-Whl]

` while B do C ∼ while B′ do C ′ : Φ∗ ∧ (B〈1〉 = B′〈2〉) ⇒ Φ∗ ∧ not(B〈1〉 ∨B′〈2〉)

And then using |= Φ∗ ≤ Φ∗ ∧ (B〈1〉 = B′〈2〉) again, plus |= Φ∗ ∧
not(B〈1〉 ∨B′〈2〉) ≤ Φ∗, we can apply [R-Sub] to deduce

` while B do C ∼ while B′ do C ′ : Φ∗ ⇒ Φ∗

as required.

D-If By hypothesis ` Ci ∼ C ′i : Φ∗ ⇒ Φ′∗ for i ∈ {1, 2}. Since |= Φ∗ ∧
(B〈1〉 ∧B′〈2〉) ≤ Φ∗ we can use [R-Sub] to deduce

` C1 ∼ C ′1 : Φ∗ ∧ (B〈1〉 ∧B′〈2〉) ⇒ Φ′∗

and similarly

` C2 ∼ C ′2 : Φ∗ ∧ not(B〈1〉 ∨B′〈2〉) ⇒ Φ′∗

so that by [R-If]

` if B then C1 else C2 ∼ if B′ then C ′1 else C ′2 : Φ∗ ∧ (B〈1〉 = B′〈2〉) ⇒ Φ′∗

Then by assumption |= Φ∗ ≤ (B ∼ B′ : ∆bool)∗ so that |= Φ∗ ≤
Φ∗ ∧ (B〈1〉 = B′〈2〉) and we can apply [R-Sub] to deduce

` if B then C1 else C2 ∼ if B′ then C ′1 else C ′2 : Φ∗ ⇒ Φ′∗

as required.

D-SU1’ Just follows from [R-SU1’]. Same goes for variants.

D-DAs By [R-DAssL],

` X:=E ∼ skip : (Φ, X : T)∗[E〈1〉/X〈1〉] ⇒ (Φ, X : T)∗

and by the form of DDCC state types, (Φ, X : T)∗[E〈1〉/X〈1〉] =
Φ∗ ∧ true. Since |= Φ∗ ∧ (X ∼ X : φ)∗ ≤ Φ∗ ∧ true we can apply
[R-Sub] to deduce

` X:=E ∼ skip : (Φ, X : φ)∗ ⇒ (Φ, X : T)∗

as required.
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D-BrE’ Follows from [R-CBL] plus two uses of [R-Sub] since |= Φ∗ ∧B〈1〉 ≤
Φ∗ and Φ∗ ∧ notB〈1〉 ≤ Φ∗.

D-CF

|= Φ∗ ≤ (F ∼ F : {c})∗
= (F 〈1〉 = c) ∧ (F 〈2〉 = c)
≤ (F 〈1〉 = c) ∧ (c = c)
= (F ∼ c : {c})∗

D-KBT By assumption |= Φ∗ ≤ (B〈1〉 = true) ∧ (B〈2〉 = true) and ` C1 ∼
C ′ : Φ∗ ⇒ Φ′∗. Hence |= Φ∗ ∧B〈1〉 ≤ Φ∗ and so by [R-Sub], ` C1 ∼
C ′ : Φ∗ ∧B〈1〉 ⇒ Φ′∗. We also have ` C2 ∼ C ′ : false⇒ Φ′∗ by
[R-F], and since |= Φ∗ ∧ notB〈1〉 ≤ false we can apply [R-Sub] to
deduce ` C2 ∼ C ′ : Φ∗ ∧ notB〈1〉 ⇒ Φ′∗. An application of [R-CBL]
then gives

` if B then C1 else C2 ∼ C ′ : Φ∗ ⇒ Φ′∗

as required.

D-LU1 Immediate from [R-LU1].

D-LU2 Immediate from [R-LU2].

