What We Talk About When We Talk About Types

Nick Benton

Types in everyday programming

```
- fun map f[] = []
    | mapf(x::xs)=fx:: mapfxs;
val map = fn : ('a -> 'b) -> 'a list -> 'b list
```

public static <T extends Comparable<? super T>> $T \max ($ Collection $<T>$ coll) $\{\ldots\}$

> [] + []		
$\begin{aligned} & >[]+\{ \} \\ & \text { [object Object] } \\ & >\{ \}+[] \end{aligned}$		
$\begin{aligned} & 0 \\ & >\{ \}+\{ \} \\ & \text { Nan } \end{aligned}$	CASE Ap	\{ LET f, a = eval(H2!x, e), eval(H3!x, e) LET bv, body, env = H1!f, H2!f, H3!f RESULTIS eval(body, mk3(bv, a, env))

We don't talk about types, we argue about them...
typed or untyped? (Or unityped?)
static
"Dynamic typing is but a special case of static typing, one that limits, rather than liberates, one that shuts
nomir down opportunities, rather than
png?
n-strict? opening up new vistas." - Harper
inferred or explicit? latent?
type safe? type sound?
memory safe?

For and against

- Static catches errors early, dynamic catches errors
- Static does away with runtime tests
- Static aids other static analysis and optimization
- IDE exploits types for completion, etc.
- Type info for garbage collection
- Can enforce security-critical invariants (e.g. JVM)
- Code can be generated or inferred from types
- Aids evolution, refactoring
- Documenting, communicating interfaces
- Mental scaffolding, blueprint during design
- Static too complex and bureaucractic
- Static too brittle, hinders "loose coupling"
- Too restrictive: "we don't need no stinkin' types"

In programming language conferences

- Polymorphism, modules, dependent types, refinements, overloading, subtyping, classes...
- Effect analysis, information flow, access control, communication protocols, lock usage, reactivity, distribution, data representation, staging, complexity
- Type theory and logic

$$
\begin{aligned}
& \text { Sub-Exists } \\
& \left.\left.C<P_{1}, \ldots, P_{m}\right\rangle \text { is a subclass of } D<\overline{\bar{T}}_{1}, \ldots, \overline{\bar{T}}_{n}\right\rangle \\
& \left.\mathbb{\Gamma}, \Gamma \stackrel{\ominus}{\leftarrow} \Gamma^{\prime} \vdash D<\overline{\bar{T}}_{1}, \ldots, \overline{\bar{T}}_{n}\right\rangle\left[P_{1} \mapsto \overline{\mathcal{T}}_{1}, \ldots, P_{m} \mapsto \overline{\mathcal{T}}_{m}\right] \approx_{\theta_{i}} D\left\langle\overline{\mathcal{F}}_{1}^{\prime}, \ldots, \bar{\tau}_{n}^{\prime}\right\rangle \\
& \text { for all } v^{\prime} \text { in } \Gamma^{\prime} \text {, exists } i \text { in } 1 \text { to } n \text { with } \theta\left(v^{\prime}\right)=\theta_{i}\left(v^{\prime}\right) \\
& \text { for all } i \text { in } 1 \text { to } n, \mathbb{\Gamma}, \Gamma: \Delta, \Delta \vdash \overline{\bar{T}}_{i}\left[P_{1} \mapsto \bar{T}_{1}, \ldots, P_{m} \mapsto \bar{T}_{m}\right] \cong \bar{T}_{i}^{\prime}[\theta] \\
& \text { for all } v<:: \text { 令 in } \Delta^{\prime}, \mathbb{\Gamma}, \Gamma: \Delta, \Delta \vdash \theta(v)<: \hat{\hat{T}}[\theta] \\
& \text { for all } v::>\hat{\hat{T}} \text { in } \Delta^{\prime}, \mathbb{\Gamma}, \Gamma: \Delta, \Delta \vdash \hat{\hat{\beta}^{\prime}}[\theta]<: \theta(v) \\
& \mathbb{\Gamma}: \Delta \vdash \exists \Gamma: \Delta(\Delta) . C<\left\langle_{1}^{\exists}, \ldots, \bar{\tau}_{m}\right\rangle\left\langle: \exists \Gamma^{\prime}: \Delta^{\prime}\left(\Delta^{\prime}\right) . D<\left\langle^{\nexists}, \ldots, \bar{T}_{n}^{\prime}\right\rangle\right.
\end{aligned}
$$