D-CC By assumption

` if B then C1 else C2 ∼ if B then C1 else C2 : Φ∗ ⇒ Φ′∗

and
` C3 ∼ C3 : Φ′∗ ⇒ Φ′′∗

So by [R-CBInvTL], [R-CBInvFL] and [R-Seq]

` C1;C3 ∼ (if B then C1 else C2);C3 : Φ∗ ∧B〈1〉 ⇒ Φ′′∗

and

` C2;C3 ∼ (if B then C1 else C2);C3 : Φ∗ ∧ notB〈1〉 ⇒ Φ′′∗

so by [R-CBL]

` if B then C1;C3 else C2;C3 ∼ (if B then C1 else C2);C3 : Φ∗ ⇒ Φ′′∗

as required.

D-DWh By [R-DWhlL], ` while B do C ∼ skip : Φ∗ ∧ notB〈1〉 ⇒ Φ∗ ∧ notB〈1〉.
Clearly |= Φ∗ ∧ notB〈1〉 ≤ Φ∗ and since by assumption |= Φ∗ ≤
(B〈1〉 = false) ∧ (B〈2〉 = false), |= Φ∗ ≤ Φ∗ ∧ notB〈1〉. Thus by
[R-Sub]

` while B do C ∼ skip : Φ∗ ⇒ Φ∗

D-Div By assumption |= Φ∗ ≤ (B〈1〉 = true) ∧ (B〈2〉 = true) and ` C ∼
C : Φ∗ ⇒ Φ∗. So by [R-Sub] ` C ∼ C : Φ∗ ∧ (B〈1〉 ∧B〈2〉) ⇒ Φ∗ ∧ (B〈1〉 = B〈2〉)
and thus by [R-Whl]

` while B do C ∼ while B do C : Φ∗ ∧ (B〈1〉 = B〈2〉) ⇒ Φ∗ ∧ not(B〈1〉 ∨B〈2〉)
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Then |= Φ∗ ≤ Φ∗ ∧ (B〈1〉 = B〈2〉) and |= Φ∗ ∧ not(B〈1〉 ∨ B〈2〉) ≤
false ≤ Φ′∗ so by [R-Sub]

` while B do C ∼ while B do C : Φ∗ ⇒ Φ′∗

as required.

A natural question is whether the usual Hoare logic can be embedded in
RHL. One’s first thought might be that a partial correctness judgement `
{P}C{Q} would be equivalent to the ‘squared’ RHL judgement

` C ∼ C : P 〈1〉 ∧ P 〈2〉 ⇒ Q〈1〉 ∧Q〈2〉

but this is not the case because C’s termination behaviour might differ on two
states satisfying P . Nor can one simply intersect the pre- and post-relations
with the identity relation on states, since we do not have syntax for that ‘global’
identity relation. If we fix C, however, we can conjoin the pre- and post-relations
with X〈1〉 = X〈2〉 for every variable X occurring in C and thus effectively
recover Hoare logic.3 Going the other way, one can soundly extend RHL with
the squared versions of valid total correctness judgements ` [P ]C[Q].

As a simple, concrete example of the embedding approach, Figure 6 presents
(a very naive version of) a type system AERC for available expression analysis
and removal of redundant evaluation. State types Θ are finite sets {Xi = Ei |
1 ≤ i ≤ n} of equalities between variables and expressions (in which the same
variable may occur multiple times on the left) and we write Θ ≤ Θ′ for Θ ⊇ Θ′.
The macros kill and gen are defined by

kill(Θ, X) = {(Xi = Ei) ∈ Θ | Xi 6= X ∧X 6∈ Ei}
gen(X, E) =

{ {X = E} if X 6∈ E
{} otherwise

The translation of the AERC into RHL is indexed by a finite set V of variables.
Define

Θ∗V =
∧

X∈V

(X〈1〉 = X〈2〉) ∧
∧

(X=E)∈Θ

(X〈1〉 = E〈1〉)

It is easy to see that for any Θ, |= PER(Θ∗V ) and that Θ ≤ Θ′ implies Θ∗V ≤ Θ′∗V .
The following asserts the soundness of the translation, and hence of AERC:

Theorem 5. For any expressions E,F and commands C,D all of whose vari-
ables occur in V ,

1. If ` E ∼ F : Θ ⇒ τ then |= Θ∗V ≤ (E〈i〉 = F 〈j〉) for i, j ∈ {1, 2}.
2. If ` C ∼ D : Θ ⇒ Θ′ in AERC then ` C ∼ D : Θ∗V ⇒ Θ′∗V in RHL.