The logical, proof-theoretic view, and propositions as types

$$
\begin{gathered}
\Gamma, x: A \vdash x: A \quad \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: A \rightarrow B} \\
\frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B}
\end{gathered}
$$

propositions $=$ types proofs = terms	Logic	Types
	,	\rightarrow
	\wedge	\times
	v	+

Proof normalization

- Simplify (identify) proofs by removal of "detours"
- Substitution lemma:

$$
\frac{\Gamma, x: A \vdash M: B \quad \Gamma \vdash N: A}{\Gamma \vdash M[N / x]: B}
$$

- Now reduce intro/elim pairs
$\frac{\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: A \rightarrow B} \quad \Gamma \vdash N: A}{\Gamma \vdash(\lambda x: A . M) N: B}$
- reduces to $\Gamma \vdash M[N / x]: B$
- proof simplification = beta reduction

Discussion

- Subject reduction (reduction preserves types)
- Strong normalization (all reduction sequences terminate, logical consistency)
- Sequent calculus presentations too (cut elimination)
- Very syntactic. Rules of the game given by beautiful symmetries, etc.
- Types are intrinsic, prescriptive, synthetic - "Church style". Ill-typed terms aren't considered.
- Hugely successful, influential approach
- Generalizes to lots of other propositional logics (linear, S4 for staged computation, S 5 for distribution, lax logic for monads, classical logic and control,...)
- Also to richer logics, program extraction in dependent type theory
- Not so easy to extend to "real" PL type systems
- Analogy between proof simplification and operational ${ }^{\text {2g Gegeth }}$ hantics imperfect

Intrinsic models "bottom up"

- Interpret types as sets (objects)
$\cdot \llbracket x_{1}: A_{1}, \ldots, x_{n}: A_{n} \rrbracket=\llbracket A_{1} \rrbracket \times \cdots \times \llbracket A_{n} \rrbracket$ (product)
$\cdot \llbracket A \rightarrow B \rrbracket=\llbracket B \rrbracket^{\llbracket A \rrbracket}$ (set of functions, exponential)
- Interpret terms as functions (morphisms)
$\cdot \llbracket \Gamma \vdash M: A \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket$
- Semantics models equations induced by beta \& eta equivalent proofs/terms interpreted by equal morphisms
- Denotational models in this general style do work for richer languages, even when the logical, prooftheoretic story breaks down

Extrinsic semantics \& "well-typed programs don't go wrong"

- Quite different approach: programs come first
- Give semantics to all type-free programs, which may involve some notion of dynamic error
- Types are extrinsic, descriptive, analytic properties of programs
- e.g. Milner starts with semantics of untyped CBV lambda calculus in a universal domain

$$
V \cong \mathbb{N}+\left(V \rightarrow V_{\perp}\right)+\{\text { wrong }\}
$$

$\cdot \llbracket M N \rrbracket \rho=\operatorname{let} f=\llbracket M \rrbracket \rho ; v=\llbracket N \rrbracket \rho$ in $\operatorname{apply}(f, v)$
\cdot where, e.g. $\operatorname{apply}\left(i n_{1}(n), v\right)=\left[i n_{3}(w r o n g)\right]$

- Carves out meanings of types as certain subsets of V

Extrinsic models "top down"

$\cdot \llbracket n a t \rrbracket=\left\{i n_{1}(n) \mid n \in \mathbb{N}\right\}$
$\cdot \llbracket A \rightarrow B \rrbracket=\left\{i n_{2}(f) \mid \forall v \in \llbracket A \rrbracket, f v \in \llbracket B \rrbracket_{\perp}\right\}$