Proof. The interesting case is the AERC rule for assignment, which generates
the following verification condition in RHL: if |= Θ∗V ≤ (E〈1〉 = E′〈2〉) then
|= Θ∗V ≤ (kill(Θ, X)∪gen(X, E)∪gen(X, E′))∗V [E〈1〉/X〈1〉, E′〈2〉/X〈2〉], which
is straightforward to check.

3The civilised way to do this is to index all our judgements by finite sets of variable names.
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` X ∼ X : Θ ⇒ int [A-V] ` n ∼ n : Θ ⇒ int [A-N]

` b ∼ b : Θ ⇒ bool [A-B] ` X ∼ E : Θ ∪ {X = E} ⇒ int [A-Red]

` skip ∼ skip : Θ ⇒ Θ [A-Skp]

` E ∼ E′ : Θ ⇒ int ` F ∼ F ′ : Θ ⇒ int
[A-iop] (+ similar bop and lop)

` E iop F ∼ E′ iop F ′ : Θ ⇒ int

` C1 ∼ C ′1 : Θ ⇒ Θ′ ` C2 ∼ C ′2 : Θ′ ⇒ Θ′′
[A-Seq]

` (C1;C2) ∼ (C ′1;C
′
2) : Θ ⇒ Θ′′

` B ∼ B′ : Θ ⇒ bool ` C ∼ C ′ : Θ ⇒ Θ
[A-Whl]

` (while B do C) ∼ (while B′ do C ′) : Θ ⇒ Θ

` E ∼ E′ : Θ ⇒ int
[A-Ass]

` X:=E ∼ X:=E′ : Θ ⇒ (kill(Θ, X) ∪ gen(X,E) ∪ gen(X, E′))

` B ∼ B′ : Θ ⇒ bool ` C1 ∼ C ′1 : Θ ⇒ Θ′ ` C2 ∼ C ′2 : Θ ⇒ Θ′
[A-If]

` (if B then C1 else C2) ∼ (if B′ then C ′1 else C ′2) : Θ ⇒ Θ′

` C ∼ C ′ : Θ ⇒ Θ′
[A-CSym]

` C ′ ∼ C : Θ ⇒ Θ′

` C ∼ C ′ : Θ1 ⇒ Θ2 Θ′1 ≤ Θ1 Θ2 ≤ Θ′2
[A-CSub]

` C ∼ C ′ : Θ′1 ⇒ Θ′2
` Eτ ∼ E′

τ : Θ ⇒ τ Θ′ ≤ Θ
[A-ESub]

` Eτ ∼ E′
τ : Θ′ ⇒ τ

` Fτ ∼ F ′τ : Θ ⇒ τ
[A-ESym]

` F ′τ ∼ Fτ : Θ ⇒ τ

` C ∼ C ′ : Θ ⇒ Θ′ ` C ′ ∼ C ′′ : Θ ⇒ Θ′
[A-CTr]

` C ∼ C ′′ : Θ ⇒ Θ′

` Fτ ∼ F ′τ : Θ ⇒ τ ` F ′τ ∼ F ′′τ : Θ ⇒ τ
[A-ETr]

` Fτ ∼ F ′′τ : Θ ⇒ τ

Figure 6: AERC: Available Expressions and Redundant Computation
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A-V Clearly |= Θ∗V ≤ X〈i〉 = X〈i〉. By assumption X ∈ V so by the definition
of Θ∗V , |= Θ∗V ≤ X〈1〉 = X〈2〉 and we’re done.

A-N Since n〈i〉 = n this is trivial.

A-B as above

A-Red By assumption on V , |= (Θ ∪ {X = E})∗V ≤ Y 〈1〉 = Y 〈2〉 for all Y ∈
vars(E) ∪ {X}. Also |= (Θ ∪ {X = E})∗V ≤ X〈1〉 = E〈1〉 by definition of
(·)∗V . Hence by elementary properties of equality, |= (Θ ∪ {X = E})∗V ≤
X〈i〉 = E〈j〉 for any i, j ∈ {1, 2}.