- Then not all elements have a type, some have more than one type (e.g. identity function)
- Give Curry-style type assignment for type-free terms

$$
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x . B: A \rightarrow B}
$$

- If $\Gamma \vdash M: A$ and $\rho \in \llbracket \Gamma \rrbracket$ then $\llbracket M \rrbracket \rho \in \llbracket A \rrbracket_{\perp}$
- In particular, well-typed programs don't go wrong

Syntactic type soundness

- Can construct extrinsic models of types over operational semantics too
- but Wright and Felleisen ('94) came up with something simpler
- Work with small step operational semantics
- Define `proper' values (fully evaluated expressions)
- Instead of explicitly saying (3 true) \rightarrow wrong just allow the semantics to get stuck, so (3 true) \rightarrow
- Prove preservation, if $M: A$ and $M \rightarrow M^{\prime}$ then $M^{\prime}: A$ (cf. subject reduction)
- Prove progress, if $M: A$ and M is not a value, then $\exists M^{\prime}, M \rightarrow M^{\prime}$
- Hence, well-typed programs don't get stuck
- This is widely held to be the definition of type safety/soundness

Discussion

- It is simple, and superficially natural for simple types (think of writing an interpreter in ML)
- Only talks about specific type rules and internal details of specific operational semantics
- Have to extend typing rules to objects that only appear in operational semantics (heaps, stacks, pointers, configurations)
- For fancier types (effects, locks,...) have to instrument operational semantics, introducing new, fictitious stuck states that weren't there before
- Gets silly, e.g. for TAL - machine code programs don't go wrong
- Never says what types mean, fails to capture compositional role as interface contracts (functions = functions?)
- Reduces static types to dynamic types

Intensional versus extensional

- What do we think we're doing when we write an operational semantics?
- We're defining a language, but do we take the intermediate configurations seriously?
- The compiler only cares about observable behaviour. If performs optimizing transformations and then emits machine code whose traces bear only a loose similarity with the original operational semantics
- Milner's semantics is mostly extensional. There are terms that inhabit a semantic type without being typable in the original system if true then 3 else false : nat
- But still assumes dynamic test on summands of universal type

Parametricity and abstraction

- "Type structure is a syntactic discipline for enforcing levels of abstraction" - Reynolds
- Collection of techniques originating in study of abstract datatypes, representation independence and parametric polymorphism
- What does it mean to say complex numbers are an abstract type?
- When are two implementations of complex numbers equivalent?
- In what sense do polymorphic functions behave "uniformly"?
- Central idea: go from types as subsets to types as relations (and type operators as operators on relations)

Free theorems

- Any function f of type $\forall X . X \rightarrow X$ is the identity
- $\forall A, B, R \subseteq A \times B,(\mathrm{a}, \mathrm{b}) \in R,\left(f_{A} a, f_{B} b\right) \in R$ - Write $\left(f_{A}, f_{B}\right) \in R \rightarrow R$
- Any function of type $\forall X$. List $X \rightarrow$ List X just reorganizes its input in a fixed way
- $\forall A, B, R \subseteq A \times B,(a s, b s) \in \operatorname{List} R,\left(f_{A} a s, f_{B} b s\right) \in$ List R
- $\forall A, B$, as: List $A, h: A \rightarrow B, f_{B}($ map $h a s)=$ $\operatorname{map} h\left(f_{A} a s\right)$

Top-down relational models of types

- Carve out meanings of types as relations over an untyped model (these days, often just operational semantics)
- $\llbracket A \rightarrow B \rrbracket=\llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ (n.b. relational \rightarrow !)
- $\llbracket \forall X . A \rrbracket \rho=\bigcap_{R} \llbracket A \rrbracket \rho[X \mapsto R]$
- Want type meanings to be partial equivalence relations (PERs)
- So subset of values together with a coarser notion of equality
- Defined together as values inhabiting compound types must respect equality on components

Discussion

- No need to ever talk about errors
- Relational semantics neither stronger nor weaker than syntactic safety
- Syntactically untypable expressions can inhabit semantic types
- Syntactically type-safe operations that break abstraction are ruled out - $\lambda f:$ nat \rightarrow nat.if $f=(\lambda x . x)$ then 3 else $4 \notin \llbracket(n a t \rightarrow n a t) \rightarrow$ nat \rrbracket
- We get equational rules as well as inhabitation
- Traditionally started with system then looked for model, but these are the properties we wanted all along

Example: Information flow

- Want to ensure no information flows from highsecurity variables to low-security ones
- This is not something one can naturally even explain in terms of runtime errors
$\cdot \llbracket C \rrbracket: \mathbb{N}_{h} \times \mathbb{N}_{l} \rightarrow \mathbb{N}_{\mathrm{h}} \times \mathbb{N}_{l}$
- $\forall\left(n_{h}, n_{l}\right),\left(n_{h}^{\prime}, n_{l}^{\prime}\right)$, if $n_{l}=n_{l}^{\prime}$ then $\pi_{2} \llbracket C \rrbracket\left(n_{h}, n_{l}\right)=$ $\pi_{2} \llbracket C \rrbracket\left(n_{h}^{\prime}, n_{l}^{\prime}\right)$
$\cdot(\llbracket C \rrbracket, \llbracket C \rrbracket) \in T \times \Delta \rightarrow T \times \Delta$
- There's a very natural relational logic that captures this and many other static analyses and the transformations they enable

Dimensions, etc.

- Kennedy. Incorporate physical dimensions (mass, length, time) into polymorphic type system that checks for dimensional consistency
- real<d> is reals indexed by dimension d
- Purely syntactically, this is interesting because there are equations on dimension expressions
- Implemented in F\#
- But what does it mean?
- Nature doesn't carry dimension tags around and raise an exception if they don't match up
- Essence of dimensional correctness is extensional, and rather beautiful: invariance under scaling
- If f : real $<a>\rightarrow$ real $<a^{2}>$ then $\forall k>0, x, f(k * x)=k^{2} * f(x)$
- Relational semantics also gives (non)definability results
- Generalizes to e.g. geometry (invariance under transformations, AJK)
- And even to physics (laws of motion from conservation laws, Atkey)!

Compositional type soundness of

compilers

- Express meaning of high-level types as relational, extensional constraints on the behaviour of compiled code
- What does it mean to say a word in memory contains an integer, Boolean, code pointer, data structure pointer?
- It's a constraint on what information code that uses it is allowed to depend on
- This way of doing things supports cross-language linking


```
Fixpoint semantics_of_types (t:ExpType) (Ra:stateRel) ptr ptr' struct t :=
    match t with
    | Int P = lift (P ptr ^ (ptr = ptr'))
    | Bool P = lift (P (n2b ptr) ^ (n2b ptr = n2b ptr'))
    | a * b }=>\mathrm{ Ex value, Ex value2, Ex value', Ex value2',
                                    (ptr,ptr'\mapstovalue,value') ×
                                    (ptr+1,ptr'+1\mapstovalue2,value2') × \llbracketb\rrbracketRa value value' }\times\mathrm{ \a\ Ra value2 value2')
    | a }\longrightarrow\textrm{b}=>\mathrm{ Ex Rprivate,
    (ptr,ptr' \mapsto Later ( Perp (Pre_arrow Rprivate ptr ptr' Ra (\llbracketa\rrbracket) (\llbracketb\rrbracket))) > Rprivate)
    end
    where "'\llbracket' t '\rrbracket'" := (semantics_of_types t ).
Definition Post_arrow b (Ra Rc: stateRel) Rc_cloud (n n' stack_ptr stack_ptr': nat):=
    Ex ptr_result, Ex ptr_result',
        (stack_ptr,stack_ptr' \mapsto ptr_result,ptr_result') \otimes (stack_ptr+1,stack_ptr'+1\mapsto-) \otimes
        ((b Ra ptr_result ptr_result') × Rc_cloud) \otimes Ra \otimes Rc \otimes (spreg\mapsto stack_ptr,stack_ptr') \otimes
        (envreg\mapsto n,n') \otimes unused_space.
Definition Pre_arrow R_private ptr_function ptr_function' Ra a b:=
    Ex Rc, Ex Rc_cloud, Ex n, Ex n', Ex ptr_arg, Ex ptr_arg', Ex stack_ptr, Ex stack_ptr',
        (stack_ptr,stack_ptr'\mapsto ptr_arg,ptr_arg') \otimes
        (stack_ptr+1,stack_ptr'+1\mapsto ptr_function,ptr_function')
        \otimes (R_private }\times\mathrm{ a Ra ptr_arg ptr_arg' }\times\mathrm{ Rc_cloud) &
        ((n+4,n'+4 \mapsto Later (Perp (Post_arrow b Ra Rc Rc_cloud n n' stack_ptr stack_ptr'))) × Rc) \otimes
        Ra \otimes (spreg\mapsto stack_ptr+1,stack_ptr'+1) \otimes (envreg\mapsto n,n') \otimes unused_space.
```