A-iop By induction |= Θ∗V ≤ (E〈i〉 = E′〈j〉) and |= Θ∗V ≤ (F 〈i〉 = F ′〈j〉), and
since (E iop F )〈i〉 = E〈i〉 iop F 〈i〉 and (E′ iop F ′)〈j〉 = E′〈j〉 iop F ′〈j〉
it’s clear that

|= Θ∗V ≤ (E iop F )〈i〉 = (E′ iop F ′)〈j〉
as required.

A-ESub By induction |= Θ∗V ≤ (E〈i〉 = E′〈j〉) and |= Θ′∗V ≤ Θ∗V so |= Θ′∗V ≤
(E〈i〉 = E′〈j〉).

A-ETr For any i, j, |= Θ∗V ≤ (F 〈i〉 = F ′〈1〉) and |= Θ∗V ≤ (F ′〈1〉 = F ′′〈j〉) so by
transitivity of equality |= Θ∗V ≤ (F 〈i〉 = F ′′〈j〉).

A-ESym By induction |= Θ∗V ≤ F 〈i〉 = F ′〈j〉 for all i, j, so |= Θ∗V ≤ F ′〈i〉 = F 〈j〉
for all i, j.

A-Skip By [R-Skip], ` skip ∼ skip : Θ∗V ⇒ Θ∗V in RHL.

A-Seq Immediate by [R-Seq].

A-Whl By induction |= Θ∗V ≤ (B〈1〉 = B′〈2〉) and ` C ∼ C ′ : Θ∗V ⇒ Θ∗V . So
|= Θ∗V ≤ Θ∗V ∧ (B〈1〉 = B′〈2〉) and |= Θ∗V ∧ (B〈1〉 ∧ B′〈2〉) ≤ Θ∗V and by
[R-Sub] and [R-Whl]

` while B do C ∼ while B′ do C ′ : Θ∗V ∧ (B〈1〉 = B′〈2〉) ⇒ Θ∗V ∧ not(B〈1〉 ∨B′〈2〉)
Then as |= Θ∗V ≤ Θ∗V ∧(B〈1〉 = B′〈2〉) and |= Θ∗V ∧not(B〈1〉∨B′〈2〉) ≤ Θ∗V
we can apply [R-Sub] again to deduce

` while B do C ∼ while B′ do C ′ : Θ∗V ⇒ Θ∗V

as required.

A-Ass Let Θ′ = (kill(Θ, X) ∪ gen(X, E) ∪ gen(X,E′)), then by[R-Ass]

` X:=E ∼ X:=E′ : Θ′∗V [E〈1〉/X〈1〉, E′〈2〉/X〈2〉] ⇒ Θ′∗V

So by [R-Sub], we’re done if we can show

|= Θ∗V ≤ Θ′∗V [E〈1〉/X〈1〉, E′〈2〉/X〈2〉]
given that we know by induction that |= Θ∗V ≤ (E〈i〉 = E′〈j〉) for each
i, j. Expanding out the definition of Θ′∗V [E〈1〉/X〈1〉, E′〈2〉/X〈2〉] we find
it comprises the following four conjuncts:
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1.
∧

Y ∈V (Y 〈1〉 = Y 〈2〉)[E〈1〉/X〈1〉, E′〈2〉/X〈2〉].
2.

∧
(Y =F )∈kill(Θ,X)(Y 〈1〉 = F 〈1〉)[E〈1〉/X〈1〉, E′〈2〉/X〈2〉].

3. (X〈1〉 = E〈1〉)[E〈1〉/X〈1〉, E′〈2〉/X〈2〉] provided X 6∈ E.
4. (X〈1〉 = E′〈1〉)[E〈1〉/X〈1〉, E′〈2〉/X〈2〉] provided X 6∈ E′.

so we have to show that Θ∗V entails each of the conjuncts.