Effect systems

$$
\begin{array}{cc}
\frac{\Theta, x: X \vdash M: T_{\varepsilon} Y}{\Theta \vdash \lambda x: U(X) \cdot M: X \rightarrow T_{\varepsilon} Y} & \frac{\Theta \vdash V_{1}: X \rightarrow T_{\varepsilon} Y \quad \Theta \vdash V_{2}: X}{\Theta \vdash V_{1} V_{2}: T_{\varepsilon} Y} \\
\frac{\Theta \vdash V: X}{\Theta \vdash \operatorname{val} V: T_{\emptyset} X} & \frac{\Theta \vdash M: T_{\varepsilon} X \quad \Theta, x: X \vdash N: T_{\varepsilon^{\prime}} Y}{\Theta \vdash \text { let } x \Leftarrow M \text { in } N: T_{\varepsilon \cup \varepsilon^{\prime}} Y} \\
\frac{\Theta \vdash V: \text { bool }}{\Theta \vdash \text { if } V \text { then } M \text { else } N: T_{\varepsilon} X} & \Theta \vdash M: T_{\varepsilon} X \quad \Theta \vdash N: T_{\varepsilon} X \\
\frac{\Theta \vdash \operatorname{read}(\ell): T_{\left\{\mathrm{r}_{\ell}\right\}}(\text { int })}{\Theta \vdash V: X \quad X \cdot X^{\prime}} \\
\frac{\Theta \vdash \text { int }}{\Theta \vdash V: X^{\prime}} & \frac{\Theta \vdash M: T_{\varepsilon} X \quad T_{\varepsilon} X \cdot T_{\varepsilon^{\prime}} X^{\prime}}{\Theta \vdash M: T_{\varepsilon^{\prime}} X^{\prime}}
\end{array}
$$

Semantics of refined types

$$
\begin{aligned}
& \llbracket X \rrbracket \subseteq \llbracket U(X) \rrbracket \times \llbracket U(X) \rrbracket \\
& \llbracket \text { int】 }=\Delta_{\mathbb{Z}} \\
& \text { 【bool】 }=\Delta_{\mathbb{B}} \\
& \text { 〔unit】 }=\Delta_{1} \\
& \llbracket X \times Y \rrbracket=\llbracket X \rrbracket \times \llbracket Y \rrbracket \\
& \llbracket X \rightarrow T_{\varepsilon} Y \rrbracket=\llbracket X \rrbracket \rightarrow \llbracket T_{\varepsilon} Y \rrbracket \\
& \llbracket T_{\varepsilon} X \rrbracket=\bigcap_{R \in \mathcal{R}_{\varepsilon}} R \rightarrow R \times \llbracket X \rrbracket \\
& \text { Functions are related in the usual } \\
& \text { "logical" fashion: related arguments } \\
& \rightarrow \text { related results } \\
& \mathcal{R}_{\varepsilon}, \mathcal{R}_{e} \subseteq \mathbb{P}(S \times S) \\
& \mathcal{R}_{\varepsilon}=\bigcap_{e \in \varepsilon} \mathcal{R}_{e} \\
& \mathcal{R}_{\mathbf{r}_{\ell}}=\left\{R \mid \forall\left(s, s^{\prime}\right) \in R \text {, } s \ell=s^{\prime} \ell\right\} \\
& \mathcal{R}_{\text {w } \ell}=\left\{R \mid \forall\left(s, s^{\prime}\right) \in R, \forall n \in \mathbb{Z} .\left(s[\ell \mapsto n], s^{\prime}[\ell \mapsto n]\right) \in R\right\}
\end{aligned}
$$