1. The first conjunct is logically equivalent to

 ∧

Y ∈V \{X}
(Y 〈1〉 = Y 〈2〉) ∧ (X〈1〉 = X〈2〉)


 [E〈1〉/X〈1〉, E′〈2〉/X〈2〉]

which is ∧

Y ∈V \{X}
(Y 〈1〉 = Y 〈2〉) ∧ (E〈1〉 = E′〈2〉)

It is clear that Θ∗V entails the first part of this. That it also entails
the second part is an instance of our inductive hypothesis.

2. (Y = F ) ∈ kill(Θ, X) implies Y 6= X and X 6∈ F . Hence

(Y 〈1〉 = F 〈1〉)[E〈1〉/X〈1〉, E′〈2〉/X〈2〉] = (Y 〈1〉 = F 〈1〉)
and so, as (Y = F ) ∈ Θ, which implies |= Θ∗V ≤ (Y 〈1〉 = F 〈1〉), we
are done.

3. If X 6∈ E then

(X〈1〉 = E〈1〉)[E〈1〉/X〈1〉, E′〈2〉/X〈2〉] = (E〈1〉 = E〈1〉)
which is trivially entailed by Θ∗V .

4. If X 6∈ E′ then

(X〈1〉 = E′〈1〉)[E〈1〉/X〈1〉, E′〈2〉/X〈2〉] = (E〈1〉 = E′〈1〉)
and that Θ∗V entails the RHS of the above was an induction hypoth-
esis.

A-If By induction ` C1 ∼ C ′1 : Θ∗V ⇒ Θ′∗V so by [R-Sub] ` C1 ∼ C ′1 : Θ∗V ∧ (B〈1〉 ∧B′〈2〉) ⇒ Θ′∗V ,
and similarly for C2 and C ′2. Thus by [R-If]

` if B then C1 else C2 ∼ if B′ then C ′1 else C ′2 : Θ∗V ∧ (B〈1〉 = B′〈2〉) ⇒ Θ′∗V

Then we also have by assumption that |= Θ∗V ≤ (B〈1〉 = B′〈2〉) so we can
apply [R-Sub] again to get

` if B then C1 else C2 ∼ if B′ then C ′1 else C ′2 : Θ∗V ⇒ Θ′∗V

as required.

A-CSub Immediate by [R-Sub].

A-CSym Immediate from [R-Sym] and the fact that |= PER(Θ∗V ⇒ Θ′∗V ).

A-CTr Immediate from [R-Tr] as above.
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5 Related Work

As we said in the introduction, there has been a good deal of work on proving the
correctness of optimizing transformations for functional languages, especially
from the group at Northeastern [30, 28, 32, 31] but also by Amtoft on strict-
ness analysis [5], Damiani and Giannini on dead-variables [10, 11], Kobayashi
on dead-variables [17] and Benton and Kennedy on effects [8]. Damiani and
Giannini explicitly use PERs in giving the semantics of their analysis system
but give a more algorithmic account its use in transformation. Benton and
Kennedy present optimizing transformations as equations in context, but derive
those (rather clumsily) from a predicate-based semantics for the analysis.

Recently Lacey et al. [19] described how some of the classical [16, 12, 4]
transformations considered here (dead code elimination, constant folding and
a simple code-motion transformation) can be formulated as conditional rewrite
rules on control flow graphs. The rewrites are predicated on temporal logic
formulae expressing (intensionally) the contexts in which the rewrites may be
applied. The authors then use a small-step operational semantics to verify that
under these conditions, their transformations preserve the observable behaviour
of programs. Lacey et al. express strongly the view that more traditional
semantic techniques, in particular denotational ones, are either unable to express
the properties which justify optimizing transformations or can only do so at the
cost of complex proofs and ‘mathematically sophisticated’ techniques. I believe
the present paper provides some evidence to the contrary.

Lerner et al. [20] have built an implementation of a domain specific language
for specifying and justifying rewrites on a simple imperative language which
interfaces to a theorem prover for checking the supplied justification. This
system also uses a (rather restricted) language of temporal logic formulae for
specifying optimizations over flow graphs.

Kozen and Patron [18] describe an algebraic approach to proving some tra-
ditional optimizations correct. There is no mention of relations in their work,
and they abstract rather severely from the actual language (there are no assign-
ments, just unspecified atomic programs including one which makes a variable
‘undefined’), but the connections between their work and ours seem worth fur-
ther study.