Effect-dependent equivalences (I)

Dead Computation:

$$
\frac{\Theta \vdash M: T_{\varepsilon} X \quad \Theta \vdash N: T_{\varepsilon^{\prime}} Y}{\Theta \vdash \operatorname{let} x \Leftarrow M \text { in } N=N: T_{\varepsilon^{\prime}} Y} x \notin \Theta, \operatorname{wrs}(\varepsilon)=\emptyset
$$

Duplicated Computation:

Effect-dependent equivalences (2)

Commuting Computations:

$$
\begin{gathered}
\Theta \vdash M_{1}: T_{\varepsilon_{1}} X_{1} \quad \Theta \vdash M_{2}: T_{\varepsilon_{2}} X_{2} \quad \Theta, x_{1}: X_{1}, x_{2}: X_{2} \vdash N: T_{\varepsilon^{\prime}} Y
\end{gathered} \begin{aligned}
& \operatorname{rds}\left(\varepsilon_{1}\right) \cap \operatorname{wrs}\left(\varepsilon_{2}\right)=\emptyset \\
& \hline \Theta \vdash \quad \operatorname{let}\left(\varepsilon_{1}\right) \cap \operatorname{rds}\left(\varepsilon_{2}\right)=\emptyset \\
& =M_{1} \text { in let } x_{2} \Leftarrow M_{2} \text { in } N \\
& \text { let } x_{2} \Leftarrow M_{2} \text { in let } x_{1} \Leftarrow M_{1} \text { in } N
\end{aligned}: T_{\varepsilon_{1} \cup \varepsilon_{2} \cup \varepsilon^{\prime}} Y \quad \begin{array}{lr}
\operatorname{wrs}\left(\varepsilon_{1}\right) \cap \operatorname{wrs}\left(\varepsilon_{2}\right)=\emptyset
\end{array}
$$

Pure Lambda Hoist:

$$
\frac{\Theta \vdash M: T_{\{ \}} Z \quad \Theta, x: X, y: Z \vdash N: T_{\varepsilon} Y}{\Theta \vdash \quad} \frac{\operatorname{val}(\lambda x: U(X) \cdot \operatorname{let} y \Leftarrow M \operatorname{in} N)}{=} \quad \operatorname{let} y \Leftarrow M \operatorname{inval}(\lambda x: U(X) \cdot N) \quad T_{\{ \}}\left(X \rightarrow T_{\varepsilon} Y\right)
$$

Summary

- Please stop doing syntactic type soundness proofs!
- Types are about abstractions not about errors
- Can make that precise using relational parametricity
- All types are abstract, all type systems about information flow
- This way of doing things works at multiple levels of abstraction, from source to machine code
- Recent work on relations for languages with store, control, polymorphism, generativity, concurrency
- Approach yields useful, deep results, including contextual equational laws

Thank you

Standard typing rules

$\frac{\Gamma \vdash V_{1}: A \quad \Gamma \vdash V_{2}: B}{\Gamma \vdash\left(V_{1}, V_{2}\right): A \times B} \quad \frac{\Gamma \vdash V: A_{1} \times A_{2}}{\Gamma \vdash \pi_{i} V: A_{i}}$
$\frac{\Gamma, x: A \vdash M: T B}{\Gamma \vdash \lambda x: A . M: A \rightarrow T B} \quad \frac{\Gamma \vdash V_{1}: A \rightarrow T B \quad \Gamma \vdash V_{2}: A}{\Gamma \vdash V_{1} V_{2}: T B}$
$\frac{\Gamma \vdash V: A}{\Gamma \vdash \operatorname{val} V: T A} \quad \frac{\Gamma \vdash M: T A \quad \Gamma, x: A \vdash N: T B}{\Gamma \vdash \operatorname{let} x \Leftarrow M \text { in } N: T B}$
$\frac{\Gamma \vdash V: \text { bool } \quad \Gamma \vdash M: T A \quad \Gamma \vdash N: T A}{\Gamma \vdash \text { if } V \text { then } M \text { else } N: T A}$
$\frac{\Gamma \vdash V: \text { int }}{\Gamma \vdash \operatorname{read}(\ell): T \text { int } \quad \frac{\Gamma \vdash \text { write }(\ell, V): T \text { unit }}{\Gamma}}$

Base semantics in Set

$$
\begin{aligned}
S & =\text { Locs } \rightarrow \mathbb{Z} \\
\llbracket \mathrm{unit} \rrbracket & =1 \\
\llbracket \mathrm{int} \rrbracket & =\mathbb{Z} \\
\llbracket \mathrm{bool} \rrbracket & =\mathbb{B} \\
\llbracket A \times B \rrbracket & =\llbracket A \rrbracket \times \llbracket B \rrbracket \\
\llbracket A \rightarrow T B \rrbracket & =\llbracket A \rrbracket \rightarrow \llbracket T B \rrbracket \\
\llbracket T A \rrbracket & =S \rightarrow S \times \llbracket A \rrbracket
\end{aligned}
$$

Refined types and subtyping

- Subtyping

Types

$$
\begin{aligned}
X, Y & :=\text { unit } \mid \text { int } \mid \text { wool }|X \times Y| X \rightarrow T_{\varepsilon} Y \\
\Theta & :=x_{1}: X_{1}, \ldots, x_{n}: X_{n} \\
\varepsilon & \subseteq \bigcup_{\ell \in \mathcal{L}}\left\{\mathrm{r}_{\ell}, \mathrm{w}_{\ell}\right\}
\end{aligned}
$$

$$
\begin{array}{rcl}
\overline{X \cdot X} & \frac{X \cdot Y \cdot Y \cdot Z}{X \cdot Z} & \frac{X \cdot X^{\prime} Y \cdot Y^{\prime}}{X \times Y \cdot X^{\prime} \times Y^{\prime}} \\
\frac{X^{\prime} \cdot X}{\left(X \rightarrow T_{\varepsilon} Y\right) \cdot\left(X_{\varepsilon} Y \cdot T_{\varepsilon^{\prime}} Y^{\prime}\right.} & \frac{\left.\varepsilon \subseteq T_{\varepsilon^{\prime}} Y^{\prime}\right)}{T_{\varepsilon} X \cdot T_{\varepsilon^{\prime}} X^{\prime}}
\end{array}
$$

Results

- Soundness of subtyping:

If $X \cdot Y$ then $\llbracket X \rrbracket \subseteq \llbracket Y \rrbracket$.

- Fundamental theorem:

```
If \(\Theta \vdash V: X,\left(\rho, \rho^{\prime}\right) \in \llbracket \Theta \rrbracket\)
then \(\left(\llbracket U(\Theta) \vdash V: U(X) \rrbracket \rho, \llbracket U(\Theta) \vdash V: U(X) \rrbracket \rho^{\prime}\right) \in \llbracket X \rrbracket\).
```

- Meaning of top effect: $\llbracket G(A) \rrbracket=\Delta_{\llbracket A \rrbracket}$.
- Equivalences
- Effect-independent: congruence rules, β, η rules, commuting conversions
- Effect-dependent: dead computation, duplicated computation, commuting computations, pure lambda hoist
- Reasoning is quite intricate, involving construction of specific effect-respecting relations.