The work that is most closely related to that presented here has been done
in the contexts of credible compilation [24, 25] and translation validation [21,
36]. These both take the view that formal verification of complete optimizing
compilers is impractical, but that one might realistically produce a correctness
proof relating the input and output of particular compilations. Translation
validation tries to do this without modifying the compiler, using an independent
tool that tries to infer that the output is a correct translation of the input.
Credible compilation envisages an instrumented compiler producing a putative
proof that the transformations it performed in each particular case were safe;
these proofs can then be examined by a comparatively simple proof-checker.
The basic technical ideas used in credible and validated compilation are very
close indeed to the ones presented here (developed quite independently). The
main difference is that we use the language of types, denotational semantics
and PERs instead of that of control-flow graphs, operational semantics and
simulation relations. Inspired by Rinard’s work, Yang [35] has recently used
a version of relational Hoare logic in reasoning about the correctness of the
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Schorr-Waite graph marking algorithm.
The idea of directly axiomatising a logic of PERs [3] and more general rela-

tions was inspired by the work of Abadi et al on a formal logic for parametric
polymorphism [2].

We have already mentioned some of the large amount of recent work using
PERs (and domain-theoretic projections) to give semantics to analyses for non-
interference, slicing, secure information flow, binding time analysis. An elegant
general calculus, DCC, for such dependency-based analyses has been defined
by Abadi et al. [1]. DCC seems comparable to a higher-order version of our
DDCC, though it is not explicitly presented as an equational calculus and is
more directly in the style of type systems for secure information flow.

The work of Hughes on type specialization [14] seems to have interesting
connections with (a higher-order version of) the work presented here. Hughes
has formulated a type-based analysis which essentially uses a form of singleton
type, and proved the correctness of an associated transformation system which
changes types. Singleton types and their PER semantics have also been studied
in some depth by Aspinall [6].

6 Conclusions and Further Work

We have shown how some very elementary techniques can be used to prove
the combined correctness of analyses and transformations for simple imperative
programs. From a purely semantic perspective, there is nothing very surprising
here. But that is as it should be: we have finally shown that something that
appears simple actually is simple.

One obvious shortcoming of the present work is that it says nothing about
concrete inference or transformation algorithms. Although there are benefits in
factoring a correctness proof into the soundness of a declarative set of inference
rules and the correctness of an inference algorithm, one does ultimately have to
provide both parts. Although there seems no reason why the approach taken
here should not carry over to the control-flow graphs more commonly used in
optimizing compilers for imperative languages, proving directly that analyses as
they are actually implemented in real compilers imply our extensional proper-
ties seems likely to be somewhat messy. Combining our extensional relational
approach to correctness with a more algorithmic, but still declarative, frame-
work for specifying transformations (such as that of Lacey et al.) seems a more
reasonable next step.

Relational Hoare logic is a promising formalism which certainly merits fur-
ther study. A limitation of the system presented here is that it cannot jus-
tify any transformations which remove loops, except in the special case that
they can be completely unrolled at compile-time. This naturally suggests in-
vestigating a total-correctness variant of the logic, but one might also con-
sider a version which allows termination-improving transformations. A further
possibility is to axiomatise the version of relational lifting which maps Φ to
{(d, d′) ∈ S⊥×S⊥ | (d = dse∧d′ = ds′e) =⇒ (s, s′) ∈ Φ}. This is inappropriate
for optimizations, but seems useful in reasoning about termination-insensitive
information flow [7].

There are many natural ways to develop the ideas here, both in terms of the
language features and analyses addressed (higher-types, higher-typed store, dy-
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namic allocation) and in terms of the features of the logics (e.g. quantification,
conjunctive and disjunctive types). Doing some of these would require work-
ing with relations on recursively-defined domains, for which we expect to use
the techniques described by Pitts [23]. If the technique extends to imperative
programs with higher-typed store, a promising idea is to look at optimizations
on low level code that are justified by relational invariants passed down from a
high-level compiler.

Acknowledgements. Thanks to Tony Hoare, Andrew Kennedy, David
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